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Abstract: The diffusiophoresis in a suspension of charged soft particles in electrolyte solution is 

analyzed. Each soft particle is composed of a hard core of radius 0r  and surface charge density   

and an adsorbed fluid-penetrable porous shell of thickness 0ra −  and fixed charge density Q . 

The effect of particle interactions is considered by using a unit cell model. The ionic concentration, 

electric potential, and fluid velocity distributions in a unit cell are solved as power expansions in 

  and Q , and an explicit formula for the diffusiophoretic velocity of the soft particle is derived 

from a balance between the hydrodynamic and electrostatic forces exerted on it. This formula is 

correct to the second orders of   and Q  and valid for arbitrary values of a , a , ar /0 , and 

the particle volume fraction of the suspension, where   is the Debye screening parameter and   

is the reciprocal of a length featuring the flow penetration into the porous shell. The effects of the 

physical characteristics and particle interactions on the diffusiophoresis (including electrophoresis 

and chemiphoresis) in a suspension of charged soft particles, which become those of hard particles 

and porous particles in the limits ar =0  and 00 =r , respectively, are significant and complicated. 

Keywords: diffusiophoresis; electrophoresis; charged soft sphere; arbitrary electric double layer; 

particle concentration effect 

 

1. Introduction 

Diffusiophoresis regards the migration of colloidal particles in a fluid solution caused by an 

imposed solute concentration gradient [1–6] and provides a transport mechanism in many practical 

applications such as latex film coating [7], autonomous motion of micromotors [8,9], DNA 

translocation and sequencing [10], colloidal transport in dead-end pores involved in systems of self-

regulated drug delivery and enhanced oil recovery [11,12], and particle manipulation and 

characterization in microfluidic systems [13–16]. For diffusiophoresis of charged particles in 

electrolyte solutions, the solute-particle interaction is electrostatic and characterized by the Debye 

screening length 
1− . Analytical investigations of the diffusiophoretic motion of charged hard 

particles (impermeable to both the solvent and small ions) under a general imposed electrolyte 

concentration gradient are mainly restricted to the case of thin electric double layer ( a >>1, where 

a  is the particle radius) [17,18]. With the assumption of weak imposed electrolyte concentration 

gradients, diffusiophoretic motions were also analyzed for a charged hard sphere [19,20], porous 

sphere (permeable to the ionic solution) [21], soft sphere (a hard core covered by a surface porous 

layer) [22], and porous spherical shell (microcapsule) [23] with arbitrary values of a . 

In real situations of diffusiophoresis, concentrated suspensions of particles may be encountered, 

and the particle interaction effects are important. To alleviate the complexity of multiple particles, 

unit cell models are often used to evaluate the particle interaction effects on the mean sedimentation 
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velocity [24–29], average electrophoretic mobility [30–37], and effective electric conductivity [34–38] 

in suspensions of spherical particles. An agreement between the experimental electrophoretic 

velocity in a suspension of porous aggregates and the relevant cell-model predictions in a broad 

range of a  was obtained [39]. 

The diffusiophoretic motions in concentrated suspensions of charged hard spheres of constant 

zeta potential [40] and porous spheres [41] with arbitrary double-layer thicknesses and particle 

volume fractions were analyzed using unit cell models. In this article, these studies will be extended 

to suspensions of charged soft particles. An analytical expression for the diffusiophoretic mobility in 

the suspension is derived from the balance between the electrostatic and hydrodynamic forces acting 

on the particles as a power expansion in the fixed-charge densities of the soft spheres. 

2. Electrokinetic Equations 

The surfaces of colloidal particles are generally not hard. For instance, surface layers are 

purposely formed by adsorbing polymers to make the suspended particles stable against flocculation. 

Even the surfaces of silica and polystyrene particles are “hairy” with a gel-like polymeric layer 

extending from the bulk material inside the particle. In particular, the surface of a biological cell or 

enzyme is not a hard wall, but rather is a permeable rough surface with various appendages ranging 

from protein molecules on the order of nanometers to cilia on the order of microns. Such particles can 

be modelled as a soft particle having a central rigid core and an outer porous shell. 

