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Abstract: Positively charged water-solid interfaces are prepared by adsorption of a cationic polyelec-
trolyte poly(diallyldimethylammonium chloride) (PDADMAC) from aqueous solutions to planar
silica substrates. These substrates are characterized by atomic force microscopy (AFM), optical
reflectivity, and streaming current measurements. By tuning the amount of adsorbed polyelectrolyte,
the surface charge of the substrate can be systematically varied. These substrates are further used to
study deposition of sulfate latex nanoparticles, which is also accomplished by optical reflectivity. This
deposition process is found to be consistent with an extension of the random sequential adsorption
(RSA) model in a semi-quantitative fashion. Such deposition studies were further used to ascertain
that the substrates obtained by in situ and ex situ functionalization behave in an identical fashion.

Keywords: polyelectrolyte; adsorption; particle; deposition; water-solid interface

1. Introduction

Polyelectrolytes are known to adsorb strongly and irreversibly from aqueous solutions
to oppositely charged substrates [1–4]. Several systems of this kind are known, particularly
those involving cationic polyelectrolytes and negatively charged substrates. Examples
involve poly(ethylene imine) (PEI) [5], poly-L-lysine (PLL) [6–8], poly(allylamine hy-
drochloride) (PAH) [2,7], and poly(diallyldimethyl-ammonium chloride) (PDADMAC) [9]
adsorbing to silica or mica. Such systems were mainly studied with optical reflectivity [6,9],
quartz crystal microbalance [7], and streaming potential techniques [2,5]. Thereby, a sat-
urated polyelectrolyte monolayer layer is formed with an adsorbed mass in the range of
0.05–0.5 mg/m2, thickness 0.5–2 nm, and water content 20–50%. The adsorption process is
basically irreversible, meaning that once these films have formed, they remain very stable
in polyelectrolyte-free electrolyte solutions. Another important feature of these films is that
they induce a charge reversal (or overcharging) of the substrate, thus leading to positively
charged surfaces in the case of cationic polyelectrolytes.

The stability of such polyelectrolyte layers motivated numerous researchers to exploit
them as a simple and reproducible approach to functionalize surfaces, as the substrate can
be simply incubated in an aqueous solution of the polyelectrolyte in question. The presence
of the charge reversal further permits to generate positively charged substrates easily. The
principal application of such charge-reversed substrate is the layer-by-layer (LbL) technique,
whereby one adsorbs an additional layer of an oppositely charged polyelectrolyte, and then
repeats this process with cationic and anionic polyelectrolytes numerous times [10–12]. In
this fashion, substrates functionalized with well-defined polyelectrolyte multilayers can
be obtained. Such multilayers were studied in substantial detail and they have numerous
applications, including surface patterning, electro-optic materials, or sensors [11]. Another
application of such substrates functionalized with polyelectrolytes was to study deposition
of colloidal particles, for example, silver [13,14] or gold nanoparticles [15], or micron-sized
latex particles [16–18].
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While various types of polyelectrolytes were used to fabricate such functionalized
surfaces, researchers have hardly addressed the question to which extent one could modify
the properties of these films, which were prepared with one type of polyelectrolyte. While
it has been shown that the adsorbed amount of polyelectrolytes can be tuned through
the salt level or pH [6,9], we are only aware of a single study where this effect has been
exploited to vary the properties of the functionalized surface [19]. In that study, however,
only two salt levels have been used, and to which extent the surface properties can be
systematically tuned has not been addressed.

The present article investigates the question how one can tune the properties of a
surface that has been functionalized with an adsorbed polyelectrolyte layer. In particu-
lar, we focus on silica substrates functionalized with PDADMAC. These surfaces will be
characterized with atomic force microscopy (AFM), optical reflectivity, and streaming po-
tential techniques. We further study deposition of colloidal particles to such functionalized
substrates. These deposition studies are used to demonstrate that substrates that were
prepared in situ and ex situ have the same properties and that these substrates behave very
similarly to simple water-solid interfaces.

2. Material and Methods
2.1. Materials

Poly(diallyldimethylammonium chloride) (PDADMAC) of molecular weight
400–500 kg/mol was purchased from Sigma-Aldrich (Steinman, Germany). A stock sus-
pension of the polyelectrolyte was prepared in pure water and all necessary solutions were
then obtained by dilution of the stock solution and adjusting the ionic strength and the
pH and with respective solutions of analytical grade NaCl, NaOH, and HCl. The latter
chemicals were purchased from Sigma-Aldrich, Acros Organics (Geel, Belgium), and Fisher
Chemicals (Loughborough, UK), respectively.

