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Abstract: The aim of this study was to evaluate the characterized hydration method to prepare
nanoparticles using Soluplus, a block copolymer with amphipathic properties, and distearoyl
phosphatidyl ethanolamine (DSPE)-PEG2000 owing to particle size distribution, zeta potential,
particle stability, and transmission electron microscopy (TEM) observed and 3'P-NMR spectra.
The results showed that, in a suspension of DSPE-PEG2000 and Soluplus at a ratio of 1/1, the prepared
microparticles were stable for five days in the dark and at 25 °C. It was also confirmed that the 1/1
suspension of DSPE-PEG2000/Soluplus was stable for five days under the same conditions with the
magnesium chloride solution. TEM measurements confirmed the presence of micelle-like particles
of 50 to 150 nm in the 1/1 ratio mix of DSPE-PEG2000/Soluplus. 3!P-NMR spectral data confirmed
that DPSE-PEG2000/Soluplus at mixing ratio of 1/1 has a strong intermolecular with the phosphate
group, indicated by the fact that the peak shift and the full width at half maximum were the largest
compared with DSPE-PEG2000 with the intermolecular interaction. On the basis of the findings of
this study, we conclude that microparticles can be formed using DSPE-PEG2000 and Soluplus via the
hydration method, and that the optimum weight ratio of DSPE-PEG2000 to Soluplus is 1/1.
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1. Introduction

Nanocarriers are reported to have several benefits in pharmacology, including improved solubility
and stability of poorly water-soluble compounds [1], improved pharmacokinetics and biodistribution [2],
and delivery to specific sites, allowing for better control of the release of drugs and reduced side
effects [3,4]. Furthermore, it is possible to change the application by changing the physiochemical
properties of nanocarriers, including composition, shape, surface charge, functional group, and surface
properties such as PEGylation [5]. Given these advantages, many kinds of nanocarriers have been
developed in the fields of pharmaceuticals, cosmetics, and food science [6,7]. As an example, Suzuki
et al. found that encapsulation of oxaliplatin (a known antitumor drug) in a liposome improves the
ability to reach the tumor.

Nanocarriers are used as a base for many drug delivery system (DDS) preparations and include
polymeric micelles, liposomes, and so on [8,9]. Polymeric micelles are formed from block copolymers
with amphipathic properties. The micelle has a hydrophilic structure on the outer shell and a
hydrophobic structure on the inner side, which together form a nano-size that protects the poorly
water-soluble drug with its own outer shell and disperses the poorly water-soluble compound in water.
This allows for the dissolution of poorly water-soluble compounds in an aqueous medium [10,11].
In addition, polymeric micelles have the advantages of low critical micelle concentration, narrow
particle size distribution, and low dissociation rate [12], as well as high drug filling amount [13,14].
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The application of micellar nanoparticle technology makes it possible to increase the therapeutic effect
of a drug and reduce the side effects by extending the time that the drug remains in the blood, thus
delivering a larger amount of the drug directly to cancer cells. Nanoparticle applications are also
expected to improve convenience and quality of life, while reducing medical costs.

Distearoyl phosphatidyl ethanolamine-polyethylene glycol (DSPE-PEG2000) and Soluplus, which
are block copolymers with amphipathic properties, are used as additives in the preparation of polymeric
micelles [15-17]; for example, micelles prepared with DSPE-PEG2000 solubilize diazepam and micelles
prepared with Soluplus solubilize ipriflavone.

DSPE-PEG2000 as a compound is a lipid with a PEG chain grafted in the terminal end on
the hydrophobic tail [18-20]. DSPE-PEG2000 is used as a PEGylated preparation not only for
polymer micelles, but also for many nano platforms such as liposomes, solid lipid nanoparticles,
and microemulsions. As an example, it was reported that the formulation of encapsulated doxorubicin
in liposome prepared with DSPE-PEG2000 increased tumor uptake by prolonging the circulation time
in the body [21].

Soluplus is an amphipathic block copolymer with a polyethylene glycol (PEG) skeleton in the
hydrophilic structure and a vinylcaprolactam/vinyl acetate side chain in the lipophilic structure [22].
Reportedly, the water solubility of scopoletin (6-methoxy-7-hydroxycoumarin), which has been used for
the treatment of rheumatoid arthritis, swelling, and pain, is enhanced by preparing and encapsulating
micelles with Soluplus [23]. Although it has been reported that Soluplus has a low critical micelle
concentration and exhibits high dispersibility when diluted (owing to its physical characteristics), it
has been infrequently used in the development of nanoparticles [24].