Consider the diffusiophoresis of a uniform distribution of charged soft spheres in a solution of 

a symmetric electrolyte. Each soft sphere of radius a  consists of a hard core of radius 0r  and a 

porous surface layer of constant thickness 0ra − . A constant electrolyte concentration gradient 

n  equal to zn e
  is imposed, where ze  is the unit vector in the z  direction, and the 

diffusiophoretic velocity zUe  of the particles needs to be determined. As shown in Figure 1, we use 

a unit cell model in which each soft sphere is enveloped by a concentric spherical shell of the fluid 

with an outer radius b  such that the volume fraction of the particles in the suspension 
3)/( ba=

. The origin of the spherical coordinates ( r , , ) is set at the particle center. 

 

Figure 1. Geometric sketch for the diffusiophoresis of a charged soft sphere in a unit cell. 
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2.1. Governing Equations 

The magnitude of 
n  is assumed to be small (with 1|| 0   nna ) so that the system is 

only slightly distorted from equilibrium. Thus, the electric potential distribution ),(  r , the ion 

concentration (number density) distributions ),( rn , and the pressure distribution ),( rp  may 

be written as: 

 += )eq(
, 

 += nnn )eq(
, 

ppp += )eq(
 

(1) 

where )()eq( r , )()eq( rn , and )()eq( rp  are the equilibrium electric potential, ion concentration, 

and pressure distributions, respectively, ),(  r , ),(  rn
, and ),(  rp  are the small 

perturbed quantities, and the subscripts + and − to variables represent the cation and anion, 

respectively. 

Substituting Equation (1) into the Poisson equation, the continuity equation of each ionic species, 

and the equation of fluid motion (Stokes/Brinkman equation), using the Boltzmann equation to relate 

the ion concentrations to the electric potential at equilibrium, canceling the equilibrium components, 

and neglecting the products of the small quantities 
n ,  , and fluid velocity field ),( ru , one 

obtains the following linearized electrokinetic equations [21]: 
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Here, the ionic electrochemical potential energy distributions ),(  r
 are defined as linear 

combinations of   and 
n , 
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 (5) 

0n
 is the prescribed electrolyte concentration n  at 0z ;   and   are the viscosity and 

permittivity, respectively, of the electrolyte solution;   is the reciprocal of the shielding length for 

flow penetration into the porous layer; 
D  are the diffusion coefficients of the ionic species; Z  is 

the valence of the symmetric electrolyte; )(rh  equals unity if arr 0 , and zero if bra  . 

2.2. Boundary Conditions 

The boundary conditions at the interface between the hard core and porous layer of the particle 

as well as at the particle surface are: 

0rr = : 0= re , 0= re , 0u = , (6) 

ar = :  ,  , 
 , 

 , u , and τe r , are continuous, (7) 
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where τ  is the hydrodynamic stress tensor of the fluid and re  is the unit vector in the r  

direction. In Equation (7), the continuity requirement of the fluid velocity and stress at the particle 

surface is physically realistic and mathematically consistent [42] (but the effective viscosity of the 

fluid inside the porous layer might be smaller than the bulk viscosity if its porosity is small, which is 

not the case considered here). 

The boundary conditions at the outer edge of the cell are: 

br = :  cos
a

r

Ze

kT
−=  (8) 

 cos)1(
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 (9) 

cos Uur −=  (10) 

for the Happel model: 

0]
1

)([ =



+




=


 


r

r

u

rr

u

r
r  (11) 

for the Kuwabara model: 
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where )()( −+−+ +−= DDDD  (for a binary, symmetric electrolyte) and 
= 0|| nna . 

Equations (6) and (10) take a reference frame traveling with the particle, while Equation (8) denotes 

the induced electric potential arising from the applied electrolyte gradient with different cation and 

anion mobilities [1,2]. The Happel model assumes that the radial velocity relative to the bulk flow 

and the shear stress of the fluid on the outer boundary of the cell are zero, while the Kuwabara model 

assumes that this radial velocity and the vorticity of the fluid are zero there. The Happel model has 

an advantage over the Kuwabara model in that the former does not require an exchange of 

mechanical energy between the cell and the environment [43]. 

