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Abstract: In this paper, we present the unsteady translational motion of a porous spherical particle
in an incompressible viscous fluid. In this case, the modified Navier–Stokes equation with fractional
order time derivative is used for conservation of momentum external to the particle whereas modified
Brinkman equation with fractional order time derivative is used internal to the particle to govern the
fluid flow. Stress jump condition for the tangential stress along with continuity of normal stress and
continuity of velocity vectors is used at the porous–liquid interface. The integral Laplace transform
technique is employed to solve the governing equations in fluid and porous regions. Numerical
inversion code in MATLAB is used to obtain the solution of the problem in the physical domain.
Drag force experienced by the particle is obtained. The numerical results have been discussed with
the aid of graphs for some specific flows, namely damping oscillation, sine oscillation and sudden
motion. Our result shows a significant contribution of the jump coefficient and the fractional order
parameter to the drag force.

Keywords: fractional order; Stokes equation; Brinkman equation; stream function; porous particle

1. Introduction

Fractional differential equations are a type of differential equation where deriva-
tives are not the traditional derivatives but are of fractional order. Fractional differential
equations have several applications in various branches of science and engineering. For
example, in a porous media, when there is a fluid flow through it, there is a change in
both solid and fluid properties of the porous media due to chemical reactions, mineral
precipitation, etc., and, this results in a change in permeability of the porous media and
viscosity of the fluid flowing through it over time. The phenomenon that solid and fluid
properties change over time is represented by the term ‘memory’. To quantify the effect
of history, ‘memory’ is incorporated in the mathematical model. Two types of memory,
time memory and space memory, are found in literature. Space memory considers the
previous space that the fluids have passed through [1]. One way to include history in
any mathematical model is to use fractional order derivative. History of any parameter
can be taken into consideration using fractional order derivatives of that parameter. To
consider time memory, fractional order derivatives in time are used, and to consider space
memory, fractional order derivatives in space are used. Therefore, fractional differential
equations are used to model mass transport from fractures in porous media to a porous
rock matrix [2]. Fractional differential equations have been used in other different areas
such as fractional telegraph equation. The telegraph equation, also known as a damped
wave equation is classified as a hyperbolic partial differential equation, which governs
physically the voltage and current in an electrical transmission line with distance and
time. The fractional telegraph equation has been solved using a combination of homotopy
analysis and Laplace transform methods [3]. Similar to the fractional telegraph equation,
the equation governing the fluid flow popularly known as the Navier–Stokes equation
has been solved for the fractional order time derivative [4]. Kumar et al. [4] developed a
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new analytical and approximate method by coupling Adomian decomposition method
and Laplace transform which they termed as modified Laplace decomposition method to
obtain the solution of the fractional Navier–Stokes equation. In their study they replaced
the unsteady time derivative term by a fractional order time derivative in the unsteady
Navier–Stokes equation. Existence and uniqueness of solutions of the Navier–Stokes
equations with fractional time derivatives was studied by Zhou and Peng [5] recently.
Wang and Liu [6] developed a modified reduced differential transform method and a new
iterative Elzaki transform method to obtain the analytical solutions of the time fractional
Navier–Stokes equation while studying the problem of one-dimensional unsteady flow of
a viscous fluid in a tube.

The classical Navier–Stokes equation under the assumption of vanishing inertia has
been used by many authors to investigate the unsteady motion of spherical objects in
viscous fluids. Stokes [7] obtained the drag force on a rigid sphere that is oscillating
along one of its diameters in a quiescent fluid. Basset [8] studied the problem of a solid
sphere in a viscous fluid undergoing arbitrary translational motion and obtained the drag
force. For detailed discussion on the unsteady motion of solid bodies in creeping flows,
one may refer to [9] and the references therein. Michaelides and Feng [10] discussed the
motion of a small viscous sphere in an unsteady viscous fluid. They reported the presence
of two length scales in the momentum diffusion; furthermore, they obtained the force
on the sphere and reported that both the length scales appear in the force expression.
Choudhuri and Padmavati [11] analyzed the problem of arbitrary unsteady Stokes flow
past a liquid sphere. They assumed the shape of the liquid drop to be spherical as a first
approximation and used an iterative procedure to determine the shape of the deformed
liquid sphere. Bogoyavlenskij [12] obtained smooth and bounded solutions with infinite
kinetic energy for the unsteady Navier–Stokes equations of a magneto-hydrodynamic
viscous fluid. Ardekani and Rangel [13] studied the unsteady motion of two solid spherical
particles in an unbounded incompressible Newtonian flow. They obtained the unsteady
force exerted on each particle and reported a larger Besset force due to motion of two
spheres rather than the Besset force for a single sphere. Ashmawy [14] investigated the
problem of unsteady rotational motion of a rigid sphere about its diameter in a viscous fluid
with slip condition. Ashmawy [15] further studied the rotary oscillation of a composite
sphere in a viscous liquid bounded by a concentric spherical shell using Navier–Stokes
equations and Brinkman model. It was reported that the couple which is responsible for
the torque acting on the porous surface decreases with increase in permeability.

