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Abstract: The kinetics of adsorption/desorption of oxalate, citrate and tartrate anions was investigated
using hydroxyapatite from solutions at the initial concentrations of 0.000001 and 0.001 mol/dm3 anions.
The adsorption process from a solution with a concentration of 0.001 mol/dm3 takes place in three
stages and is well described by the multiexponential equation of adsorption kinetics. The process of
tartrate and citrate ion desorption after increasing the pH to 10 is irreversible, while the oxalate ions
undergo significant desorption with the increasing pH. The adsorption of oxalate ions decreases with
the increasing pH. This effect is weaker in the adsorption of citrate and tartrate ions. Ion adsorption
studies were supplemented with the measurements of zeta potential, FTIR and particle distribution
of hydroxyapatite particles.
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1. Introduction

Due to its properties, hydroxyapatite [Ca10(OH)2(PO4)6] (HAp) can be classified as a biocompatible
and bioactive material, but due to its natural microporous structure, it is also well known as a good
adsorbent, particularly for immobilization cations. HAp is capable of reversible exchange of hydroxyl
ions by anions like F, Cl or I ions [1]. HAp also adsorbs/exchanges some larger ions like carbonate, oxalate,
citrate or tartrate. As HAp is a mineral compound of human bones and teeth and, on the other hand,
the organic acids naturally occur in our diet, the interactions of both compounds can lead in our organism
to, e.g., subsequent processes of adsorption, dissolution, precipitation and aggregation. Solutions that
contain oxalate, citrate or tartrate salts can cause dissolution of hydroxyapatite but the mechanism of
teeth surface etching by salts containing citrate ions is still not fully understood [2]. Hydroxyapatite,
brushite and amorphous calcium phosphate play an important role in the heterogeneous nucleation of
calcium oxalate monohydrate and the formation of “kidney stones” accumulated in the kidneys [3,4].
However, studies of the heterogeneous nucleation of calcium oxalate monohydrate were carried out
in supersaturated solutions of calcium and oxalate ions to ensure crystal nucleation and growth of
calcium oxalate [3].

In this paper, the comparison of the kinetic and static adsorption of oxalate, citrate and tartrate
ions on hydroxyapatite was investigated using the 14C radiolabeled acids from acid solutions of
initial concentrations of 0.000001 and 0.001 mol/dm3 and pH range from 6 to 11. The adsorption
measurements were complemented by the spectrometric, potentiometric titration of HAp suspensions
and electrophoretic measurements.
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2. Materials and Methods

The carboxylic acid adsorption studies presented in this paper were carried out using a sample
of hydroxyapatite purchased from Aldrich with a specific surface area of 101 m2/g. The other used
reagents were pure and were purchased from P.P.H. Polish Chemical Reagents Gliwice. Water with
a specific conductivity < 0.05 µS/cm was used to prepare the solutions. The adsorption studies
were carried out using the following solutions: 0.001 mol/dm3 NaCl, 0.001 mol/dm3 oxalic acid,
0.001 mol/dm3 citric acid, 0.001 mol/dm3 tartaric acid.

The FTIR spectra of the sample were recorded using the Perkin-Elmer Spectrophotometer type
1725X. The specific surface area and porosity of the hydroxyapatite sample were studied by nitrogen the
adsorption–desorption method. The particle size distribution was examined by static light scattering
using Mastersizer 2000 Malvern UK. The physicochemical properties of hydroxyapatite surfaces
groups were studied by means of electrophoretic measurements. The surface charge density and zeta
potential were measured for the 0.001 mol/dm3 NaCl solutions as a function of pH and concentration
of the oxalate anions ranged from 0.000001 to 0.001 mol/dm3. The adsorption of oxalate, citrate and
tartrate ions was estimated from the concentration of ions from solutions that was determined by the
radioisotopic method using labeled 14C of oxalic acid, citric acid and tartaric acid, respectively.