3. Solution for the Diffusiophoretic Velocity 

3.1. Equilibrium Electric Potential 

For a soft sphere with a uniform surface charge density   of its hard core and a constant space 

charge density Q  of its porous surface layer in a unit cell, the equilibrium potential distribution 

)()eq( r  can be obtained as: 

),,,(O
3223

10eq01eq

)eq( QQQQ  ++=  (13) 

where kTZe  = , kTZeQQ 2= , )(01eq r  and )(10eq r  are available in the literature 

[24] and 
21

0

22 ]2[ kTneZ  =  is the Debye screening parameter. The expression in Equation (13) 

for 
)eq(  as a power series in   and Q  up to (O , )Q  is valid for small values of the electric 

potential (the Debye–Hückel approximation). 

3.2. Solution to Electrokinetic Equations 

The quantities ru , u  (the r  and   components of u ), p ,  , and 
  satisfying 

Equations (2)–(4) and the equation of continuity 0= u  can be solved in terms of 
)eq(  given 

by Equation (13) and the expansion form of the particle velocity U , 
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where, )(00 rF r , )(00 rFp , )(rFijr , )(rFpij , )(00 rF , )(00 rF , )(01 rF , )(10 rF , )(01 rF , and 

)(10 rF  are dimensionless functions given by Equations (A1)–(A8) and (A20)–(A23) in the 

Appendix A, the particle velocities ijU  are to be determined from a force balance, and the set ( i , j

)) equals (0,1), (1,0), (0,2), (1,1), and (2,0). The zeroth-order terms of u , p , and U  disappear 

because the electrolyte solution around an uncharged particle will not move by imposing an 

electrolyte concentration gradient if only the electrostatic interaction is considered. To solve the small 

quantities  , 
 , u , and p  in terms of the diffusiophoretic velocity U , these variables can 

be written as perturbation expansions in powers of   and Q . Substituting these expansions and 

)eq(  into the governing Equations (2)–(4) and boundary conditions (6)–(12) and equating like 

powers of   and Q  on both sides of the respective equations, we obtain a group of linear 

differential equations and boundary conditions of orders 0, 1, and 2. These perturbation equations 

can be analytically solved, and the results for the   and   components of u , p  (to the order 

of 
2

 , Q , and 
2

Q ), 
 , and   (to the order of   and Q ) in Equations (15)–(19) are 

obtained. 
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3.3. Forces Exerted on the Particle 

The total force exerted on a soft particle is the sum of the electrostatic and hydrodynamic forces. 

The electrostatic force is determined as an integral of the electric force density over the region 

bra   (since the overall unit cell is electrically neutral and the electrostatic force acting on its 

outer boundary br =  vanishes), with the result 
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where the functions )()3( rJ ij  are defined by Equation (A11). 

The hydrodynamic force acting on the soft particle may be obtained as an integral of the 

hydrodynamic stress over the particle surface ( ar = ), with the result 
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where the coefficients 002C  and 2ijC  are given in Equations (A1) and (A5). Like the fluid flow field 

in Equations (17)–(19), the zeroth-order terms of the electrostatic and hydrodynamic forces vanish. 

3.4. Velocity of the Particle 

Applying the constraint that the total force acting on the soft sphere is zero at the steady state to 

the summation of Equations (20) and (21), we obtain: 

ij

ji
ji

ij Ha
Ze

kT

a
U +

−−

= 22
)2(

)()( 



 (22) 

where, ijH  are dimensionless functions of the electrokinetic radius a , radius ratio ar /0 , 

hydrodynamic resistance parameter a , and volume fraction   of the particle defined by: 
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where the functions )()3( rJ ij  are defined by Equation (A11), ij  is the Kronecker delta which 

equals unity if ji =  but vanishes otherwise, )/( jiis += , )/( jijt += , siu )1( −= , and 

tjv )1( −= . The diffusiophoretic velocity of the charged soft sphere is obtained in Equations (14), 

(22), and (23). 

When the hard core of each soft particle vanishes ( 00 =r ), it reduces to an entirely porous 

particle of radius a  and fixed charge density Q , the dimensionless mobility coefficients 01H , 

02H , and 11H  (or 01U , 02U , and 11U ) are trivial, and 10H  and 20H  given by Equation (23) are 

identical to those available in the literature [41]. 