Both DSPE-PEG2000 and Soluplus have a PEG structure within their own structure. By modifying
the outer shell of this PEG structure, the nanoparticles are hidden from the host immune system; thus,
the mononuclear phagocyte system clearance is reduced, thereby prolonging blood circulation time [25].
The successful preparation of nanoparticles using DSPE-PEG2000 and Soluplus could advance research
in the field of polymer micelle formulations. With this goal in mind, we prepared nanoparticles using
DSPE-PEG2000 and Soluplus and confirmed the existence and stability of micelle-like particles by
measuring particle size and zeta potential and by analyzing transmission electron microscopy (TEM)
images of the prepared particles. In addition, the interaction between DSPE-PEG2000 and Soluplus
was investigated by measuring 3 P-NMR spectra.

2. Materials and Methods

2.1. Materials

DSPE-PEG2000 was purchased from NOF CO., Ltd., Tokyo, Japan. Soluplus was obtained from
BASEF Japan, Ltd., Kanagawa, Japan (Figure 1). All other reagents were purchased from FUJIFILM
Wako Pure Chemical Co., Ltd., Tokyo, Japan.
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Figure 1. Chemical structure of (a) distearoyl phosphatidyl ethanolamine (DSPE)-PEG2000 and
(b) Soluplus.
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2.2. Preparation of Fine Particles

Microparticles were prepared by the hydration method, using DSPE-PEG2000 and Soluplus.
In the hydration method, a suspension is prepared in which each insoluble substance is dissolved in
an organic solvent, the solvent is distilled off by an evaporator, and the prepared lipid thin film is
hydrated with an aqueous solvent [26].

DSPE-PEG2000 and Soluplus were dissolved with chloroform to 1 mg/mL. The DSPE-PEG2000
solution and the Soluplus solution were mixed in a pear-shaped flask and sonicated to obtain the
following ratios (weight/weight) of DSPE-PEG2000/Soluplus: 10/1, 5/1, 4/1, 3/1, 2/1, 1/1, 1/2, 1/3,
1/4, 1/5, and 1/10. Soluplus is reported to have a critical micelle concentration of 0.82 mg/mL [27].
The solvent was distilled off from these samples using a rotary evaporator (warm bath of 40 °C) and a
vacuum distiller to prepare a thin film. The thin film was then prepared with purified water, hydrated,
and further ultrasonicated for 6 min to prepare the fine particles. Subsequently, the sample to which
magnesium chloride was added was prepared by adding 0.25 x 1072, 0.625 x 103, and 1.25 x 1073
mmol/L magnesium chloride solution.

2.3. Methods

2.3.1. Particle Diameter, Polydispersity (PDI), and Zeta Potential

The average particle diameter, PDI, and zeta potential of the nanoparticles dispersed in distilled
water or owing to coexisting ions various concentration magnesium chloride solution were determined
Zetasizer Nano-ZS by dynamic light-scattering method (Malvern Panalytical Instruments, Malvern,
UK). Each sample was added to a capillary cell.

2.3.2. Stability Study

To evaluate the stability of the prepared nanoparticles, they were stored for 5 days in the absence
of light at 25 °C. The particle sizes and zeta potential values were measured at predetermined time
intervals (0, 1, 3, and 5 days).

2.3.3. Transmission Electron Microscopy (TEM) Observation

To evaluate the microstructure of the nanoparticles, cryo-TEM images were collected on a
JEM-2100F microscope (JEOL Co., Ltd., Tokyo, Japan). Hydrophilic treatment of a 200-mesh copper
grid covered with a perforated polymer film (Nisshin EM Co. Ltd., Tokyo, Japan) was carried out for
60 s with an HDT-400 device (JEOL Co., Ltd.). The liposomal external phase of each suspension was
placed in an isotonic 290 mM propylene glycol solution in a size extrusion column. A 2 mL aliquot of
each liposome suspension was then applied to the hydrophilized grid. The grid was blotted with a
filter paper for 3 s and immediately vitrified by plunging into liquid ethane cooled with liquid nitrogen
ina Leica EM CPC cryofixation system (Leica Microsystems GmbH, Wetzar, Germany). Frozen samples
were maintained at a temperature of approximately 170 °C, using a Gatan 626 cryo-holder (Gatan, Inc.,
Pleasanton, CA, USA). The cryo-TEM instrument was operated at 120 kV and a nominal magnification
of 50,000. An under-focus of approximately 2 mm was used to enhance image contrast.