3. Result and Discussion

Studies of ion adsorption in the hydroxyapatite/aqueous electrolyte system due to the solubility
of the hydroxyapatite are confined to the pH range of 6 to 11. The speciation of ionic forms created as
a result of oxalic acid dissociation as a function of pH indicates that mainly C2O4

2− ions are present
in the pH range 6–11 [5]. The dominant forms of citrate ions below the range of pH 6–6.4 are the
hydrogen citrate ions (HCit2−) and above the range are the citrate anions (Cit3−). However, in the pH
range of 6 to 11, tartaric acid occurs in the form of tartrate anions [6].

3.1. Kinetics of Oxalate Ion Adsorption at the Hydroxyapatite/0.001 mol/dm3 NaCl Aqueous Solution Interface

The rate of the ion adsorption in the hydroxyapatite/aqueous solution of electrolytes is described
by the same equations as the rate of ion adsorption at the metal oxide/electrolyte.

The pseudo-first order equation depending on adsorption (a):

da
dt

= k1
(
aeq − a

)
After integration the nonlinear form the above equation is:

a = aeq
(
1− e−k1t

)
where: aeq—the equilibrium adsorption density, a—the adsorption density, k1—the kinetics coefficient,
t—the time.

The pseudo –second order nonlinear equation:

a =
a2

eqk2t

1 + aeqk2t

where: aeq—the equilibrium adsorption density, a—the adsorption density, k2—the kinetics coefficient,
t—the time.

Multiexponential equation

a
aeq

= 1−

∑n
i+1 Ai exp(−k, t)∑n

i+1 Ai
= 1−

∑n
i=1 Ai exp(−k, t)

1−A0
= 1−

n∑
i=1

Ai
1−A0

exp(−kit)
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where: a—the adsorption density, aeq—the equilibrium adsorption, A0—the relative equilibrium
concentration, Ai—describes the part of the i-th process characterized by the coefficient ki.

However, due to the specific structure of hydroxyapatite crystal (presence of natural channels) [1]
and the solubility of hydroxyapatite, the long-term study of adsorption reveals that slow adsorption
proceeds after the fast adsorption stage [7]. If the kinetics of ion adsorption from solutions with an initial
concentration of 0.000001 mol/dm3 for 3 h was investigated, the pseudo-first or pseudo-second-order
equations would fit the experimental data [8,9].

The kinetics of the oxalate ion adsorption of the initial concentrations 0.000001 and 0.001 mol/dm3

at the hydroxyapatite/0.001 mol/dm3 NaCl solution is depicted in Figures 1 and 2, respectively. As it can
be seen from Figure 1, the adsorption of oxalate, citrate and tartrate ions after the 5 min hydroxyapatite
contact with the electrolyte solution, as well as the pH of the suspension, are stable. The fitting
adsorption data of oxalic and citric ions the using pseudo-first-order and the pseudo-second-order
equations show that the latter gives almost the best fit [10]. However, the kinetics of the tartrate ion
adsorption on hydroxyapatite from a solution with an initial concentration of 0.000001 mol/dm3 is best
fitted by the multiexponential equation [11]. As can be seen from Figure 1, the adsorption affinity of the
anions of the tested acids for the hydroxyapatite surface is the highest for the oxalic anion (~95% of the
oxalate ions are adsorbed), lower for the tartrate anion (~86% of the tartrate ions are adsorbed) and the
lowest for the citrate (~50% of the citrate ions are adsorbed). The adsorption affinity of carboxylic acid
ions for the hydroxyapatite surface can be compared with the solubility of calcium salts of the above
mentioned acids: the less soluble salt is calcium oxalate (pKso(CaOX = 8.63) [12] the more soluble salt is
calcium tartrate (pKso(CaTart = 6.11) [13] and the preferred is calcium citrate (pKso(Ca3Cit2) = 13.15) [14].
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Figure 1. Kinetics of pH changes of suspension and carboxylic ion adsorption/desorption changes on
hydroxyapatite from the carboxylic ion solution of the initial concentration 0.000001 mol/dm3. Grey
points denote the oxalic, green points denote citric, and ruby points denote tartrate ions. The black,
green, and wine colored lines represent a fit with a pseudo-second-order kinetic equation for the
adsorption kinetics of oxalate and citrate anions and multiexponential equation for tartrate anions,
respectively. The parameters of adsorption fitting line are presented in Tables 1 and 2.
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Table 1. Parameters of the pseudo-first-order and the pseudo-second-order equations fitted to the data
of adsorption kinetics of oxalate, citrate and tartrate ions from the solutions of the initial concentration
0.000001 mol/dm3 on the hydroxyapatite.