4. Results and Discussion 

The mean diffusiophoretic mobility of identical charged soft spheres suspended in a symmetric 

electrolyte solution can be determined to the second orders 
2 , Q , and 

2Q  of their fixed charge 

densities using Equations (14), (22), and (23). In this section, we will consider the mobility in a 

suspension of hard spherical particles with constant surface charge density   first and results for a 

suspension of soft spheres are then presented. 

4.1. Suspension of Hard Spheres 

For a suspension of hard spheres with radius 0ra = , the dimensionless mobility coefficients 

10H , 20H , and 11H  (or 10U , 20U , and 11U ) become trivial, and 01H  and 02H  calculated from 

Equation (23) are functions of the electrokinetic radius a  and volume fraction   (
33 / ba= ) of 

the particles. In Figure 2, results of the electrophoretic mobility coefficient 01H  for a suspension of 

hard spheres with constant surface charge density   are presented up to 74.0= , the limit for an 

assemblage of identical spheres [30]. Evidently, 01H  is always positive; thus the direction of the 

particle movement contributed by electrophoresis is determined by the sign of the product of the 

surface charge density   and the ionic diffusivity parameter   (along the electrolyte 

concentration gradient if 0  and against it if 0 ). For a given value of  , the value of 

01H  is a monotonic decreasing function of a  from a positive constant at 0=a  to zero as 

→a . For a given value of a , the value of 01H  decreases monotonically with an increase in 

  from a positive constant at 0=  and the particle interaction effect on the electrophoretic 

mobility can be significant. As expected, 3/201 =H  (the Hückel result for electrophoresis) in the 

particular case of 0=  and 0=a . The Happel model always predicts a slightly greater value 

(weaker particle interaction effect) for the electrophoretic velocity than the Kuwabara model does. 

This occurs because the zero-vorticity Kuwabara model yields larger energy dissipation in the cell 

than that due to the particle drag alone, owing to the additional work done by the stresses at the outer 

boundary [43]. 
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Figure 2. The electrophoretic mobility coefficient 01H  for a suspension of hard spheres versus the 

parameters (a)   and (b) a . The solid and dashed curves represent the calculations for the 

Happel and Kuwabara models, respectively, and 3/201 =H  in the particular case of 0=  and 

0=a . 

The results for the chemiphoretic mobility coefficient 02H  of a suspension of hard spheres with 

constant surface charge density   are plotted versus the parameters a  and   in Figure 3. The 

value of 02H  is always positive (the chemiphoresis is directed along the electrolyte concentration 

gradient) and not necessary a monotonic function of   or a , keeping the other unchanged. For 

a given value of a , the value of 02H  first increases with an increase in   from a constant at 

0= , reaches a maximum, and then decreases with a further increase in  ; the particle interaction 

effect on the chemiphoretic mobility can also be significant. For relatively concentrated suspensions 

(say, 
410− ), 02H  is a monotonic decreasing function of a  from a constant at 0=a  to zero 

as →a . For the particular case of 0= , the value of 02H  first increases with an increase in 

a  from zero at 0=a , reaches a maximum, and then decreases with a further increase in a  to 

zero as →a . The Happel model also predicts a slightly greater value for the chemiphoretic 

velocity than the Kuwabara model does. 

 

Figure 3. The chemiphoretic mobility coefficient 02H  for a suspension of hard spheres versus the 

parameters (a)   and (b) a . The solid and dashed curves represent the calculations for the 

Happel and Kuwabara models, respectively. 

(a) (b) 

(a) (b) 
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The diffusiophoretic velocity U  in Equation (14) for a suspension of hard spheres normalized 

by the characteristic value aZekTU  /)/( 2* =  as a function of the scaled surface charge density 

kTaZea  =  calculated for the Happel model at a typical value of   ( 1.0= ) and various 

values of a  is plotted in Figure 4. Figure 4a shows the case that the diffusiophoresis is due to the 

chemiphoresis entirely (the anion and cation of the electrolyte have the same diffusion coefficient or 

0= ). As expected, the reduced diffusiophoretic mobility 
*/UU  is an even function of the surface 

charge density and increases monotonically with an increase in a  for specified values of a  

and  . For a relatively concentrated suspension (say, 
410− ) with a given value of a , 