Jaber and Ahmad [16] developed analytical solution of the time fractional Navier–
Stokes equation using a residual power series method. This power series method is
different from the classical power series method in the sense that in the residual power
series method one need not compare the coefficients of the corresponding term. They
solved the two dimensional problem with variable pressure and obtained the solutions in
terms of rapidly convergent series. Their results were found to be in excellent agreement
with the existing results. Ashmawy [17] investigated the translational motion of a slip
sphere with time-dependent velocity in an incompressible viscous fluid. The unsteady
Navier–Stokes equation was used where in the unsteady term the ordinary time derivative
was replaced with fractional order time derivative. He obtained an exact formula for the
drag force exerted by the fluid on the spherical object and applied this formula to some
flows, namely damping oscillation, sine oscillation and sudden motion. It was reported
that the order of the fractional derivative contributes considerably to the drag force. An
increase in this parameter resulted in an increase in the drag force. Recently, Xu et al. [18]
studied the problem of pressure driven flow between two parallel stationary plates. They
considered the space fractional Navier–Stokes equation which contains a Riesz space
fractional derivative. Their results showed a strong influence of fractional order parameter
on the flow velocity and hence, on the flow rate.

There are theoretical and experimental studies available in literature which show that
modeling via integer-order derivatives does not provide better prediction in comparison
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to modeling via fractional order derivatives in the real-world problems. The modeling of
physical phenomena via fractional-order derivatives is significant for the control theory,
pharmacokinetics, electrical engineering, anomalous diffusion, fluids, electromagnetism,
heat transfer (see [19] and references therein). Zhou et al. [20] used the energy method to
study the Navier–Stokes equations with the time fractional derivative. Such equations can
be used to simulate anomalous diffusion in fractal media. Kang et al. [21] developed a
sophisticated diffusion model for gas transport in heterogeneous coal matrix. In view of
the disadvantages of existing Fickian diffusion-based models, they proposed an anomalous
subdiffusion by introducing the fractional time and space derivatives to classical Fickian
flux equation. They concluded that the presence of the fractional parameter describes the
gas transport in heterogeneous coal matrix accurately. Muzaffar et al. [22] investigated
the helical effects for the fractionalized viscoelastic fluid in helically moved cylinder using
fractional derivative in which study of Newtonian and non-Newtonian fluids is presented
for rotational and oscillating flows of circular pipe. Zafar and Fetecau [23] investigated
the flow of viscous fluid using fractional derivative, here they used integral transforms
(Laplace and Fourier sine transforms). Nadeem et al. [24] observed the effects of magnetic
field for the flow of a second-grade fluid via fractional derivative in presence of radiative
heat transfer. Atangana and Baleanu [25] explored the effects of groundwater flow within
confined aquifer by implementing the fractional derivative.

Inspired and motivated from the above discussed studies, the aim of the present
study was to investigate the unsteady translational motion of a porous spherical particle
in an incompressible viscous fluid which is otherwise at rest. The translational motion
of the porous sphere perturbs the fluid flow and keeps it alive. Flow fields in clear fluid
and porous regions are governed by unsteady Navier–Stokes and unsteady Brinkman
equations with the unsteady term being replaced by fractional time derivative. Hereafter,
these equations will be called as modified Navier–Stokes and modified Brinkman equations,
respectively. These equations will be used together with mass conservation in both the
regions. This work differs from the work of Ashmawy [17] where he dealt with the unsteady
translational motion of a solid sphere using fractional time derivative in Navier–Stokes
equation. A popularly known stress jump boundary condition [26,27] at the porous–
liquid interface is used in place of continuity of stress components. Expression for drag
force is obtained. This paper is organized as follows. Section 2 deals with mathematical
formulation, solution methodology and implementation of feasible boundary conditions.
Section 3 deals with finding the drag force exerted on the porous sphere. Results for
different cases of the basic flow are presented in Section 4.

2. Mathematical Formulation and Solution Methodology

Let us consider a porous sphere of radius a and permeability k translating with a
time-dependent velocity U(t) in an incompressible viscous fluid which is otherwise at
rest. In addition, we shall assume that the velocity U(t) takes the form U(t) = U0 f (t),
where the constant U0 has the dimensions of velocity. We have transformed the classical
unsteady Stokes and Brinkman equations into modified Stokes and Brinkman equations
where the unsteady term has been replaced by a fractional time derivative with the help
of the Caputo operator (for more details see [17,19,28,29] and references therein). The
analytical solution for velocity and pressure of the time fractional Stokes and time fractional
Brinkman equations is examined by Laplace transform technique. The flow fields exterior
and interior to the porous sphere under the creeping flow conditions are governed by
modified Navier–Stokes equation and modified Brinkman equation together with mass
conservation, respectively. Hence, the equations governing the fluid flows are given by

ρ
∂αve

∂tα
= −∇pe + µ ∇2ve, and ∇ · ve = 0 if r > a (1)

ρ
∂αvi

∂tα
= −∇pi + µ ∇2vi − µ

k
vi, and ∇ · vi = 0 if r < a (2)
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where ρ is the density of the fluid, vj, j = e, i denotes the velocity field. The superscript
j = e corresponds to the velocity field exterior to the porous sphere and j = i corresponds
to the velocity field inside the porous sphere. Similarly, pj, j = e, i denotes the pressure at
any point in the exterior and interior of the porous sphere, µ is the dynamic viscosity and k
is the permeability. The parameter α is the order of Caputo fractional derivative such that
0 ≤ α ≤ 1. The fractional derivative of f (t) in Caputo sense is defined as