Negatively charged sulfate latex nanoparticles were purchased from Invitrogen (Eu-
gene, OR, USA). The manufacturer reports an average particle radius of 20 nm and a
polydispersity of 15% as determined by transmission electron microscopy. The manu-
facturer further reports a particle density of 1.055 g/cm3 and a surface charge density of
−6.0 mC/m2 obtained by conductometry. We have further characterized the nanoparti-
cles by AFM imaging (Cypher, Oxford Instruments, Santa Barbara, CA, USA), dynamic
light scattering (DLS), and electrophoresis (Zetasizer ZS, Malvern Instruments, Malvern,
UK). Size distribution analysis of the nanoparticles by AFM yields an average radius of
21 nm and a polydispersity, expressed as the coefficient of variation, of 30%. DLS and
electrophoresis measurements were carried out with suspensions at concentrations of
20–100 mg/L and were investigated in NaCl solutions of 1.0 mM adjusted to pH 4.0. The
hydrodynamic particle radius was measured as 21 nm, which is in good agreement with
our AFM measurements and the value reported by the manufacturer. However, the poly-
dispersity determined by the AFM yields a somewhat larger value than the one reported
by the manufacturer. Time-resolved DLS measurements revealed that at ionic strength
below 50 mM, the particle suspensions remain perfectly stable for at least 3 h. For ionic
strength in the range of 1–10 mM, electrophoresis measurements yield an electrophoretic
mobility of −(3.7 ± 0.2) × 10–8 m2/V/s. The model of O’Brian and White [20] was used
to convert the mobilities to electrokinetic potentials ζ, which were around –70 ± 10 mV.
Surface charge densities σ of −13 ± 3 mC/m2 were obtained with the Grahame equation
for monovalent electrolytes [21]:

σ = (8kBTε0εNA I)1/2sin h
(

eζ

2kBT

)
(1)

where kB is the Boltzmann constant, T the absolute temperature, ε0 the vacuum permittivity,
ε the dielectric constant of water, NA the Avogadro’s constant, I the ionic strength, and e the
elementary charge. The charge density obtained from electrophoresis is comparable to the
one reported by the manufacturer, albeit being larger in magnitude somewhat. Prior to use,
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nanoparticle suspension was dialyzed with cellulose ester membrane (Repligen) against
pure water until the conductivity of water dropped below 10 µS/cm. The concentration
of dialyzed suspension was determined using static light scattering by comparing the
scattering intensity of dialyzed samples with the scattering intensity of the original particle
suspension of known concentration.

Silicon (Si) wafers, p-type and boron-doped, were purchased from Silchem (Freiberg,
Germany). For the reflectivity measurements, they were cut into approximate squares of
10 × 10 mm and oxidized in a furnace at 1000 ◦C for 3 h to obtain a thermally grown silica
(SiO2) layer on their surfaces. For the streaming potential measurements, they were cut by
means of a laser to the size of 10 mm × 20 mm with a precision of 0.1 mm, and they were
mostly used with the native silica layer. Some streaming potential measurements were
also carried out with the oxidized wafers, and the results were found to be identical. The
precise thickness of the silica layer of each substrate was determined by null ellipsometry
(Multiskop, Optrel, Berlin, Germany) in air [22]. The ellipsometry data were analyzed with
a slab model using the refractive indices for the appropriate light wavelength of 633 nm for
silicon and silica of 3.85 + 0.02i and 1.457, respectively [23,24]. The measured thickness of
the native silica layer was about 2–4 nm, while the one of the oxidized wafer was around
100 nm. Prior to measurements, the wafers were cleaned in a 1:1 mixture of H2SO4 (96%,
Carlo Erba Reagents, Val de Reuil, France) and H2O2 (30%, Rectolab) for 20 min and then
rinsed with pure water. Finally, the surface was dried in a flow of nitrogen followed by
cleaning in air plasma for 30 min (PDC-32G, Harrick, Ithaca, NY, USA). All experiments
were carried out at room temperature of 20± 3 ◦C and Milli-Q water (Millipore, Burlington,
MA, USA) was used throughout.

2.2. Topographic Imaging

Sample topographies were recorded with an AFM (Cypher Asylum Research, Oxford
Instruments) in amplitude modulation mode. Images were acquired in air with cantilevers
with tetrahedral silicon tips (AC160TS-R3, Olympus, Japan). These cantilevers had spring
constants of around 30 N/m and resonance frequencies of around 300 kHz. Cantilevers
were excited at their resonance frequencies with free oscillation amplitudes (FOA) of
around 12 nm. The set points were typically 75% of the FOA and the scan rate was 1 Hz.