Ion
Concentration

mol/dm3
Pseudo-First-Order Pseudo-Second-Order

ae k1 SSE ae k2 SSE

Oxalate 0.0000001 0.939 2.707 0.00009 0.944 21.47 0.00003

Citrate 0.0000001 0.483 3.464 0.0008 0.482 3936.9 0.0008

Tartrate 0.0000001 0.852 2.221 0.0037 0.825 40423 0.0021

Table 2. Parameters of the multiexponential equation fitted to the data of adsorption kinetics of
oxalate, citrate and tartrate ions from the solutions of the initial concentration 0.000001 mol/dm3 on
the hydroxyapatite.

Ion aeq A0 k1 A1 k2 A2 k3 A3 SSE

Tartrate 0.974 0.355 2.574 0.222 5.31 × 10−3 0.100 2.633 0.220 0.0006
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The experimental data points: grey—oxalic ions, green—citric ions and wine color—tartaric ions. The black,
green and wine colored lines represent multiexponential equation fitting the data of adsorption kinetics of
oxalate, citrate and tartrate ions. The parameters of adsorption fitting line are presented in Table 3.

Table 3. Parameters of the multiexponential equation fitted to the data of adsorption kinetics of
oxalate, citrate and tartrate ions from the solutions of the initial concentration 0.001 mol/dm3 on
the hydroxyapatite.

Ion aeq A0 k1 A1 k2 A2 k3 A3 (
aexp−acalc

aexp
)
2

Oxalate 1.106 0.142 0.76 0.058 2.05 × 10−5 0.516 0.725 0.220 0.006

Citrate 0.819 0.216 1.04 0.01 17.2 0.342 0.00016 0.432 0.062

Tartrate 0.802 0.670 2.295 0125 9.66 × 10−4 0.120 2.283 0.220 0.0016
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After 120 min, the pH of the suspension was changed to 10 and the kinetics of desorption of
carboxylic acid anions was studied (lower right part of Figure 1). As can be seen, the change in pH
caused significant desorption of oxalate ions (23% of the ions remained on the surface), while in the
case of citrate ions, this was around 43%, and for tartrate ions, around 53%. However, after a long
period of conditioning (1440 min), as a result of the reaction in suspension in the presence of oxalate
ions, the pH dropped to the value of 8.3, which resulted in an increase in the adsorption of oxalate ions
to 71%. In the case of the tartrate and citrate ions, the decrease in pH after this conditioning period was
not large and thus the increase in adsorption was of the order of 1%.

For the initial concentration of oxalate, tartrate and citrate ions of 0.001 mol/dm3, in the course of
kinetics, three stages can be distinguished. The first stage in the first 5 min shows a rapid increase in
adsorption (62% oxalate, 52% tartrate and 35% citrate). In the second stage, the pH increase and the
anion adsorption increase by several percent are observed within 200 min. In the third stage, up to
10,080 min, there is a greater increase in the anion adsorption again, to the value of 95% oxalate ions,
83% tartrate ions and 74% citrate ions. The experimental adsorption data depicted in Figure 2 are
well fitted using also the multiexponential model. Such three-stage adsorption may be the result of
a dissolution–precipitation mechanism [7] adsorption at the interface or intraparticle diffusion [15].
Taking into account the anisotropic ion radiation of Van der Waals of tartrate ions (ax = 0.3 nm, ay = 0.28,
az = 2.41 nm) and citrate ions (ax = 0.33 nm, ay = 0.29, az = 2.81nm) [16], it can be assumed that only in
the case of type II channels (0.3–0.45 nm diameter) [17] is diffusion of these ions and subsequent ion
exchange possible.