∂α f (t)
∂tα

=
1

Γ(n− α)

∫ t

0

f (n)(x)
(t− x)α−n+1 dx, n− 1 ≤ α ≤ n, n ∈ N, t > 0,

where f (n) represents the nth ordinary derivative of f (t) with respect to t. One of the
great advantages of the Caputo fractional derivative is that it allows traditional initial and
boundary conditions to be included in the formulation of the problem. In addition its
derivative for a constant is zero. To compute the fractional derivative of a function in the
Caputo sense, we must first calculate its derivative. Caputo derivatives are defined only
for differentiable functions. Since the velocity and pressure fields in the fluid and porous
regions are smooth functions, use of Caputo fractional derivative is justified. We use the

following dimensionless variables X̃ =
X
a

, ṽ =
v

U0
, p̃ =

p
(µ U0/a)

, t̃ =
t
tc

and ψ̃e =
ψe

U0 a2

to non-dimensionalize the governing equations. Here, U0 is the amplitude of the velocity
U(t) = U0 f (t). As a result, Equations (1) and (2) are transformed into non-dimensional
form as

Tu
∂αṽe

∂t̃α
= −∇̃ p̃e + ∇̃2ṽe, ∇̃ · ṽe = 0, (3)

Tu
∂αṽi

∂t̃α
= −∇̃ p̃i + ∇̃2ṽi − λ2ṽi, ∇̃ · ṽi = 0, (4)

where Tu =
ρ a2

µ tc
is the unsteadiness parameter, ∇̃ = a∇, ∇̃2 = a2∇2 and tc is a char-

acteristic time scale, λ2 =
1

Da
and Da =

k
a2 is the Darcy number. The porous particle is

assumed to be nondeformable. The spherical coordinate system (r, θ, φ) is established with
its origin at the particle center. Using the spherical coordinates (r, θ, φ), and dropping the
symbol ,̃ the r, θ and φ components in Equations (3) and (4) can be written in dimensionless
form as

Tu
∂αve

r
∂tα

= −∂pe

∂r
+∇2ve

r, Tu
∂αve

θ

∂tα
= −1

r
∂pe

∂θ
+∇2ve

θ , Tu
∂αve

φ

∂tα
= − 1

r sin θ

∂pe

∂φ
+∇2ve

φ

∇ · ve = 0. (5)

Tu
∂αvi

r
∂tα

= −∂pi

∂r
+∇2vi

r − λ2vi
r, Tu

∂αvi
θ

∂tα
= −1

r
∂pi

∂θ
+∇2vi

θ − λ2vi
θ

Tu
∂αve

φ

∂tα
= − 1

r sin θ

∂pi

∂φ
+∇2vi

φ − λ2vi
φ, ∇ · vi = 0. (6)

Since the flow of the fluid is axially symmetric, all the physical quantities are indepen-
dent of φ. Hence, we assume the velocity vectors ve and vi of the form

vj = vj
r(r, θ)er + vj

θ(r, θ)eθ , j = e, i, (7)

where (er, eθ , eφ) are unit base vectors in spherical polar coordinates. Introducing the
stream functions ψj(r, θ), j = e, i, through

vj
r = −

1
r2 sin θ

∂ψj

∂θ
and vj

θ =
1

r sin θ

∂ψj

∂r
, j = e, i (8)
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Using Equation (8), Equations (5) and (6) become

Tu
∂αve

r
∂tα

= −∂pe

∂r
− 1

r2 sin θ

∂

∂θ

(
E2ψe

)
(9)

Tu
∂αve

θ

∂tα
= −1

r
∂pe

∂θ
+

1
r sin θ

∂

∂r

(
E2ψe

)
(10)

1
r2

∂(r2ve
r)

∂r
+

1
r sin θ

∂(ve
θ sin θ)

∂θ
= 0 (11)

Tu
∂αvi

r
∂tα

= −∂pi

∂r
− 1

r2 sin θ

∂

∂θ

(
E2ψi

)
+

λ2

r2 sin θ

∂ψi

∂θ
(12)

Tu
∂αvi

θ

∂tα
= −1

r
∂pi

∂θ
+

1
r sin θ

∂

∂r

(
E2ψi

)
− λ2

r sin θ

∂ψi

∂r
(13)

1
r2

∂(r2vi
r)

∂r
+

1
r sin θ

∂(vi
θ sin θ)

∂θ
= 0 (14)

where E2 is a linear operator defined as follows

E2 =
∂2

∂r2 −
cot θ

r2
∂

∂θ
+

1
r2

∂2

∂θ2

We solve the Equations (9) and (10), and the Equations (12) and (13) using the integral
Laplace transform. The Laplace transform of a function h(r, θ, t)) is defined by

h̄(r, θ, s) =
∫ ∞

0
h(r, θ, t) e−stdt (15)