2.3. Optical Reflectivity

Adsorption and deposition processes were monitored in situ using optical reflec-
tometry in a stagnation point flow cell [25–27]. A home-built fixed-angle reflectometer
was equipped with a polarized green diode laser working with a wavelength of 532 nm
(World Star Tech TECGL-532 Series) and home-build flow through cell. The cell consisted
of a capped equilateral quartz prism with a vertical borehole serving as the inlet and a
spacer ensuring a well-defined horizontal gap between the substrate and the prism. The
solution was pumped through the cell with a peristaltic pump. The detector consists of
a beam splitter and two diodes acquiring the light intensities, which are proportional to
the reflectance in the perpendicular and parallel direction, denoted as Rs and Rp. The
reflectometry signal R is then calculated as

R = C
Rp

Rs
(2)

where C is an unknown instrumental constant that can be eliminated by normalizing the
time-dependent signal R(t) to its initial value R(0), namely

S(t) =
R(t)− R(0)

R(0)
(3)
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The dry mass of the deposited species, Γ(t), can then be calculated from this quantity as

Γ(t) =
S(t)

B
(4)

where B is the sensitivity constant that is obtained theoretically from a homogeneous slab
model [25–27]. This model assumes that the silicon block is coated with a silica layer
of known thickness. We use the refractive indices at the appropriate light wavelength
of silicon and silica of 4.132 + 0.033i and 1.461, respectively [23,24]. Adsorption of the
polyelectrolyte is modeled by adding an additional layer above the silica layer, whereby
the corresponding refractive index calculated with the mixing law

n = nw +
Γ
L
· dn

dc
(5)

where nw =1.335 is the refractive index of water, L is the thickness of the additional layer,
and dn/dc is the refractive index increment. For the polyelectrolyte layer, the refractive
index increment is 0.230 mL/g and a layer thickness of 2 nm was used [7,9]. To model
the deposition of nanoparticles, a further layer was added above the polyelectrolyte layer.
The refractive index of that layer was also calculated with Equation (5), whereby the
refractive index increment is 0.235 mL/g and a layer thickness of 42 nm was chosen. The
latter value corresponds to the mean diameter of the nanoparticles. The refractive index
increments were determined by an automatic refractometer (Abbemat WR/MW, Anton
Paar GmbH, Graz, Austria). The sensitivity constants B entering Equation (4) were similar
for the adsorbed polyelectrolyte as well as for the deposited nanoparticles, and they were
around 0.035 ± 0.005 m2/mg. Moreover, these constants depend only weakly on the layer
thickness chosen. More details concerning the experimental set-up and data analysis can
be found elsewhere [9,28].

2.4. Electrokinetic Potential

The electrokinetic potential of ex situ PDADMAC-functionalized substrates was mea-
sured with the streaming potential and the streaming current technique with SurPASS
(Anton Paar GmbH). The surfaces were immersed into PDADMAC solution of 5 mg/L
concentration and fixed ionic strength and pH for 60 min. Afterward, both surfaces were
rinsed with water for 5 min. Two PDADMAC-functionalized surfaces, which were pre-
pared in an identical fashion, were mounted into the instrument on both sides of the flow
cell for the measurement.

The streaming potential U was measured as a function of the pressure difference ∆p,
which causes the electrolyte solution to flow through the cell. The electrokinetic potential ζ
is then calculated from the Helmholtz–Smoluchowski relationship [29,30]

ζ =
ηL

ε0εARc
· U

∆p
(6)

where η is the dynamic viscosity of water, which is taken as 0.89 mPas, L the length of
the rectangular channel, A is the perpendicular cross-sectional area of the channel, and Rc
is the electrical resistance of the cell. The latter parameter is obtained by a simultaneous
measurement of the electrical current through the channel. The parameters L and A are
obtained from the channel dimensions, which are 20 mm × 10 mm × 0.10 mm. The gap
thickness is adjusted prior to each experiment. The measurement precision is improved by
repeating the same experiment for various pressure differences.

Measuring the streaming current provides an alternative to the streaming potential
technique. That technique measures the electric current I passing through the cell, and the
electrokinetic potential can be obtained by means of the relation [29–31]

ζ =
ηL

ε0εA
· I

∆p
(7)
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The advantage of the streaming current technique is that independent measurements
of the cell resistance are not needed. Additionally, the streaming current technique allows
minimizing errors related to the surface and ionic conductances [29,30,32]. In case of
PDADMAC-functionalized surfaces, the streaming potential and streaming current tech-
niques were used. We found that both techniques yield highly consistent results, except for
ionic strengths lower than 3 mM. Even at these conditions, the difference in the resulting
electrokinetic potentials was small, typically below 10%. Given the advantages of the
streaming current technique, most measurements presented here were carried out with
that technique.