2.3.4. Acquisition of 3'P-NMR Spectra

The structure of the carrier component of the nanoparticles was determined by 3!P-NMR.
Measurements of 3'P-NMR spectra were carried out on the samples of DSPE-PEG2000 alone and
DSPE-PEG2000/Soluplus (weight/weight ratio = 1/1). The concentration of the sample used for
measurement was 1 mg/mL for both of the carriers. For 3!P-NMR, 85% phosphoric acid, diluted 100
times, was used as an internal standard. Prepared samples were measured with the Varian NMR
System 400 MHz (Agilent Technologies, Inc., Santa Clara, California., USA). The resonance frequency
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was 161.8 MHz, pulse width was 45°, relaxation time was 4.400 s, scan time was 0.600 s, temperature
was 25 °C, and the accumulation count was 8192 times.

3. Results and Discussion

3.1. Examination of Mixing Ratio for Preparation of Fine Particles

DSPE-PEG2000 and Soluplus are known to exhibit micelle-like properties by themselves owing to
their surfactant activity [15-17]. The results of particle size distribution and zeta potential measurement
of DSPE-PEG2000 alone and Soluplus alone are shown in Figure 2. The average particle size of
DSPE-PEG2000 alone was 52.0 nm (zeta potential approx. —38.0 mV, PDI 0.952), and particles that were
considered to be aggregated after 1000 nm and particles approximately 1 to 10 nm were also confirmed.
It was speculated that DSPE-PEG alone aggregates as primary particles (around 1 to 10 nm), secondary
particles (around 100 nm), and tertiary particles (to be greater than 1000 nm). A single distribution
peak was confirmed with Soluplus alone, and the average particle size was 61.8 nm (zeta potential
approx. —11.1 mV, PDI 0.095).

In order to prepare DSPE-PEG2000/Soluplus microparticles, samples were prepared at the
following mixing ratios (weight/weight) of DSPE-PEG2000 to Soluplus: 10/1, 5/1, 4/1, 3/1, 2/1, 1/1, 1/2,
1/3,1/4,1/5, and 1/10, and the samples were evaluated with respect to particle size distribution and zeta
potential (Figure 2, Table 1). The average particle size was 36.5 nm (zeta potential —28.5mV, PDI 0.900)
at a mixing ratio (DSPE-PEG2000, weight/weight) of 10/1, 80.8 nm (zeta potential —29.2mV, PDI 0.644)
at 5/1, and 128.1 nm (zeta potential —28.1 mV, PDI 0.295) at 4/1. The particle size tended to increase as
the mixing weight ratio of DSPE-PEG2000 to Soluplus decreased.

Table 1. Particle size and zeta potential (ZP) of nanoparticles.

Sample Particle Size (nm) ZP (mV) PDI
DSPE-PEG2000 int 52.0+0.3 -38.0+1.3 0.952
Soluplus int 61.8+0.4 -11.1+0.1 0.095
DSPE-PEG2000/Soluplus = 10/1 36.5+1.1 -285+15 0.900
DSPE-PEG2000/Soluplus = 5/1 80.8 £ 0.9 -292+04 0.644
DSPE-PEG2000/Soluplus = 4/1 128.1+ 1.8 -28.1+0.0 0.295
DSPE-PEG2000/Soluplus = 3/1 1281+ 1.1 —27.1+27 0.294
DSPE-PEG2000/Soluplus = 2/1 1351+ 0.4 -26.3 +2.6 0.247
DSPE-PEG2000/Soluplus = 1/1 116.6 + 0.0 -13.7+ 0.6 0.112
DSPE-PEG2000/Soluplus = 1/2 1079 £2.2 -96+14 0.163
DSPE-PEG2000/Soluplus = 1/3 68.9 £ 0.8 -9.9+0.7 0.109
DSPE-PEG2000/Soluplus = 1/4 720+ 0.4 -11.3+0.3 0.103
DSPE-PEG2000/Soluplus = 1/5 54.5+0.1 —6.0 + 0.2 0.057
DSPE-PEG2000/Soluplus = 1/10 56.1 0.1 -7.7+1.0 0.101