L
{

∂αh(r, θ, t)
∂tα

}
= sα h̄(r, θ, s)− sα−1h(r, θ, 0) (16)

Taking the Laplace transform of the Equations (9) and (10), and the Equations (12) and
(13), we arrive at the following equations

Tusαv̄e
r = −∂ p̄e

∂r
− 1

r2 sin θ

∂

∂θ
E2ψ̄e (17)

Tusαv̄e
θ = −1

r
∂ p̄e

∂θ
+

1
r sin θ

∂

∂r
E2ψ̄e (18)

Tusαv̄i
r = −∂ p̄i

∂r
− 1

r2 sin θ

∂

∂θ
E2ψ̄i +

λ2

r2 sin θ

∂ψ̄i

∂θ
(19)

Tusαv̄i
θ = −1

r
∂ p̄i

∂θ
+

1
r sin θ

∂

∂r
E2ψ̄i − λ2

r sin θ

∂ψ̄i

∂r
(20)

where the following conditions have been used

ve
r(r, θ, 0) = ve

θ(r, θ, 0) = 0, and vi
r(r, θ, 0) = vi

θ(r, θ, 0) = 0 (21)

Eliminating the pressure form (17) and (18), we get the following equation

E2
(

E2 − l2
)

ψ̄e = 0, where l2 = sα Tu (22)

similarly, after eliminating the pressure from (19) and (20), we obtain

E2
(

E2 −m2
)

ψ̄i = 0, where m2 = (l2 + λ2). (23)
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The general solution of the partial differential equation (PDE), defined in Equation (22) is
given as follows,

ψ̄e =

{
A1

r
+ A2 r2 + A3

√
rI3/2(lr) + A4

√
rK3/2(lr)

}
sin2 θ, (24)

where In(.) and Kn(.) are the modified Bessel functions of the first and second kinds of
order n and A1, A2, A3, A4 are the unknown constants to be determined using feasible
boundary conditions at the porous -liquid interface. Since the solution of the problem
must be bounded as r tends to infinity, we must have A2 = A3 = 0. Similarly, the general
solution of Equation (23) can be written as,

ψ̄i =

{
B1

r
+ B2 r2 + B3

√
r I3/2(mr) + B4

√
r K3/2(mr)

}
sin2 θ, (25)

where B1, B2, B3, B4 are the unknown constants to be determined. Here also the solution
must be bounded as r → 0, therefore we set B1 = B4 = 0. Substituting the stream functions
given in Equations (24) and (25) into Equation (8), we get the velocity components external
and internal to the porous sphere as follows

v̄e
r = −2

{
A1

r3 + A4 r−3/2 K3/2(lr)
}

cos θ, (26)

v̄e
θ = −

{
A1

r3 + A4 r−3/2(K3/2(lr) + lrK1/2(lr))
}

sin θ (27)

v̄i
r = −2

{
B2 + B3 r−3/2 I3/2(mr)

}
cos θ, (28)

v̄i
θ =

{
2B2 − B3 r−3/2(I3/2(mr)−mrI1/2(mr))

}
sin θ (29)

Substitution of Equations (24) and (25) into Equations (18) and (20), respectively, and
subsequent integration of these equations yield the pressure expressions exterior and
interior to the porous sphere which are given as follows

p̄e = p0 − A1l2r−2 cos θ (30)

p̄i = p0 + 2B2m2r cos θ, (31)

where p0 is a constant.
The following subsection presents a short discussion on the use of boundary conditions

at the porous–liquid interface.

Boundary Conditions

The applicability of a suitable boundary condition at the porous–liquid interface is a
topic of debate. However, researchers have used a set of boundary conditions depending
on the nature of porous material and the corresponding governing equations that are
employed inside the porous medium. For example, Darcy’s law is assumed to govern
the fluid flow through porous media with low permeability and the same in case of
high permeability is governed by generalized Darcy’s (Brinkman) equation. Due to the
difference in the order of Darcy equation and Stokes equation, the boundary condition in
terms of stresses cannot be imposed in case of Stokes–Darcy coupling. Instead of conditions
on stresses, pressure continuity is used along with continuity of normal velocity and
slip in tangential velocity (please see [30] and references therein). However, the case of
Stokes–Brinkman coupling enables one to use stress boundary conditions due to matching
order of Stokes and Brinkman equations, i.e., 2. In general, for a Stokes–Brinkman coupled
system, continuity of stresses together with continuity of velocity components are used at
the porous–liquid interface. One may refer Nield [31] for developments on the boundary
conditions at a porous–liquid interface. For the current problem under investigation,
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we use continuity of velocity components and continuity of normal stress component
together with a jump in tangential stress popularly known as stress jump condition (please
see [26,27,32] and references therein for more details). Accordingly, we use the following
boundary conditions at a porous–liquid interface in order to determine the velocity and
pressure fields outside and inside the porous sphere. In addition, we shall assume that the
velocity of the boundary takes the form U(t) = U0 f (t), where U0 is a constant.

