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Abstract: Aerogel objects inspired by plant cell wall components and structures were fabricated
using extrusion-based 3D printing at cryogenic temperatures. The printing process combines 3D
printing with the alignment of rod-shaped nanoparticles through the freeze-casting of aqueous inks.
We have named this method direct cryo writing (DCW) as it encompasses in a single processing step
traditional directional freeze casting and the spatial fidelity of 3D printing. DCW is demonstrated
with inks that are composed of an aqueous mixture of cellulose nanocrystals (CNCs) and xyloglucan
(XG), which are the major building blocks of plant cell walls. Rapid fixation of the inks is achieved
through tailored rheological properties and controlled directional freezing. Morphological evaluation
revealed the role of ice crystal growth in the alignment of CNCs and XG. The structure of the aerogels
changed from organized and tubular to disordered and flakey pores with an increase in XG content.
The internal structure of the printed objects mimics the structure of various wood species and can
therefore be used to create wood-like structures via additive manufacturing technologies using only
renewable wood-based materials.

Keywords: nanocellulose; 3D printing; aerogels; ice templating; biomimetics

1. Introduction

Plants are fascinating engineering materials as they consist of multi-cellular architectures evolved
by nature to serve a specific function [1]. The three main constituents of the plant cell wall are cellulose,
hemicellulose, and lignin, each with its specific role. Cellulose is the most abundant polysaccharide in
nature and is the main load-bearing element in plants, where cellulose polymer chains bundle together
into microfibers, consisting of highly crystalline and less crystalline regions, which then group together
into fibers [2]. Hemicellulose is the second-most abundant polysaccharide in nature [3] and acts as
the “glue” that binds cellulose microfibrils, while lignin interlaces with the cellulose–hemicellulose
composite, forming a protective barrier against enzymes and microbes [4].

Freeze casting, also known as ice templating, enables the alignment of particles through directional
freezing followed by sublimation, which results in cellular objects [5,6]. Various applications of
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freeze-cast objects can be found in fields where an anisotropic geometry with complex and functional
hierarchy is needed [7]. Among them are thermal insulators [8], high performance batteries [9],
tough and highly compressible materials [10,11], and bone substitutes [12]. Wood, similar to other
natural materials, has a sophisticated structure with different levels of hierarchical organization and
properties that surpass typical manmade materials [13]. Therefore, mimicking nature is more than
mixing and matching the right building blocks, but also using new technologies to put these elements
together in a way that achieves architectures similar to the natural material.

The 3D printing of cellulose-based materials in the context of “hydrogel to aerogel” has emerged
in the past few years, including in wound healing applications [14,15], scaffolds [16–18], lightweight
foams [19], and aerogel substrates for supercapacitors [20]. Nanocellulose-containing hydrogels and
aerogels, as well the different approaches used to prepare these materials and their applications,
have been recently reviewed by De France et al. [21]. Different from previous approaches, this study
presents the 3D printing of cell-wall building blocks to create bioinspired structures via direct cryo
writing (DCW). The building blocks are rod-shaped cellulose nanocrystals (CNCs), extracted from
plant fibers via hydrolysis [22], and a binder, xyloglucan (XG), the most abundant hemicellulose present
in the cell walls of dicotyledonous plants [23].

CNCs are the crystalline elements extracted from the cellulose microfibrils in plant fibers.
They possess many of the properties of native crystalline cellulose including high strength and
insolubility in most solvents. However, CNCs extracted by sulfuric acid have anionic sulfate-half
ester groups grafted onto their surfaces, a functionality that is non-native to natural cellulose but that
imparts colloidal stability to aqueous CNC suspensions through electrostatic repulsive interactions
that are key to the processing of CNCs into uniform materials. CNC size, surface charge type and
magnitude, and crystallinity are governed by the source material and preparation conditions [24–26].