3. Results and Discussion

Functionalization of silica substrates by simple physical adsorption of cationic poly-
electrolyte poly(diallyl-dimethylammonium chloride) (PDADMAC) is studied with optical
reflectivity, streaming potential measurements, and AFM imaging. This functionalization
makes these substrates positively charged. Such functionalized substrates are prepared in
two different ways, namely in situ in the reflectometer cell and ex situ by dip coating. Very
similar substrates are obtained with these two techniques. We further studied deposition
of polystyrene latex nanoparticles to these substrates with reflectometry and AFM imaging.
We found that the deposited mass of the nanoparticles strongly depends on the ionic
strength and the charge density of the substrate. These trends can be described with a
sequential adsorption model that includes effects of electrostatics in a semi-quantitative
fashion. Representative AFM images of the bare silica substrate, the functionalized sub-
strate, and the functionalized substrate with deposited nanoparticles are shown in Figure 1.
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Figure 1. AFM topographical images and corresponding height profiles of the (a) bare silica substrate, (b) the PDADMAC-
functionalized substrate, and (c) the functionalized substrate with deposited nanoparticles. The height profiles are indicated
as horizontal lines in the images. The silica substrate was functionalized during 1 h in a PDADMAC solution with a
concentration of 5.0 mg/L with pH 4.0 and an ionic strength of 10 mM, resulting in an adsorbed amount of 0.14 mg/m2.
Sulfate latex nanoparticles were subsequently deposited during 30 min to this substrate from a suspension of 10 mg/L at
pH 4.0 and an ionic strength of 1.1 mM. The ex situ method involving dip coating was used in both situations.

3.1. Preparation and Characterization of the In Situ Functionalized Substrates

The functionalization of the silica substrate with PDADMAC is achieved in situ within
the cell of the optical reflectometer. This technique permits to follow the functionalization
in real time. Furthermore, the stability of the functionalized substrates can be easily tested.

The oxidized silicon wafer was mounted in the cell, and first rinsed with a NaCl
electrolyte solution with adjusted pH. Subsequently, the PDADMAC solution of 5 mg/L in
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the same electrolyte was injected, typically during 5 min. Finally, the same PDADMAC-free
electrolyte solution was injected again. Typical results of such experiments are shown in
Figure 2. During the first injection, a baseline could be established. The adsorption process
can be followed during the injection of the PDADMAC solution. After an initial rapid rise
of the adsorbed amount, a plateau was observed. This plateau indicates the formation of a
saturated PDADMAC film. The fact that the adsorbed amount remains essentially the same
during the rinsing process with the PDADMAC-free electrolyte solution indicates that the
adsorbed PDADMAC film is very stable, and does not desorb. The different traces shown
in Figure 2 correspond to different ionic strengths adjusted with NaCl. One observes that
the adsorbed amount of PDADMAC increases with increasing ionic strength. We have
further tested the stability of these films in PDADMAC-free solutions of different ionic
strengths. In all situations, basically no desorption could be observed, typically over a time
scale of one hour.
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Figure 2. Time-dependence of the adsorbed mass of PDADMAC on the silica surface determined by
optical reflectivity measurements at a polyelectrolyte concentration of 5.0 mg/L and pH 4.0. The ionic
strength was varied for the different runs as indicated. The dashed lines indicate where substrate
was flushed with a NaCl solution, then with the same solution containing PDADMAC, and finally
again with the NaCl solution. The structural formula of the monomeric unit of PDADMAC is shown
as inset.

Figure 3 shows the adsorbed amount of PDADMAC at saturation as a function of
ionic strength for pH 4.0 and 10.0. One observes that the adsorbed amount increases with
increasing ionic strength and pH. The present data on PDADMAC adsorption obtained with
optical reflectivity are fully consistent with those presented earlier [9]. Results obtained on
similar systems suggest that the adsorbed amount continues to increase up to the solubility
limit of the salt used [7]. However, these high salt concentrations are not exploited here.
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Figure 3. Adsorbed mass of the saturated PDADMAC adsorbed layer on silica as a Figure 1a,b. For
both cases, a root mean square (RMS) roughness of 0.19 ± 0.02 nm was found. This similarity can
be understood since the polyelectrolyte adsorbs in a flat conformation, and explores the existing
corrugations of the original substrate.