We apply the following boundary conditions on r = 1:

(i) continuity of the velocity components: v̄e
r − v̄i

r = U(t) cos θ, v̄e
r − v̄i

r = −U(t) sin θ,
(ii) continuity of the normal stress component: T̄e

rr = T̄i
rr,

(iii) stress jump boundary condition for the shear stress:

T̄e
rθ − T̄i

rθ = βλv̄i
θ , (32)

where β is the stress jump coefficient. The unknowns A1, A4 and B2, B3 are evaluated with
the help of the aforementioned boundary conditions. These coefficients are obtained in
Laplace domain and they are given as follows:

A1 =
M1

M2
, (33)

where

M1 = − f̄ (s)

(
− 24 cosh(m)βλ m + 21 sinh(m)βλ m2 − βλ l2m4 sinh(m) + βλ l2m3 cosh(m)

+7 βλ l2m2 sinh(m)− 3 cosh(m)lm5 + 12 sinh(m)lm2 + 3 cosh(m)βλ m3 −
3 sinh(m)βλ m4 + 15 sinh(m)lm4 + 24 sinh(m)βλ l − 12 cosh(m)lm3 +

3 l2m2 sinh(m)− 8 βλ l2m cosh(m)− 3 sinh(m)βλ lm4 + 3 cosh(m)βλ lm3 +

21 sinh(m)βλ lm2 − 24 cosh(m)βλ lm− 3 cosh(m)m5 + 15 sinh(m)m4 − 12 cosh(m)m3

+12 sinh(m)m2 + 24 sinh(m)βλ− l3m2 sinh(m) + 8 βλ l2 sinh(m)− 3 l2m3 cosh(m) +

l3m3 cosh(m)− l2m5 cosh(m) + 6 l2m4 sinh(m) + l3m4 sinh(m)

)

M2 = l2

(
− 9 cosh(m)βλ m + 9 sinh(m)βλ m2 − βλ l2m2 sinh(m) + 43 sinh(m)lm2 +

2 cosh(m)βλ m3 − 2 sinh(m)βλ m4 + 2 sinh(m)lm4 − 7 sinh(m)βλ l − 7 cosh(m)lm3

−36 cosh(m)m− l3 sinh(m) + l3m cosh(m) + 6 l2m2 sinh(m) + 3 l2 sinh(m) + 36 sinh(m)

+3 βλ l2m cosh(m)− 5 sinh(m)βλ lm2 + 7 cosh(m)βλ lm− 2 cosh(m)m5 + 12 sinh(m)m4

−15 cosh(m)m3 + 51 sinh(m)m2 + 9 sinh(m)βλ + 36 sinh(m)l + l3m2 sinh(m)−

3 βλ l2 sinh(m)− 3 l2m cosh(m)− l2m3 cosh(m)− 36 cosh(m)lm

)

A4 =
M3

M4
, (34)

where
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M3 = −
√

2 el l3/2 f̄ (s)

(
βλ l2m2 sinh(m)− 3 sinh(m)βλ m4 − 3 cosh(m)m5 + 15 sinh(m)m4 +

βλ l2m cosh(m) + 3 cosh(m)βλ m3 − βλ l2 sinh(m) + 21 sinh(m)βλ m2 − 12 cosh(m)m3

+12 sinh(m)m2 − 24 cosh(m)βλ m + 24 sinh(m)βλ

)
M4 =

√
πM2.

B2 =
M5

M6
, (35)

where

M5 = f̄ (s)l2

(
βλ l2m2 sinh(m)− l3m2 sinh(m) + l2m3 cosh(m) + 3 sinh(m)βλ lm2 −

6 l2m2 sinh(m)− βλ l2m cosh(m)− l3m cosh(m) + 3 cosh(m)lm3 + βλ l2 sinh(m) +

3 sinh(m)βλ m2 + l3 sinh(m)− 39 sinh(m)lm2 − 3 cosh(m)βλ lm + 3 l2m cosh(m) +

3 cosh(m)m3 + 3 sinh(m)βλ l − 3 l2 sinh(m)− 39 sinh(m)m2 − 3 cosh(m)βλ m +

36 cosh(m)lm + 3 sinh(m)βλ− 36 sinh(m)l + 36 cosh(m)m− 36 sinh(m)

)

M6 = 2 l2

(
9 cosh(m)βλ m− 9 sinh(m)βλ m2 + βλ l2m2 sinh(m)− 43 sinh(m)lm2 −

2 cosh(m)βλ m3 + 2 sinh(m)βλ m4 − 2 sinh(m)lm4 + 7 sinh(m)βλ l + 7 cosh(m)lm3 +

36 cosh(m)m + l3 sinh(m)− l3m cosh(m)− 6 l2m2 sinh(m)− 3 l2 sinh(m)− 36 sinh(m)

−3 βλ l2m cosh(m) + 5 sinh(m)βλ lm2 − 7 cosh(m)βλ lm + 2 cosh(m)m5 − 12 sinh(m)m4

+15 cosh(m)m3 − 51 sinh(m)m2 − 9 sinh(m)βλ− 36 sinh(m)l − l3m2 sinh(m) +

3 βλ l2 sinh(m) + 3 l2m cosh(m) + l2m3 cosh(m) + 36 cosh(m)lm

)

and

B3 =

− f̄ (s)m3/2√πl2

(
βλ l2 − 3 lm2 + 3 βλ l − 3 m2 + 3 βλ

)
M6√

2

, (36)

where f̄ (s) denotes the Laplace transform of the function f (t) and l, m are functions of
s in Laplace domain. It is worth mentioning here that to obtain any physical quantity
such as force and velocities in the physical domain, we need to obtain the inverse Laplace
transform of the coefficients. In the following section, we calculate force exerted by the
surrounding fluid on the surface of porous particle.