In the plant cell wall, the combination of cellulose and XG leads to physical entanglements that
result in an extensible structure [27], where hydrogen bonding and van der Waals forces drive the
binding of XG to cellulose surfaces and their crosslinking [28,29]. Recent studies of the adsorption of
XG extracted from tamarind onto CNC surfaces have demonstrated that the adsorption is kinetically
driven, concentration dependent, and is accompanied by the release of bound water [30,31]. CNCs and
XG have the potential to yield composites that biomimic the plant cell wall, as has been previously
investigated in layer by layer (LbL) films [32,33].

Other researchers have used freeze casting to create porous materials from plant components;
for example, aerogels were made from CNCs [34], nanofibrillated cellulose (NFC) [35], and microfibrillated
cellulose (MFC) [36], and hydrogels from xylan [37]. The addition of XG to MFC was found to yield
aerogels with ultra-high porosity and better mechanical properties compared with pure MFC aerogels [38].
Moreover, CNCs have been aligned by directional freezing to produce aligned foams [34], which are
of interest due to the renewable and biocompatible nature of CNCs and the possibility to control
long-range order in the final materials through processing [39]. The novelty of the current report is the
use of a blend of CNC and XG to mimic the chemical composition of wood and the use of cryo-3D
printing as an approach to capture the internal architecture of wood.

In the direct ink writing (DIW) printing process used in this study, a fluid is extruded through a
nozzle to form a 2D pattern, a process that is then repeated to build-up 3D structures [40,41]. This process
is extensively used in the field of bioprinting, which is an emerging field of research [42–44]. A major
challenge inherent to this technology is the requirement of rapid fixation of the ink as soon as it is
deposited onto the build platform in order to successfully attain the pre-designed shape. Rapid fixation
can be accomplished by photopolymerization [45], thermal crosslinking [46], or tuning of the rheological
properties of the ink [47]. A further challenge is the collapse of printed structures due to gravity,
which is particularly relevant for angular geometries. This last limitation can be overcome by first
printing a support material, but this approach is accompanied by additional challenges, such as
the need for complicated multi-nozzle printers and post-processing to remove the support material.
Rapid fixation can also be achieved via low-temperature deposition manufacturing (LDM) processes.
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LDM for DIW can be categorized according to three main approaches: (1) printing in a cooled chamber,
(2) printing onto a cooled stage, and (3) printing into a cooled liquid. Xiong et al. were first to report
3D printing with a polymer solution in a refrigerator for tissue engineering applications [48]. Kim et al.
were first to use a cooled stage to cryogenically 3D print collagen scaffolds [49], Liao et al. developed a
3D printing system for tissue engineering applications using a temperature-controlled cold stage [50]
and Adamkiewicz et al. 3D printed hydrogels into liquid nitrogen, also for tissue engineering [51].
Finally, drop on demand printing, another LDM process, was used by Zhang et al. to achieve graphene
aerogels [52].

In this study, inspired by the plant cell wall structure, aerogels were prepared from aqueous
mixtures of relatively low concentrations of CNCs (4 wt%) and XG using 3D printing via DCW to
align the CNCs at cryogenic temperatures. Song et al. recently published the DCW of hydroxyapatite
aqueous mixtures (above 60 wt%) for a bone cell culture by printing on a cold stage whose temperature
was continually lowered throughout the process [53]. Here, we explore the combination of freeze
casting and 3D printing for systems containing a relatively low concentration of cellulose nanocrystals
while the freezing process is conducted with a feedback-based temperature control. Directly printing
onto a temperature-controlled cold platform enables complex structures with tilted facets, without
requiring any support material via proper coordination between the printing flowrate and the freezing
rate. With the increase in height of the printed object, the platform temperature and the printing
speed can be decreased, enabling the fabrication of a large overhang. The thermal gradients obtained
by directional freezing enable the slow and directional growth of ice crystals within the structure,
which drive the alignment of the CNCs. DCW allows simultaneous printing and freezing, effectively
shortening the freezing process. The frozen objects are directly post-processed via lyophilization,
resulting in 3D printed aerogels with aligned structures. These objects are proposed as superior thermal
insulators for complex structures due to the 3D design freedom and the anisotropic aerogel structure.
Moreover, the low solid content coupled together with porosity control and tunable architecture makes
these objects interesting as custom designed biological scaffolds.