*/UU  decreases with an increase in a  to zero as →a . There is no chemiphoresis of the 

particles for the particular case of 0=a  (or 0= ). The reduced diffusiophoretic mobility 
*/UU  of the particles for a typical case that the cation and anion have different diffusivities (

2.0−= ) is plotted in Figure 4b, where both electrophoresis and chemiphoresis contribute to the 

diffusiophoresis. In this case, for constant values of a  and  , 
*/UU  is not necessary a 

monotonic function of a  and the particles may reverse direction of their diffusiophoretic velocity 

twice with the variation of their surface charge density due to the competition between chemiphoretic 

and electrophoretic contributions. Note that the cases of 2.0−=  and 0=  may denote the 

aqueous solutions of NaCl (NaBr, NaI, NaNO3, CaSO4) and KCl (KBr, KI, KNO3, NH4Cl), respectively. 

 

Figure 4. The reduced diffusiophoretic mobility 
*/UU  for a suspension of hard spheres versus the 

dimensionless surface charge density a  with 1.0=  and various values of a  

calculated for the Happel model: (a) 0= ; (b) 2.0−= . 

4.2. Suspension of Soft Spheres 

For a suspension of soft spheres, the diffusiophoretic mobility coefficients 01H , 10H , 02H , 

11H , and 20H  calculated from Equation (23) are plotted in Figures 5–9, respectively, for various 

values of the electrokinetic particle radius a , core-to-particle radius ratio ar /0 , porous-layer 

shielding parameter a , and particle volume fraction  . In general, these mobility coefficients are 

positive, decreasing functions of a , decreasing functions of a , and slightly greater as predicted 

by the Happel model than the Kuwabara model. 

(a) (b) 
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Figures 5 and 6 indicate that, for fixed values of ar /0 , a , and a , the electrophoretic 

mobility coefficients 01H  and 10H  decrease with increases in   from constants at 0= , with 

an exception that 10H  may increase with an increase in   when a  is very large. For given 

values of  , a , and a , the coefficient 10H  is a monotonic decreasing function of ar /0

(increasing function of ar /1 0−  or the relative volume of the porous surface layer of the soft 

particle) and vanishes at 1/0 =ar  as expected, while 01H  increases with an increase in ar /0  (or 

relative surface area of the hard core of the soft particle) from zero at 0/0 =ar , but may attain a 

maximum and then decreases with a further increase in ar /0  (or hydrodynamic resistance to the 

electrophoretic motion of the particle caused by the hard core). The values of 01H  and 10H  are 

comparable for the case of medium ar /0  (ca. 1/2). Note that the value of 01H  always vanishes as 

→a  but the value of 10H  vanishes as →a  only if →a . 

 

Figure 5. The electrophoretic mobility coefficient 01H  for a suspension of soft spheres: (a) 1=a  

and 0.5/0 =ar ; (b) 1=a  and 0.1= . The solid and dashed curves represent the 

calculations for the Happel and Kuwabara models, respectively. 

 

Figure 6. The electrophoretic mobility coefficient 10H  for a suspension of soft spheres: (a) 1=a  

and 0.5/0 =ar ; (b) 1=a  and 0.1= . The solid and dashed curves represent the 

calculations for the Happel and Kuwabara models, respectively. 

(b) (a) 

(a) (b) 
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The second-order coefficients 02H , 11H , and 20H  for the chemiphoresis of a suspension of 

soft spheres as functions of a , a , ar /0 , and   are exhibited in Figures 7–9. For given values 

of a , a , and ar /0 , these coefficients (and thus the chemiphoretic mobility) in general first 

increases with an increase in   from a constant at 0= , reaches a maximum, and then decreases 

with a further increase in  . For constant values of  , a  and a , the coefficients 02H , 11H , 

and 20H  have the same order of magnitude for the case of 5.0/0 =ar  and about two orders of 

magnitude less than the coefficients 01H  and 10H . The coefficient 02H  in general increases with 

an increase in the value of ar /0 , becomes zero as 0/0 =ar , and does not depend on a  as 

1/0 =ar , whereas the coefficient 20H , in general decreases with an increase in ar /0  and equals 

zero as 1/0 =ar ,analogous to the coefficient 10H . The coefficient 11H  equals zero in the limits 

0/0 =ar  and 1/0 =ar , and thus a maximal value of 11H  exists between the limits. The location 

of the maximum shifts to greater ar /0  as a  increases, since large volume fraction of the hard 

cores in the soft particles favors their migration if the resistance to the fluid motion in the surface 

layers is large. For moderate values of ar /0 , the three second-order coefficients contribute to the 

chemiphoretic velocity of the soft spheres comparably. Note that the coefficients 02H , 11H , and 

20H  all vanish as →a . 