3. Force Acting on the Particle

The drag force (in the z direction) exerted by the external fluid on the porous sphere
with the spherical boundary r = 1 in dimensionless form in the Laplace domain can be
determined from
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F̄α
z =

∫ 2π

φ=0

∫ π

θ=0

[
Te

rr êr + Te
rθ êθ + Te

rφêφ

]
r2 sin θdθdφ

∣∣∣∣∣
r=1

=
4π

3
l2[A1 − 2A4K3/2(l)]. (37)

We take an inverse Laplace transform of A1 and A4 to get the force in the time domain.
It may be noted here that Da → 0 or λ → ∞ corresponds to the case of solid sphere and
force obtained in Equation (37) reduces to

F̄α
z = −6π

(
f̄ (s) +

1
9

l2 f̄ (s) + l f̄ (s)
)

. (38)

It may be noted that the expression obtained in Equation (38) in dimensionless form
agrees with Equation (18) as a limiting case of γ→ ∞ in [17]. In this case, the force can be
obtained in the time domain by following the procedure mentioned in [17]. Moreover, the
classical formula of the drag force in the case of no-slip given by Basset [8] can be deduced
as a special case by assuming Da→ 0 and α = 1 in Equation (37) and taking the inverse
Laplace transform as stated in [17]. However, for the general case, we obtain a cumbersome
force expression in Laplace domain and due to inability to find out closed form expression
after taking inverse Laplace transform, we resort to numerical inverse Laplace transform.
The Gaver–Stehfest algorithm [33] has so far been the most popular technique to compute
the inverse Laplace transform in the context of transient electromagnetics. However, the
accuracy of the Gaver–Stehfest algorithm, even when using double-precision arithmetic,
is relatively low at late times due to round-off errors. In addition, the Gaver–Stehfest
algorithm is significantly problem dependent. Therefore, we have turned our attention to
two other algorithms for computing inverse Laplace transforms, namely, the Talbot and
Euler algorithms (please see [34,35]). These two methods are the most widely used methods
for numerical inversion of Laplace transform due to their efficiency and computational
cost. Euler and Talbot have same efficiency; however, Euler has less CPU time compared to
Talbot. Therefore, we use the Euler scheme to find inverse Laplace transform numerically.
Here we present the Euler algorithm in brief.

Numerical Inverse Laplace Transform (Euler’s Method)

Let f be non-negative real valued and F̄ be complex valued functions. Then the
Laplace transform of f is defined as,

F̄(s) =
∫ ∞

0
e−st f (t) dt, where s ∈ C. (39)

Under some sufficient conditions on f the transform (39) is well defined. The inverse
transform of F̄ is defined in the form of Bromwich inversion integral,

f (t) = lim
y→∞

1
2πi

∫ a+iy

a−iy
est F̄(s)ds, (40)

where a ∈ R and F̄ has no singular points on the right side of the vertical line s = a. After
change of variables, Equation (40) is written in the following form [36]

f (t) =
2
π

eat
∫ ∞

0
Re(F̄(a + iu)) cos(ut)du, where i =

√
−1. (41)

There exist many [37–39] numerical schemes to find inversion of F̄, defined in the
Equation (39). However, it has been noticed that the Euler’s method [38,40,41] is computa-
tionally efficient as compared to other numerical schemes. Therefore we discuss Euler’s
method briefly in the following lines for the sake of continuity.
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In Euler’s method, the improper integral defined in the Equation (41) is evaluated
using the trapezoidal rule as follows

f (t) ≈ fh(t) =
h
π

eatRe(F̄)(a) +
2h
π

eat
∞

∑
k=0

Re(F̄)(a + ikh) cos(kht). (42)

Equation (42) can be written in the form of alternating series with the step size h =
π

2t
and a =

A
2t

as follows

fh(t) =
eA/2

2t
Re(F̄)

(
A
2t

)
+

eA/2

t

∞

∑
k=0

(−1)kRe(F̄)
(

A + 2kπi
2t

)
. (43)

Equation (43) has been evaluated efficiently using the following Euler summation

E(m, n, t) =
m

∑
k=0

2−m
(

m
k

)
sn+k(t), (44)

which is defined as the weighted average of the last m partial sums by binomial probability

distribution with probability p =
1
2

and the partial sums are defined as

sn(t) =
eA/2

2t
Re(F̄)

(
A
2t

)
+

eA/2

t

n

∑
k=0

(−1)kRe(F̄)
(

A + 2kπi
2t

)
. (45)

Assuming n = 2m in Equation (44), an alternative formula to find the Laplace inverse
transform numerically is proposed in the unified framework [35]

f (t) ≈ fn(t) ≡
1
t

2m

∑
k=0

wk F̄
(αk

t

)
, t > 0, (46)

where wk and αk are the weights and nodes, respectively. The weights and nodes are

defined as wk = 10m/3ηk, ηk = (−1)kξk, αk =
m ln(10)

3
+ πik, ξ0 =

1
2

, ξk = 1, 1 ≤ k ≤ m,

ξ2m =
1

2m , and

ξ2m−k = ξ2m−k+1 + 2−m
(

m
k

)
, 0 < k < m.