To describe the mechanism of slow uptake of carboxylic acid ions, particle size analysis of
hydroxyapatite in the presence and absence of carboxylic acid ions was conducted.

After 10,080 min, the pH of the suspension was changed to 10 and the kinetics of desorption of
carboxylic acid anions was observed (lower right part of Figure 2). Increasing the pH of the suspension
causes the absorption of oxalate anions to decrease from 59% to 27%. As time passes, the pH of the
suspension decreases due to the dissolution reaction and the amount of adsorbed oxalate anions
decreases by ~2%. After 3000 min, the pH drops further and the adsorption of oxalate ions increases to
41%. The course of adsorption of tartrate ions after changing the pH of the suspension from 7.2 to 9.9 is
similar to that of oxalate ions. However, the decrease in adsorption is smaller than for oxalate ions
(adsorption reduces from 83.5% to 64%). After 2880 min, the adsorption increases to 86.6%, and after
10,080 min, the adsorption value is 91%. However, in the case of citrate ions, increasing the pH does
not reduce adsorption. This is probably due to the fact that the pH of the suspension drops to 8.1 after
10 min.

3.2. Study of the Carboxylic Acid Ion Adsorption at the HAp/Aqueous Electrolyte Interface as a Function of pH

The uptake of ions from the solution due to the interactions of ions with the hydroxyapatite
surface may result in the adsorption of ions on the active sites of the hydroxyapatite surface (Ca2+,
−OH, =HPO4), due to the exchange of ions from the solution with those of the hydroxyapatite crystal
lattice and/or the processes of hydroxyapatite dissolution and recrystallization of the new phase [18].
The above-mentioned mechanisms, depending on the pH and ion concentration, may sometimes
occur simultaneously. The dissolution and recrystallization mechanisms usually take place at high
concentrations of these ions in solution.

The adsorption of oxalate, citrate and tartrate ions from the solution of the initial concentrations
0.000001 mol/dm3 and 0.001 mol/dm3 as a function of pH on hydroxyapatite is depicted in
Figures 3 and 4, respectively. As it can be seen, the adsorption of oxalate ions from the solution
of the initial concentration 0.000001 mol/dm3, shown in Figure 3, decreases with the increase in pH of
the solution, from 95% at pH = 6.8 to 16.5% at pH = 10. This graph is similar to the one depicting the
adsorption of ions at the metal oxide/electrolyte solution interface that proceeds via exchange with
surface of the hydroxyl ions. The tartrate ion adsorption also decreases with the increasing pH, but to
a much smaller extent, from 74% at pH = 7.2 to 48% at pH = 10.7. On the other hand, the adsorption
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of citrate ions is the lowest in the tested pH range and it decreases from 33% at pH = 7 to 15% at pH
= 9.85. The presented relations show that the adsorption of oxalate anions in the range of pH 6–8.3
is characterized by the highest adsorption affinity for the hydroxyapatite surface, but above this pH
range, the tartrate ion is more strongly adsorbed. On the other hand, in the whole pH range, the citrate
ion is the most weakly adsorbed. The presented relationships of adsorption of oxalic and citric acid
anions as a function of pH are in good agreement with the studies by Wei et al. [19].
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The comparison of the adsorption of oxalate, citrate and tartrate ions from the solution of the
initial concentration of 0.001 mol/dm3 as a function of pH in the hydroxyapatite/0.001 mol/dm3 aqueous
NaCl solution is presented in Figure 4. The oxalate ion adsorption decreases significantly with the pH
increase, i.e., 61% at pH = 7.2 to 9.6 at pH = 10.6, whereas the adsorption of tartrate ions in the tested
pH range changes less, from 53% at pH = 6.34 to 33% at pH = 10.9. The adsorption of citrate ions
also decreases as the pH increases, i.e., 29% at pH = 5.75 to 7.4% at pH 10.67. Comparing the surface
concentration of different adsorption sites on the hydroxyapatite surface, i.e., NCa = 7.5 µmol/m2,
NPO4 = 5.0 µmol/m2 [20] and NOH = 2.5 µmol/m2 [21], with the adsorption of the tested carboxylic acid
anions, it can be seen that the adsorption of these anions was much lower than the formal monolayer
of each of the above-mentioned in adsorption sites. Such adsorption is dependent on carboxylic acid
ions vs. pH results from the exchange of phosphate ions from the hydroxyapatite crystal.