2. Materials and Methods

2.1. Materials

A cellulose nanocrystal (CNC) dispersion was prepared via sulfuric acid hydrolysis. Bleached,
softwood kraft pulp (TEMBEC) was dried in a 60 ◦C oven for 48 h. Next, 40 g of the dried pulp was
vigorously mixed with 700 mL of sulfuric acid (61 wt%) using mechanical stirring for 2.5 h in a water
bath set to 50 ◦C. The reaction was then quenched via 10-fold dilution in chilled deionized water,
followed by three washes via centrifugation (20 ◦C, 6000 rpm, Sorvall RC5C Plus, Kendro, Newtown,
CT, USA) to remove excess acid. The CNCs were then dialyzed against distilled water (12–14 kDa,
Medicell Membranes LTD, London, England) for at least two weeks with daily water changes, followed
by sonication, filtration (Whatman 41 filter paper), and another round of centrifugation (5000 rpm,
10 min) to remove particulates introduced by the sonication probe. XG from tamarind seed was
supplied by Megazyme (Bray, Ireland). XG solutions (2 and 4 wt%) were prepared via mixing XG in
water for 2 h at 80 ◦C until dissolution was achieved. Different ratios of XG to CNCs were mixed using
magnetic stirring for at least 1 h with the overall solid content maintained at 4 wt%.

2.2. Rheology

Rheology measurements were performed at room temperature (25 ◦C) using a Haake Rheostress 6000
Rheometer (Thermo Fisher Scientific, Waltham, MA, USA) coupled with a RS6000 temperature controller.
The rheometer was operated in controlled rate (CR) mode, where the shear rate was fixed, while the shear
viscosity was measured (lower plate—TMP 60, upper plate—P60 TiL; cone—plate geometry).
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2.3. DCW 3D Printing of Aerogels

XG:CNC dispersions were 3D printed using a Hyrel3D 30M printer (Hyrel International, Inc.,
Norcross, GA, USA) equipped with an EMO-25 extruder (cold flow) mounted with an 18-gauge
stainless steel tip. The HYREL3D 30M printer has a 5× 5× 1 µm positional resolution, a 50× 50 × 10 µm
positional accuracy, and a 25 × 25 × 5 µm positional repeatability. It can be mounted with any needle,
but the needle diameter becomes the upper bound for the layer height. A custom made cold platform
was assembled from a copper plate attached with conductive grease to a standard thermoelectric cooler
(TEC) mounted onto a water block heat exchanger (customthermoelectric.com) and controlled by a
power supply (EA-PS 2042-20B, Elektro-Automatik). In addition, a FLIR E4 infrared camera (FLIR
systems, Wilsonville, OR, USA) with a ZnSe lens (1” focal length) was used to acquire thermal images
and temperatures along the printed object during the 3D printing. We monitored the advance of the
ice front in the 3D printed object during printing, and based on that, we controlled the cooling of the
stage by manually adjusting the current to the TEC, keeping the two top layers unfrozen.

G-code files were prepared via 3D Slic3r software (Ver. 1.2.9, slic3r.org). The printing rate was
set to 3 mm/s and the layer height was set to 0.8 mm to print cylindrical hydrogel specimens with a
diameter of 10 mm and height of 5 mm. The frozen objects were lyophilized (Labconco Freezone 2.5,
Kansas city, MO, USA) and stored in sealed vials until further testing.

2.4. Mechanical Properties

The mechanical properties of the 3D printed cylindrical aerogels (with an average height of 5 mm
and a diameter of 10 mm) were evaluated in compression-mode using an Instron universal testing
machine (Model 3345, Instron Corp., Norwood, MA, USA) equipped with a 100 N load cell and
operated at 2 mm/min. Five replicate specimens were tested at ambient laboratory conditions.