Here wk and αk are called the exterior and interior scaling factors, they depend only on
m and not on the transform F̄ or the time argument t. However, the accuracy of numerical
scheme, defined in Equation (46), depends on F̄ and t.

4. Special Fluid Flows

Here, we present the non-dimensional drag force F̃α
z = −F̄α

z /6πµU0a exerted on the
porous sphere for three different types of fluid flow:
Case 1: Damping oscillation

As already mentioned, he velocity of the boundary of the porous sphere is of the
form U(t) = U0 f (t). In this case, we assume that the porous sphere starts to move with
the velocity U(t), but with f (t) = e−ωt sin ωt, where ω is the frequency of oscillations. It
may be noted from Equation (37) that the drag force is obtained in the Laplace domain
and it depends on the coefficients A1 and A4. It may also be noted that these coefficients
are obtained in Equations (33) and (34) which contain Laplace transform of f (t) which

is f̄ (s). In the case of damping oscillation, f̄ (s) takes the form f̄ (s) =
ω

(s + ω)2 + ω2 . In

order to plot the force with respect to time, we seek the inversion of the expression in
Equation (37) numerically.



Colloids Interfaces 2021, 5, 24 11 of 16

Case 2: Sine oscillation
In this case, we assume that the porous sphere oscillates with the velocity U(t) = U0 f (t),

but with f (t) = sin ωt, where ω is the frequency of oscillations. As mentioned in case 1,
the drag force is obtained in Laplace domain and it depends on the coefficients coefficients
A1 and A4 and the Laplace transform of f (t) which is f̄ (s). In the sine oscillation case, f̄ (s)
takes the form f̄ (s) =

ω

s2 + ω2 .

Case 3: Impulsive motion
In this case, the porous sphere starts to translate suddenly with the velocity U(t) = U0H(t),

where H(t) is Heaviside step function or unit step function. The unit step function is de-
fined as

H(t) =
{

0 t < 0
1 t ≥ 0

Note that the coefficients A1 and A4 appearing in the force expression obtained in
Equation (37) are in Laplace domain and they contain Laplace transform of unit step
function H(t).

5. Numerical Results and Discussions

Here, we present some graphical representations of the streamlines for damping sine
oscillation and unit step function.

Figure 1 presents streamline patterns for damping oscillations for various values of
fractional parameter (α) at fixed Tu = 0.5, β = 0.6, Da = 0.3, ω = 1 and t = 0.5. It can be
seen that at smaller values of α, closed streamlines are formed inside and outside of the
porous sphere (see Figure 1 at α = 0.01 and α = 0.1). At α = 0.1, the streamlines in the
vicinity of the porous sphere are clustered and velocity is highest around the porous sphere.
This is observed because the fluid in the vicinity of the porous sphere gets accelerated due
to motion of the porous sphere. The velocity decays as we move away from the porous
sphere in the y-direction, because far from the porous sphere the magnitude of disturbance
to the ambient fluid reduces at smaller value of α. Values of α < 0.5 do not affect the
streamlines much. At α = 0.5, the streamlines near the porous sphere get deformed in the
x-direction. In addition, the velocity is maximum in the vicinity of the porous sphere and
also far from porous sphere where the streamlines are clustered. At the values α ≥ 0.5, the
effect of unsteadiness is more profound as it contributes to the momentum leading to an
increase in velocity far from the porous sphere. It is interesting to note that at α = 1, closed
streamlines are formed in the vicinity of the porous sphere along the x-axis. In addition,
the streamlines inside the porous sphere close to the center form parabolic shape which is
symmetric about the x-direction. In fact, as α grows the disturbance far from the center of
the sphere grows.

Figure 1. Streamlines at different α and ω = 1 for case 1 (damping oscillation).

Figure 2 presents streamline patterns for unit step function for various values of
fractional parameter (α) at fixed Tu = 0.5, β = 0.6, Da = 0.3, t = 0.5 and ω = 1. It may be
noticed that at the smaller value of α = 0.01, the streamlines are undeformed and clustered
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in the vicinity of the porous sphere leading to maximum velocity on the surface which
decays far from the sphere surface. As seen in Figure 2, the smaller values of α < 0.5 do not
affect the streamlines much. At α ≥ 0.5, streamlines start getting to deform in the vicinity
of the porous sphere and also inside the porous sphere. It may be noted that in case of
unit step function, the magnitude of disturbance far from the center of the sphere grows
as α grows, but at α = 1, more fluid seeps through the porous sphere forming streamlines
inside it as compared to the damping sine oscillation at α = 1 (see Figure 2 at α = 1).

Figure 2. Streamlines at different α and ω = 1 for case 3 (unit step function).