The effect of the adsorption of carboxylic acid ions onto hydroxyapatite on the zeta potential is
depicted in Figure 5. As follows, the presence of carboxylic acid ions at the concentration 0.001 mol/dm3

results in a decrease in the zeta potential in the pH range of 5 to 9. The most significant effect is
observed for the pH range of 6 to 7, where the adsorption of carboxylic acid ions on the hydroxyapatite
is the highest. The effect of zeta potential decrease by carboxylic acid ion adsorption is caused by the
decrease in the substitution of the phosphate group on the hydroxyapatite surface by the carboxylic
acid ions that exhibit more acidic properties than those of phosphate.
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Figure 6 presents the FTIR transmission spectra of the hydroxyapatite sample and the samples of
hydroxyapatite conditioned in 0.001 mol/dm3 oxalic, citric or tartaric acid solutions. The analysis of
the characteristic bands of the hydroxyapatite sample (HAp spectrum) indicates the presence of the
OH group (characteristic bands at the wavenumber 3572 and 631 cm−1 that can be assigned to the
stretching mode νs and the vibration mode νL, respectively, and at 1630 cm−1 to the bending mode of
water molecule [22]; phosphate groups bands at the wavenumber 1093, 1033, 962 cm−1 assigned to
the vibrations of these groups). Moreover, the presence of the bands characteristic of the carbonate
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Figure 6. FTIR transmittance spectrum of hydroxyapatite (HAp), hydroxyapatite with adsorbed oxalic
ions (HAp + OX), hydroxyapatite with adsorbed citrate ions (HAp + Cit), hydroxyapatite with adsorbed
oxalic ions (HAp + OX) and hydroxyapatite with adsorbed tatrate ions (HAp + Tart).

The FTIR spectrum of the samples conditioned in the 0.001 mol/dm3 carboxylic acid solutions
is richer, but a number of bands overlap with the characteristic HAp bands to show the presence of
acid anions from the FTIR HAp spectrum. The FTIR spectra of hydroxyapatite samples conditioned in
acid solutions were subtracted and the spectra subtracted for these samples are shown in Figure 7.
As can be seen in the spectrum, there are a number of bands characteristic of calcium oxalate, citrate or
tartrate [25–30]. The wavenumbers corresponding to the individual bands and the bands assigned to
them, on the basis of the spectra for salts or calcium complexes, are presented in Table 3. The FTIR
spectra presented in Figure 7 and the data in Table 4 indicate the chemisorption of oxalate, citrate and
tartrate anions on the hydroxyapatite surface.

Table 4. The wavenumbers (cm−1) and assignments for oxalate, citrate and tartrate ions on the
hydroxyapatite surface.

Oxalate Citrate Tartrate Assignment Ref.

560 560 559 Ca-O mode [28,30]
603 602 602 Ca-O mode [28,30]
962 962 962 Ca-O mode [28,30]

1012 1010 1008 ν(C-O) [30]

1083 1083 1083 Out of plane OH
deformation [27]

1120 1120 1122 δ(C-H) + π(-C-H) [30]
1316 OH plane bending [30]
1420 1420 1413 νs (COO-) [25,29]
1449 1449 1456 ν(CO3

2−) [22]
1655 1655 1618 νas (COO-) [25,29]
3571 3571 3571 OH stretch [28]