When the mixing weight ratio of DSPE-PEG2000 to Soluplus was 1/1, the average particle diameter
was 116.6 nm (zeta potential —13.7 mV, PDI 0.112), and the particle diameter was almost concentrated
at approximately 120 nm. On the other hand, when the ratio values are reversed (i.e., Soluplus >
DSPE-PEG2000), particle size decreased: 72.0 nm (zeta potential approx. —11.3 mV, PDI 0.103) at a
mixing ratio of 1/4 and 54.5 nm (—6.0 mV, PDI 0.057) at a mixing ratio of 1/5. The average particle size at
a mixing ratio of 1/10 was 56.1 nm (zeta potential approx. —7.7 mV, PDI 0.101). With respect to particle
size distribution, when the proportion of DSPE-PEG2000 was greater than 3/1, small particles that were
considered to be dissociated were confirmed around 10 nm. In addition, the particle size distribution
of particles considered to be aggregated was confirmed to be above 1000 nm. As these results are
similar to the particle size distribution of DSPE-PEG2000 alone, it was inferred that DSPE-PEG2000 was
present in excess. In addition, the data confirmed that the zeta potential increased as the proportion of
DSPE-PEG2000 increased. It is speculated that this is because the value of zeta potential approaches that
of DSPE-PEG2000 alone as the proportion of DSPE-PEG2000 increases. From the above, aggregation of
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particles was confirmed with DSPE-PEG alone, however, aggregation with suppressor was confirmed
owing to being prepared with Soluplus, and a single particle size distribution was confirmed; therefore,
between DSPE-PEG and Soluplus, it is speculated that some kind of interaction.
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Figure 2. Relationship between Particle diameter in the difference of mixing weight ratio of
DSPE-PEG2000 and Soluplus, (a) DSPE-PEG2000/Soluplus = 10/1, (b) DSPE-PEG2000/Soluplus = 5/1,
(c) DSPE-PEG2000/Soluplus = 4/1, (d) DSPE-PEG2000/Soluplus = 3/1, (e) DSPE-PEG2000/Soluplus = 2/1,
(f) DSPE-PEG2000/Soluplus = 1/1, (g) DSPE-PEG2000/Soluplus = 1/2, (h) DSPE-PEG2000/Soluplus = 1/3,
(i) DSPE-PEG2000/Soluplus = 1/4, (j) DSPE-PEG2000/Soluplus = 1/5, (k) DSPE-PEG2000/Soluplus = 1/10,
(1) only DSPE-PEG2000, (m) only Soluplus.

In order to show the relationship between the average particle size and the zeta potential,
we plotted average particle size (dsg) and zeta potential against the weight ratio of DSPE-PEG2000 to
Soluplus (vertical axis and horizontal axis, respectively, in Figure 3). When the zeta potential is high,
particles repel each other owing to the surface charge, thus preventing aggregation. Generally, it is
reported that the zeta potential provides particle stability at 20 to 30 mV [28]. As the zeta potential
changes as the mixing weight ratio of DSPE-PEG2000 to Soluplus changes, it is presumed that the
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mixing weight ratio affects the stability of the fine particles. Accordingly, we investigated the optimum
mixing weight ratio of DSPE-PEG2000 to Soluplus by conducting a stability test of fine particles.
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Figure 3. Relationship between zeta potential (ZP) and particle diameter on the different weight ratios
of DPSE-PEG2000 and Soluplus nanoparticles.

3.2. Particle Stability

In order to examine the stability of the prepared microparticles, the suspension prepared at each
weight ratio (DSPE-PEG2000/Soluplus = 2/1, 1/1, 1/2) was evaluated for stability for 5 days at 25 °C
in the dark (Figure 4). In the 2/1 suspension, particles that appeared to have aggregated on day 3
were confirmed to be greater than 1000 nm. On day 5, dissociated particles believed to be derived
from DSPE-PEG2000 were confirmed in the vicinity of 1 to 10 nm. In the 1/1 suspension, dissociation
and aggregation of particles were not confirmed over time, and it was assumed that the particles
were stable. In the 1/2 suspension, a single distribution peak was observed up to day 3, but on day 5,
a particle size distribution was found to be in excess of 1000 nm.
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Figure 4. Changes in particle size and zeta potential of nanoparticles of DSPE-PEG2000/Soluplus = 2/1,
1/1, 1/2 nanoparticles after the storage at 25 °C day 0 to day 5.