Figures 3–6 present the non-dimensional drag force, F̃α
z , for the three cases mentioned

above for different values of the fractional order parameter (α), Darcy number (Da),
unsteadiness parameter (Tu) and the stress jump coefficient (β).

Figure 3a–c demonstrate variations of the dimensionless drag force exerted on the
spherical surface for different values of the fractional derivative parameter α by fixing the
other parameters such as Darcy number (Da), unsteadiness parameter (Tu) and the stress
jump coefficient (β). In Figure 3a–c, β, Tu and Da are kept at 0.6, 0.5 and 0.01, respectively.
It can be observed that the fractional order parameter (α) makes an effective contribution to
the drag. An increase in this parameter increases the values of the drag force. The classical
case of non-fractional derivative is achieved when the parameter α is assigned the value
of one. It may be concluded that use of fractional order derivative in the Navier–Stokes
equation leads to the reduction of drag force on spherical objects. Physically, the smaller
the values of α, the more rapidly the shear decays which results in reduction of drag
force. This may be due to the fractional order derivatives which examines the complete
description of the memory effectively. It may also be observed that in the case of damping
sine oscillations, drag force tends to zero as ωt→ ∞ which is large time behavior. In this
case, the porous sphere does not experience any force arising due to damping effect. It is
interesting to see that the particle experiences a reverse force at relatively smaller values of
ωt (Figure 3a). In case of sine oscillation, the force profile exhibits oscillatory behavior and
it never approaches zero (Figure 3b). Unlike the damping sine and sine oscillations, the
porous sphere does not experience negative force in case of unit step function.

Figure 4a–c exhibit variations of drag force versus the time parameter for different
values of stress jump coefficient (β) at fixed α = 0.5, Tu = 0.5 and Da = 0.01. It can be
noticed that an increase in this coefficient results in a decrease in the drag force. This may
be due to the fact that increase in the stress jump coefficient (β) forces more fluid to seep
through the porous sphere before it slips from the surface which leads to a reduction in the
drag force. Figures 5a–c depict the variation of drag force versus the time parameter for
different values of unsteadiness parameter (Tu) at fixed α = 0.5, β = 0.6 and Da = 0.01. It
may be noted that increase in unsteadiness parameter contributes to the momentum of the
fluid flow which further helps the shear stress acting on the porous sphere leading to an
increase in the drag force experienced by the porous sphere.
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Figure 3. Variation of drag force for all three cases: (a) damping sine oscillation, (b) sine oscillation, (c) unit step function.
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Figure 4. Variation of drag force at different β for all three cases: (a) damping sine oscillation, (b) sine oscillation, (c) Unit step
function.
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Figure 5. Variation of drag force at different Tu for all three cases: (a) damping sine oscillation, (b) sine oscillation, (c) Unit
step function.
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Figure 6a–c present variation of drag force versus the time parameter for different
values of Darcy number (Da) at fixed α = 0.5, β = 0.6 and Tu = 0.5. It can readily be seen
that an increase in Darcy number (Da) reduces the drag force. This occurs due to the fact
that increase in Darcy number increases the permeability of the porous medium which
helps ease the fluid flow inside the porous particle and this leads to a decrease in the drag
force. It is to be noted that the force reflects the pattern of the basic flow, for example if the
basic flow is damping sine, the force exhibits damping behavior and eventually becomes
zero at larger time. If the basic flow is oscillatory, the force exhibits oscillatory behavior. In
case of the basic flow taken as unit step function, the force obtained is large in magnitude
at ωt = 0 and the magnitude decreases as ωt grows. It can be concluded that the use of
fractional order derivatives exhibits the history (‘memory’) of the basic flow in the obtained
physical quantities of interest.
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Figure 6. Variation of drag force at different Da for all three cases: (a) damping sine oscillation, (b) sine oscillation, (c) Unit
step function.

6. Conclusions

This paper presents a semi analytical solution for the problem of unsteady translational
motion of a porous sphere in an incompressible viscous fluid. The fluid flow exterior
and interior of the porous sphere is governed by the modified Navier–Stokes equation
with fractional time derivative and the modified Brinkman equation with fractional time
derivative. The Laplace transform technique is used and the inversion is obtained with the
aid of numerical inversion formula of Laplace transform. Streamline patterns for damping
sine and unit step function are presented. It was observed that increase in the fractional
parameter α increases the disturbance far from the center of the porous sphere in both the
cases. However, it was noticed that at smaller values of α, the streamlines do not deform
outside and inside the porous sphere. It may also be noted that in case of unit step function,
at α = 1, more fluid seeps through the porous sphere resulting in formation of clustered
streamlines leading to increase in velocity inside the porous sphere compared to the case
of damping sine oscillation. The drag force formula is obtained analytically in Laplace
domain and is inverted numerically. Variation of the drag force with various parameters
such as fractional parameter (α), stress jump coefficient (β), unsteadiness parameter (Tu)
and Darcy number (Da) is discussed graphically. It is concluded from the numerical results
that the fractional order parameter, α, contributes considerably on the drag force. It is
observed that the values of the drag force increase with increase of this parameter. In
addition, it is observed that drag force decreases with stress jump coefficient and Darcy
number whereas it increases with unsteadiness parameter.
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