3.2. Preparation and Characterization of the Ex Situ Functionalized Substrates

The functionalization of the silica substrate with PDADMAC was also achieved ex situ
by dip coating. Thereby, the oxidized silicon wafer was incubated in a PDADMAC solution
of 5.0 mg/L in a NaCl electrolyte solution of given pH for 1 h, and subsequently thoroughly
rinsed in the same PDADMAC-free electrolyte solution. Comparison with the reflectivity
results that this incubation time is largely sufficient to obtain a fully saturated layer. These
ex situ functionalized substrates were characterized with streaming potential and streaming
current measurements in PDADMAC-free solutions of different ionic strength and pH. As
already established by optical reflectivity, such PDADMAC films are found to be perfectly
stable. No differences between the substrates prepared in situ and ex situ were found by
AFM imaging. Further evidence that these two types of preparation methods leads to
virtually identical substrates are presented in Sections 3.3 and 3.4.

Typical results for the electrokinetic potential (ζ-potential) for an ex situ PDADMAC-
functionalized substrate are shown in Figure 4. The substrate was functionalized during
1 h in a PDADMAC solution with a concentration 5 mg/L of an ionic strength of 10 mM
and pH 4. Referring to data shown in Figure 3, one finds that the adsorbed amount of
PDADMAC is 0.14 mg/m2. One finds that the electrokinetic potential decreases with
increasing pH, whereby the substrate undergoes a charge reversal, and passes thorough an
isoelectric point (IEP). With increasing ionic strength, the dependence of the electrokinetic
potential on pH becomes stronger, but the position of the IEP remains unchanged. Consid-
ering all these measurements, we can locate the IEP at pH 7.8 ± 0.1. The presence of this
characteristic crossing point is an indication that the charging behavior is dominated by
the electrical double layer [21] and that the PDADMAC-functionalized substrate remains
perfectly stable during the course of the experiments, which typically last about one hour.
This finding is also consistent with reflectivity experiments, where no desorption could be
observed over comparable time periods.
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Figure 4. Dependence of the electrokinetic potential of the ex situ PDADMAC-functionalized surfaces
on pH for different ionic strengths. The substrate was functionalized during 1 h in a PDADMAC
solution of 5.0 mg/L with pH 4.0 and an ionic strength of 10 mM, resulting in an adsorbed amount
of PDADMAC of 0.14 mg/m2. The isoelectric point (IEP) is located at pH 7.8.

Similar behavior was observed for the electrokinetic potential obtained for colloidal
particles, for example, titania or iron oxide [33,34]. The similarities between these data
sets indicate that the present PDADMAC-functionalized substrate behaves as a simple
water-oxide interface [2,35–38].

We have further studied the electrokinetic potential of different PDADMAC-function-
alized substrates. The different substrates were prepared ex situ by varying the ionic
strength of the PDADMAC solution, which was adjusted by adding NaCl. We further
compared PDADMAC solutions of pH 4.0 and 10.0. The PDADMAC concentration was
fixed to 5.0 mg/L. The electrokinetic potential of these different substrates was studied
as a function of the solution pH at an ionic strength of 1.0 mM. The results are shown
in Figure 5. One observes that the electrokinetic potential increases with increasing ionic
strength of the PDADMAC solution. This feature can be understood by recalling that the
adsorbed amount of PDADMAC increases with this parameter as well and therefore leads
to higher charge density. When one compares the adsorption carried out at different pH
values, one finds that at pH 10.0, the electrokinetic potential is somewhat higher than at
pH 4.0 (see Figure 5a,b). This feature can be also understood since a larger amount of
PDADMAC adsorbs at higher pH.

From the data shown in Figure 5, one can also extract the electrokinetic potential as
a function of the adsorbed amount of PDADMAC for different pH values. The resulting
plot is shown in Figure 6. One observes that the electrokinetic potential increases with an
increasing adsorbed amount, and decreases with increasing pH. Figure 5 further shows
that the pH of the PDADMAC solution, which was used during the adsorption process,
does not influence the electrokinetic potentials. We thus conclude that the only relevant
variable, which influences the properties of the adsorbed films, is the adsorbed amount
of PDADMAC.
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Figure 7 shows the dependence of the electrokinetic potential on the ionic strength for
the functionalized substrates with different amounts of adsorbed PDADMAC at pH 4.0.
One observes that the electrokinetic potential increases with decreasing ionic strength and
with increasing adsorbed amount. These trends can be well explained with the Grahame
Equation (1). The best fits are shown as solid lines, whereby the corresponding surface
charge densities are given in the figure. As one expects, the charge density increases
with increasing adsorbed amount. One observes that the data can be interpreted semi-
quantitatively in this fashion, but some deviations remain.
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for different adsorbed amount of PDADMAC as indicated. The solid lines are calculations based on
the Grahame Equation (1), whereby the indicated surface charge densities were used.