 

Figure 7. The chemiphoretic mobility coefficient 02H  for a suspension of soft spheres: (a) 1=a  

and 0.5/0 =ar ; (b) 1=a  and 0.1= . The solid and dashed curves represent the 

calculations for the Happel and Kuwabara models, respectively. 

(b) (a) 
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Figure 8. The chemiphoretic mobility coefficient 11H  for a suspension of soft spheres: (a) 1=a  

and 0.5/0 =ar ; (b) 1=a  and 0.1= . The solid and dashed curves represent the 

calculations for the Happel and Kuwabara models, respectively. 

 

Figure 9. The chemiphoretic mobility coefficient 20H  for a suspension of soft spheres: (a) 1=a  

and 0.5/0 =ar ; (b) 1=a  and 0.1= . The solid and dashed curves represent the 

calculations for the Happel and Kuwabara models, respectively. 

The normalized diffusiophoretic velocity 
*/UU  in a suspension of soft spheres as a function 

of the scaled fixed charge density kTZeQaQa  22)( =  calculated for the Happel model at 

0= , 0.5/0 =ar , 1=a , 0.1= , and various values of a  is plotted in Figures 10a,b for the 

cases of 0=  and 2.0−= , respectively. Similar to the outcomes in Figure 4 for a suspension of 

hard particles, for specified values of ar /0 , a , a  and  , the normalized velocity 
*/UU  for 

the case of 0=  (due to the chemiphoresis entirely) is an even function of the fixed charge density 

and increases monotonically with an increase in Qa 2)(  from zero at 0)( 2 =Qa , while 
*/UU  

for the case of 2.0−=  is not necessary a monotonic function of Qa 2)(  and may change its sign 

twice with the variation of their fixed charge density due to the competition between chemiphoretic 

and electrophoretic contributions. 

(a) (b) 

(a) (b) 
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Figure 10. The reduced diffusiophoretic mobility 
*/UU  for a suspension of soft spheres versus the 

dimensionless fixed charge density Qa 2)(  at 0= , 0.5/0 =ar , 1=a , 0.1= , and 

various values of a  calculated for the Happel model: (a) 0= ; (b) 2.0−= . 

5. Conclusions 

The diffusiophoresis of a suspension of charged softs spheres (each is a hard core of surface 

charge density   covered with a fluid-penetrable porous layer of fixed charge density Q ) in a 

symmetric electrolyte solution with arbitrary values of the electrokinetic particle radius a , core-to-

particle radius ratio ar /0 , porous-layer shielding parameter a , and particle volume fraction   

is analytically studied in this work. Through the use of a unit cell model, the ionic concentration (or 

electrochemical potential energy), electric potential, and fluid velocity distributions are solved as 

power expansions in   and Q , and an explicit expression for the diffusiophoretic velocity of the 

soft spheres correct to the second order of   and Q  is obtained from a force balance. The effects 

of the physical characteristics and particle interactions on the diffusiophoresis (including 

electrophoresis and chemiphoresis) in a suspension of soft particles, which become those of hard 

particles and porous particles in the limits ar =0  and 00 =r , respectively, are significant and 

complicated. A similar formula for the electrophoretic velocity of a rigid sphere with low zeta ( ζ ) 

potential was shown to give an excellent approximation for the case of reasonably high zeta potential 

(with an error of less than 4% in a KCl solution for the case of 2ζe/kT ) [34]. Therefore, our results 

might be used tentatively for the situation of reasonably high electric potentials or fixed charge 

densities. 
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Appendix A 

Some functions in Section 3 are given here. In Equations (17)–(19), 
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In Equations (15), (16), and (A19), 
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