Colloids Interfaces 2020, 4, 28 7 of 12

From the results of particle size distribution and zeta potential alone, the optimum mixing weight
ratio of DSPE-PEG2000 to Soluplus cannot be inferred. Although a slight decrease in zeta potential is
observed by adding an inorganic salt, it is reported that the critical micelle concentration is decreased,
and the formation of fine particles is facilitated, so that stable particles can be formed [29]. It is
possible that the addition of magnesium chloride solution elevated the stability of the mixtures of
DSPE-PEG2000 and Soluplus at mixing ratios of 2/1, 1/1, and 1/2. In the DSPE-PEG2000/Soluplus
suspension with a mixing ratio of 2/1 (i.e., the proportion of DSPE-PEG2000 is high), particle aggregation
was confirmed as the magnesium chloride concentration increased (Figure 5A). At a mixing ratio of 1/1,
dissociation and aggregation were not confirmed for 5 days in all magnesium chloride concentration
groups, and it was confirmed that they exist stably (Figure 5B). However, we found that, as the
concentration of magnesium chloride increased, the average particle size increased and the zeta
potential decreased. At a mixing ratio of 1/2, particle aggregation was confirmed on day 5 when
0.625 x 1073 mM magnesium chloride solution was added (Figure 5C). From these results, it was
inferred that fine particles exist most stably when the mixing ratio of DSPE-PEG 2000 to Soluplus
is 1/1. The reason for this is that the addition of salt confirmed the aggregation and dissociation of
particles in the 2/1 and 1/2 suspensions, and that the zeta potential was maintained to some extent in
the 1/1 suspension. It has been suggested that, owing to intermolecular interactions such as hydrogen
bonding between DSPE-PEG2000 and Soluplus, an environment capable of holding a potential on the
particle surface is created, and the resulting electrostatic repulsion force contributes to stabilization of
the particles in the suspension [30,31]. Therefore, in order to investigate the intermolecular interaction
in the suspension, we evaluated the particles with the use of TEM and 3!P-NMR.
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Figure 5. Effect of particle size with magnesium chloride, (A) changes in particle size and zeta potential
of nanoparticles of DSPE-PEG2000/Soluplus = 2/1 nanoparticles after the storage at 25 °C day 0 to day
5; (B) changes in particle size and zeta potential of nanoparticles of DSPE-PEG2000/Soluplus = 1/1
nanoparticles after the storage at 25 °C day 0 to day 5; (C) changes in particle size and zeta potential of
nanoparticles of DSPE-PEG2000/Soluplus = 1/2 nanoparticles after the storage at 25 °C day 0 to day 5.

3.3. Shape Evaluation of DSPE-PEG2000/Soluplus Particles

In order to evaluate the shape of the prepared fine particles, TEM observation of DSPE-PEG2000/
Soluplus mixtures at ratios of 1/1 and 1/2 was performed (Figure 6). Particles approximately 50
to 150 nm were observed in the 1/1 and 1/2 mixtures, which was consistent with the result of
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particle size distribution measurement. From the results of TEM measurement, it is speculated that
the particles are properly dispersed in the aqueous solution owing to the average particle size of
DSPE-PEG/Soluplus = 1/1 and the surface charge due to the zeta potential. The shape of the particles
was circular. It has been reported that DSPE-PEG2000 is characterized by the formation of micelles
with lipid membranes and disk structures [32,33]. It was speculated that the DSPE-PEG2000/Soluplus
microparticles also formed particles of either structure. Normally, a lamellar structure is observed
when forming a bilayer structure such as a liposome [34]. However, as the lamella structure was
not observed in the particles prepared in our study, we have reported in previous studies on micelle
formation in DSPE-PEG and ascorbic acid derivatives [35]. The lamella structure was not confirmed in
the research report, and the TEM image different from that of the liposome was obtained, so it was
determined to be a micelle-like structure. In this result as well, the same structure as in the previous
study was confirmed, and thus it was inferred that the structure was micellar.