3.3. Initial Deposition of Nanoparticles

The deposition of the nanoparticles was studied on the PDADMAC-functionalized
silica surface with optical reflectivity. Most studies were carried out with the in situ
functionalized substrates, meaning that the functionalized substrate was prepared in the
reflectometer just prior to the deposition of the nanoparticles. For the studies with ex situ
functionalized substrates, the functionalization was carried out by dip coating, and the
functionalized substrate was mounted in the optical reflectivity cell in the wet state.

The substrate was first rinsed with an electrolyte solution of pH 4.0. Subsequently, the
particle suspension in the same electrolyte solution was injected (t = 0). The outcome of
such experiments is shown in Figure 8a. One first observes that the deposited amount Γ(t)
increases linearly with time t. This increase is then followed by a saturation plateau. The
different traces correspond to different particle concentrations. With increasing particle
concentration, the saturation plateau is reached increasingly more rapidly. A representative
AFM image of the deposited nanoparticles is shown in Figure 1c. From this image, one
can appreciate the substantial polydispersity of the nanoparticles used. However, this
polydispersity is unimportant for the results presented here. In this Section 3.3, the initial
deposition rate will be analyzed, while Section 3.4 focuses on the saturation plateau.



Colloids Interfaces 2021, 5, 26 11 of 18

Colloids Interfaces 2021, 5, x  12 of 19 
 

 

measured by dynamic light scattering and is recalculated from the hydrodynamic radius 
reported in Section 2.1. For the conditions shown in Figure 9, the theoretical value of the 
deposition coefficient becomes (0)

dk = 3.3 × 10−6 m/s. This value is indeed quite similar to 
one that was extracted from the experimental data. 

 
Figure 8. Deposition process of nanoparticles on the PDADMAC-functionalized silica at pH 4.0 and 
an ionic strength of 10 mM for various concentrations of nanoparticles. (a) The deposited amount 
and (b) the time-derivative of the deposited amount are represented as a function of time. 
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and (b) the time-derivative of the deposited amount are represented as a function of time.

To demonstrate that the initial increase is linear indeed, the time-derivative of the
deposited amount dΓ/dt was plotted in Figure 8b. When the deposited amount increases
linearly, the derivative will show a plateau. Such plateaus can be clearly identified for
lower particle concentrations, and from the respective values, the initial deposition rate
can be determined accurately. At higher particle concentrations, this plateau no longer
develops clearly. In that case, the necessary time to reach the adsorption plateau becomes
comparable to the dead-time of the cell, whereby reliable values of initial adsorption rates
cannot be determined.

The initial deposition rate increases with increasing particle concentration. This
dependence is shown in Figure 9. One observes that the initial deposition rate is simply
proportional to the particle concentration, thus suggesting a first-order rate process [39–41]

dΓ
dt

= kd cp (8)
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where kd is the deposition rate coefficient and cp is the particle concentration. By fitting
the experimental data as shown in Figure 9, one obtains the respective deposition rate
coefficient kd = (2.1 ± 0.1) × 10−6 m/s. Figure 9 further compares data obtained for in situ
and ex situ PDADMAC-functionalized substrates, and one observes that they are identical
within experimental error.
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To obtain further insight into the values of such deposition rate coefficients, they can
be compared with the theoretical value for perfect sink conditions in the stagnation point
flow cell [39,41],

k(0)d =
0.776

rb
(νD2αRe)

1/3
(9)

where rb = 0.5 mm is the radius of the bore hole of the cell, ν = 1.0 × 10−6 m2/s is
the kinematic viscosity of water, D the diffusion coefficient of the nanoparticles, and
Re = urb/ν the Reynolds number. The mean flow velocity u follows from the volumetric
flow rate, which is given by dV/dt = πur2

b and is 1.0 mL/min in the present experiments.
The flow parameter α is known for the impinging flow geometry [39,41]. In the present
case, we have Re = 12 and h/rb = 1.7, and thus α = 6.8. The variable h = 0.85 mm denotes
the thickness of the horizontal gap of the cell. The diffusion coefficient is measured by
dynamic light scattering and is recalculated from the hydrodynamic radius reported in
Section 2.1. For the conditions shown in Figure 9, the theoretical value of the deposition
coefficient becomes k(0)d = 3.3 × 10−6 m/s. This value is indeed quite similar to one that
was extracted from the experimental data.