νs—the symmetric stretching, νa—the asymmetric stretching, ν—the stretching, π—the wagging, δ—the bending.
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Figures 8 and 9 show the volume particle distributions of the conditioned hydroxyapatite samples
in solutions of the 0.001 mol/dm3 NaCl + 0.001 mol/dm3 of the tested carboxylic acids. For comparison,
Figure 8 shows the particle size distribution of the conditioned hydroxyapatite sample in the
0.001 mol/dm3 NaCl solution (black triangles). As can be seen, the distribution of hydroxyapatite
particles in the case of its conditioning in the solution of 0.001 mol/dm3 NaCl solution and in a solution
of the 0.001 mol/dm3 NaCl containing tartrate ions with an initial concentration of 0.001 mol/dm3 is
similar, and it has a dimodal character. Most of the particles (~95%) have diameters ranging from 0.4 to
7µm, while the other smaller fractions range from 7 to 20µm. In the case of hydroxyapatite conditioning
in the solution containing oxalate and citric ions, after 14 days of conditioning, the decomposition is
trimodal; the first fraction is in the range of 0.5 to 7 µm (~94% of particles), the second 7–20 µm (~4% of
particles) and the third from 20 to 200 µm (~2% particles). The particle size distribution of hydroxyapatite
conditioned for 14 days in conditioning the solution of 0.001 mol/dm3 of citric acid is also trimodal: the
first fraction ranges from 0.5 to 7 µm (~91% of particles), the second one 7–20 µm (~3% of particles)
and the third from 20 to 200 µm (~6% particles). The presented HAp particle distributions in the acid
solutions do not indicate the formation of a separate bulk phase (calcium carboxylates).

On the other hand, the presence of large particles may indicate the phenomenon of aggregation of
smaller particles in the case of conditioning in the solution of oxalic and citric acids Figure 9; however,
the errors characterizing the share of a given fraction indicate the instability of these aggregates (they
are broken down and aggregated under the flow and ultrasound conditions). Measurements of the
particle size distribution of hydroxyapatite in the carboxylic acid solutions do not exclude the process
of surface precipitation, as a result of which, statistically, a layer with a thickness of several hundred of
nanometers could be formed on the surface of the tested hydroxyapatite sample, but it is below the
measurement capabilities of this method.
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Figure 9. Particle size distribution of the hydroxyapatite samples conditioned for 14 days in a solution
with 0.001 mol/dm3 NaCl + 0.001 mol/dm3 oxalate ions (grey circle), HAp of 0.001 mol/dm3 NaCl +

0.0001 mol/dm3 citrate ions (green circle).

4. Conclusions

The mechanism of di- and tricarboxylic acid adsorption from the aqueous solutions on the
hydroxyapatite is complicated due to the variety of reactions taking place in the system as a function
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of pH and interaction time. The reaction kinetics of oxalate and citrate ions from a dilute solution
with the post concentration of 0.00001 mol/dm3 is well matched with the pseudo-first-order equation.
On the other hand, the kinetics of oxalate, citrate and tartrate ion reactions from the solutions with the
initial concentration of 0.001 mol/dm3 is more complex. There are three stages of adsorption at the
time, and such a process is well-adjusted by the multiexponential equation.

The kinetics of desorption of carboxylic acid anions is rapid due to the pH increasing to 10.
An increase in pH causes significant desorption of oxalate ions, while citrate and tartrate anions are
slightly desorbed. This may indicate that the oxalate ions replace the hydroxyl groups in hydroxyapatite,
while the tartrate and citrate ions are phosphate groups.

The dependence of the adsorption of carboxylic acid anions on the pH of hydroxyapatite is strong
for the oxalate anions and weaker for the tartrate and citrate anions. On the other hand, below pH = 8.3,
at the initial concentration of 0.000001 mol/dm3, the oxalate anion shows the highest adsorption affinity
for hydroxyapatite and citrate the weakest. Above pH 8.3, the tartrate anion adsorbs most strongly.
From the solution of the initial concentration of 0.001 mol/dm3, below pH = 7.5, the oxalate ions exhibit
the highest adsorption affinity, but above the tartrate ions.

The studies of the effect of adsorption of carboxylic acid anions on the dependence of the zeta
potential of hydroxyapatite as a function of pH indicate that the adsorption of the above-mentioned
anions increases the acidic nature of the hydroxyapatite surface.

The FTIR spectra of hydroxyapatite samples with the adsorbed ions of oxalic, citrate and tartaric
acids showed the presence of characteristic bands for the calcium salts of these acids and indicate the
chemisorption of these anions.
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