(a) (b)

{
\
100 nm 100 nm
| |
Figure 6. TEM images of nanoparticles, (a) DSPE-PEG2000/Soluplus = 1/1, (b)

DSPE-PEG2000/Soluplus = 1/2.
3.4. 31p-NMR Measurement

3IP-NMR measurements were performed to investigate intermolecular interactions in suspension
(Figure 7). The peak of >'P in DSPE-PEG2000 alone was observed at —~11.21 ppm (v, = 7.64) (V1
indicates the half width) (Figure 7a). In DSPE-PEG2000/Soluplus at a ratio of 2/1, a peak was observed at
—11.17 ppm (v1; = 14.64), and it was confirmed that the peak was shifted to the lower position side and
broadened (Figure 7b). In DSPE-PEG 2000/Soluplus at 1/1, three broad peaks were observed at —11.07,
-11.10, and —11.15 ppm (vy;2 = 24.79) (Figure 7c). A peak was confirmed at —11.17 ppm (v, = 10.90)
in the 1/2 ratio sample of DSPE-PEG2000/Soluplus, which was the same as the position in the 2/1 ratio
sample. The half-width of the 1/2 ratio sample of DSPE-PEG2000/Soluplus was a narrower peak than
that of the 2/1 ratio sample. From these results, it was confirmed that DPSE-PEG2000/Soluplus at a
1/1 mixing ratio has strong intermolecular interaction in phosphorus, as the peak shift and the full
width at half maximum were the largest compared with DSPE-PEG2000. In addition, in the case of
DSPE-PEG2000/Soluplus at a mixing ratio of 2/1, dissociation and aggregation over time of particle
size distribution derived from DSPE-PEG2000 were confirmed, in comparison with the results of the
stability test. The peak of the 2/1 ratio mix of DSPE-PEG2000/Soluplus was sharper than that of the
1/1 ratio mix, and a peak similar to that of DSPE-PEG2000 alone was confirmed. We propose that
this is because the molecules could not assemble well and there is high mobility in DSPE-PEG2000.
In other words, it was speculated that the 3! P-mediated interaction contributed to the particles prepared
with DSPE-PEG2000 and Soluplus. Our findings suggest that a mixing ratio (weight/weight) of 1/1
DSPE-PEG2000 and Soluplus results in a greater number of molecules assembled, and thus stable
particles can be formed.
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Figure 7. S3!P-NMR spectra of DSPE-PEG 2000 and Soluplus, (a) DSPE-PEG2000, (b)
DSPE-PEG2000/Soluplus = 2/1, (c¢) DSPE-PEG2000/Soluplus = 1/1, (d) DSPE-PEG2000/Soluplus = 1/2.

4. Conclusions

The results of our study suggest that microparticles in DSPE-PEG2000/Soluplus can be formed by
the hydration method, and the optimum weight ratio of DSPE-PEG2000 to Soluplus is 1/1. The data
also indicate that these fine particles exist stably for 5 days under the condition of shading and 25 °C.
It was also confirmed that a 1/1 ratio mix of DSPE-PEG2000/Soluplus is stable for 5 days under the
same conditions, even in the group containing the magnesium chloride solution. In mixtures of
DSPE-PEG2000/Soluplus at ratios of 2/1 and 3/2, the higher the containing magnesium chloride solution,
the faster the particle aggregation rate. In addition, the 3P-NMR measurements showed that the
peak of the 1/1 DSPE-PEG2000/Soluplus mix had the largest peak shift compared with DSPE-PEG2000
alone, and a broad peak was obtained. From these data, it was confirmed that this had the strongest
intermolecular interaction and formed particles in which the molecules were aggregated. We can
conclude that the phosphate group of DSPE-PEG2000 is involved in the intermolecular interaction of
the prepared fine particles with respect to the physical properties and structure of the particles. From
the results of TEM imaging and measurement, spherical micelle-like particles of 50 to 150 nm were
confirmed in both the 1/1 and 1/2 ratio mixes of DSPE-PEG2000/Soluplus. However, the results are
not sufficient to determine the detailed formation mechanism and structure, and further investigation
is required. In addition, formulation and clinical expectation can be expected by preparing and
encapsulating a drug-containing complex and testing its toxicity and kinetics.
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