To facilitate this comparison, one may introduce the sticking coefficient defined as [9]

β =
kd

k(0)d

(10)

This coefficient is exactly unity, when the deposition process follows the perfect sink
condition. This condition means that once a particle arrives in the close vicinity of the
surface, it will stick rapidly and irreversibly. Since the deposition may not be immediate,
this coefficient is normally below unity.
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Figure 10 shows the sticking coefficient versus the ionic strength. The data include
three different substrates, namely two different ones obtained by the in situ functionaliza-
tion, and one obtained by the ex situ functionalization. These values are somewhat below
unity, and they have an average of β = 0.6 ± 0.1. One observes no trends with the ionic
strength and the type of substrates. Therefore, the initial deposition is rapid and follows
close to perfect sink conditions throughout. The presently reported values are in good
agreement with those for the deposition of silica nanoparticles on similarly functionalized
substrates [26] and of positively charged nanoparticles to negatively charged substrates [41].
Figure 10 also shows data obtained with the in situ and ex situ PDADMAC-functionalized
substrates. Again, one finds that these results are identical within experimental error.
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Figure 10. Comparison of the sticking coefficient for nanoparticle deposition on PDADMAC-
functionalized silica prepared by in situ and ex situ techniques versus the ionic strength. The
adsorbed amount of PDADMAC is indicated. Full and open symbols refer to in situ and ex situ
substrates, respectively.

3.4. Saturation Plateau of Nanoparticles

For longer deposition times, the deposited number of nanoparticles on the PDADMAC-
functionalized substrates reaches a saturation plateau, see Figure 8a. The value of this
maximal deposited amount is independent on the particle concentration, but depends
strongly on the ionic strength of the nanoparticle suspension.

The dependence of the plateau value for the nanoparticles on the ionic strength is
shown in Figure 11. The data are plotted versus the amount of PDADMAC used to func-
tionalize substrates and for different ionic strengths. One observes that the deposited
amount increases with the amount of PDADMAC and with increasing ionic strength. One
further observes that the deposited mass is identical for the in situ and ex situ functional-
ized substrates.
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Figure 11. Comparison of the maximum deposited number of nanoparticles on PDADMAC-
functionalized surfaces prepared by in situ and ex situ techniques versus the adsorbed amount
of PDADMAC. The nanoparticles were deposited at pH 4.0 and the ionic strengths indicated. Full
and open symbols refer to in situ and ex situ functionalized substrates, respectively.

In order to interpret the data on the maximal deposited amount of the deposited
nanoparticles, it is advantageous to represent them as a function of the ionic strength. This
representation is shown in Figure 12. Again, one finds that the deposited mass for the
substrates functionalized in situ and ex situ is identical. One observes that the deposited
amount is small at low ionic strength, while it increases with increasing ionic strength.
One further observes that the deposited amount increases within an increasing amount of
adsorbed PDADMAC, which was used to functionalize the substrate.
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Figure 12. Maximum deposited number of nanoparticles on the PDADMAC-functionalized silica
surface at pH 4.0 versus the ionic strength for different adsorbed amounts of PDADMAC. The solid
lines represent calculations with the three-body RSA model. The dashed line indicates the result of
the classical RSA model, while the dotted line indicates the jamming coverage for hard disks. The
surface coverage is also indicated as the leftmost axis. Full and open symbols refer to in situ and ex
situ functionalized substrates, respectively.



Colloids Interfaces 2021, 5, 26 15 of 18

The increase of the deposited amount with increasing ionic strength is caused by the
screening of the electrostatic repulsion between the depositing particles. At high ionic
strength, this interaction will be fully screened, and the particles will pack tightly on the
surface as has been discussed in terms of the random sequential adsorption (RSA) model.
At lower ionic strength, the thickness of the double-layer layer surrounding the charged
particles will become appreciable, and will hinder the particles to approach closely. This
effect leads to the decrease of the surface coverage with decreasing ionic strength.

This effect can be quantified in terms of the so-called classical RSA model [42–44].
This model considers the surface coverage θ of equivalent disks, which is related to the
deposited amount Γ by the relation

θ =
3Γ
4aρ

(11)

where a is the particle radius and ρ is the particle density. The RSA model assumes that the
particle deposited to the surface in a random fashion, leading to the so-called jamming. The
limiting coverage is θjam ' 0.547 of this jammed state for hard-disks [42,45]. The fractional
coverage is also indicated in Figure 12 as well as the value for hard-disks.

To include the effect of double-layer repulsion in an approximate fashion, one may still
consider the particles as hard-spheres, but with a larger effective radius aeff. This effective
radius also includes the thickness of the double-layer. The resulting surface coverage then
becomes [42–44]

θ = θjam

(
a

aeff

)2
(12)

To calculate the effective radius, one should know the interaction potential energy
u(r) between two particles. The simplest possible approximation is the screened Coulomb
potential, which reads [9,44]:

u(r) =
Z2e2

4πε0ε

[
exp(κa)
1 + κa

]2 exp(−κr)
r

(13)

where r is the center-to-center distance between the particles, Z is their effective charge,
and κ−1 is the Debye length given by

κ2 =
2e2NA I
ε0εkBT

(14)

When the particles are highly charged, the effective charge saturates at a common
value, which can be estimated from Poisson–Boltzmann (PB) theory [9,44]:

Z =
ae2

4πε0εkBT
(4κa + 6) (15)

In the range of ionic strengths between 0.1 mM and 10 mM, Equation (15) predicts
charges of the nanoparticles that are about 25% higher than the ones calculated from
electrophoresis. The effective radius is then evaluated by comparing the potential energy
u(r) with the thermal energy kBT. Comparison with computer simulations has shown that
the optimal value of the effective radius should be chosen as [42,46]

u(2aeff)

kBT
= 0.36 (16)

The prediction of this classical RSA model is shown Figure 12. Given the fact that
this model contains no adjustable parameters, the agreement with the experimental data is
actually quite good, especially for the substrates that were functionalized with the small
amounts of PDADMAC.
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The weakness of the classical RSA model discussed above is that the influence of the
substrate has been neglected. One observes that the agreement with the classical RSA
model is worst, when the surface has been functionalized with large amounts of PDAMAC,
meaning that the surface is highly charged. One may therefore suspect that the charge
density of the substrate plays an additional role. Indeed, a highly charged substrate will
accumulate larger concentrations of counter-ions in its vicinity, and thus induce more
effective screening. This effect can be quantified with the modified screened Coulomb
potential [44]

u(r) =
Z2e2

4πε0ε

[
exp(κeffa)

1 + κa

]2 exp(−κeffr)
r

(17)

where the parameter κeff is given by [44,47]

κeff = κ cosh
(

eζ

2kBT

)
(18)

The electrokinetic potential ζ of the substrate has been measured at pH 4.0 for the
different ionic strengths and the different amounts of PDADMAC that were used to
functionalize the substrates, see Figure 7. The respective ionic strength dependence can
be approximated with the Grahame relation, Equation (1). This relation is also used to
evaluate Equation (18). Since this modification affects the interaction between the two
particles by the presence of a third body, namely the substrate, we refer to this approach
as the three-body RSA model. The predictions of this model are shown as full lines in
Figure 12. Again, this model contains no adjustable parameters, and it is capable to
predict the observed trends reasonably well. However, at higher coverage and especially at
higher ionic strengths, the experimentally observed coverage exceeds the predicted ones
substantially. We suspect that these deviations are caused by the polydispersity of particles
used, since some smaller particles may deposit in between larger particles. Another reason
for these deviations, especially at higher ionic strengths, might be that the particles start to
form a multilayer.

All these experiments show that the substrates functionalized in situ and ex situ have
the same particle deposition characteristics within experimental error. This observation
confirms that these two types of substrates can be considered as identical.

4. Conclusions

The present study demonstrates that by adsorption of a cationic polyelectrolyte to a
negatively charged substrate, one can easily obtain stable, positively charged substrates.
By tuning the salt level during the adsorption process, one can systematically modify the
adsorbed amount and thus the surface charge density. We demonstrate the feasibility of
this approach by functionalizing silica with PDADMAC. Such substrates have been further
used to study deposition negatively charged latex nanoparticles. The deposition process is
initially rapid, and later leads to a saturated monolayer. The dependence of the resulting
coverage with the ionic strength and the amount of adsorbed PDADMAC, which was used
to functionalize the substrate, can be well rationalized with the three-body RSA model.

Such PDADMAC-functionalized substrates were prepared in two different ways,
namely with an in situ and ex situ technique, and various measurements clearly indicate
that these two substrates behave in an identical fashion. These substrates behave similarly
to simple oxide surfaces, and therefore provide an interesting means to fabricate positively
charged substrates of different charge densities in a reproducible fashion.
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