2.5. Scanning Electron Microscopy (SEM)

The structures and morphologies of the 3D printed aerogels were imaged using a JEOL scanning
electron microscope (model JSM-IT-100, Tokyo, Japan). Samples were placed onto carbon tape and
mounted into a holder such that the cross sections were exposed to the beam. Prior to imaging,
the samples were coated using a Quorum Q150T Iridium sputter (Quorum Technologies Ltd, Laughton,
UK) coater to give a 2 nm layer and ensure sample conductivity. The images were captured at an
accelerating voltage of 3 kV at a working distance of 11 mm.

2.6. Translational Cryostage

To observe the formation of ice crystals within the dispersions, samples were mounted into a
custom-built translational cryostage, which has been described elsewhere [54]. Briefly, samples were
placed between two glass slides on a copper plate and observed through a slit under an inverted
microscope (IX51, Olympus, Tokyo, Japan). Two Peltier thermoelectric coolers (TEC) were maintained
with a ∆T of 4 ◦C (Thot = 1 ◦C, Tcold = −3 ◦C) by a high precision proportional integral derivative (PID)
temperature controller (PRO800 system with two TED8020 modules, ThorLabs, Newton, NJ, UDS).

2.7. Statistical Analyses

Three independent 1 mL measurements were obtained for the rheology measurements, but only
one representative curve is presented in the results. Results are displayed on a log–log scale. As for the
DCW printed from aerogels, ten replicates were printed from the five different ratios of XG to CNCs
inks, out of which five were randomly selected for mechanical properties and imaging.

Young’s modulus values were calculated from the stress–strain curves between 0–0.2 strain using
MATLAB 2015a (MathWorks, Natick, MA, USA). An average plot of the five measurements with the
associated standard error of the mean is presented.

customthermoelectric.com
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3. Results and Discussion

DCW printing experiments were conducted via the extrusion of water-based XG:CNC compositions
onto a temperature-controlled cold plate, allowing directional freezing from the plate upward into the
sample, as is shown schematically in Figure 1a. The resultant frozen 3D hydrogel objects (Figure 1b)
were post-processed using lyophilization, yielding 3D aerogels, as shown in a typical example
(Figure 1c). Successful 3D printing of objects using an extrusion-based process can be achieved using
ink compositions that have shear-thinning rheological properties. The shear thinning behavior of
fluids describes how materials effectively become less viscous with applied stress, often reverting back
toward their initial viscosity once the stress is removed [55]. This feature is critical to many applications,
such as paints and coatings, and especially for extrusion-based 3D printing, where the material is
required to flow easily as it is extruded but to remain in place once it has been deposited onto the build
platform, thus fixing the material in its pre-designed shape. CNCs exhibit shear thinning behavior as
well as relatively high viscosities at low shear and at relatively low concentrations [56,57], making this
material a good candidate for water-based 3D printable inks [58]. In this study, we extracted CNCs
using 61 wt% sulfuric acid, which is lower than typically used, resulting in low–moderate surface
charge values (≈0.2–0.5% S, expressed as a sulfur content as charge groups are sulfate-half esters) as
compared to commercial CNCs (0.66 to 1.1% S) [59]. Dispersions of lower surface charge CNCs in pure
water are more viscous compared to dispersions of higher charged CNCs, and have viscosities that
are sufficiently high for the successful 3D printing of CNC dispersions (even at relatively low solid
concentrations) [60]. Recently, a CNC hydrogel (20 wt%) was used to fabricate aerogels via DIW, with a
main focus of the work on the optimization of ink printability rather than on the micro-features of
the freeze-dried material [61]. In the present report, we were able to print low concentration CNC
hydrogels (<4 wt%), which allowed for tuning of the porosity and internal alignment within the
object. We expect that the high porosity may facilitate biocompatibility and accelerate biodegradation.
Moreover, we expect that the aligned structures achieved due to the combination of XG with CNC may
enable cell orientation templating, an important requirement for future printed implants.
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and (c) of final aerogel.

3.1. Rheology

The ink is composed of CNCs, cell-wall building blocks, which are combined with another
cell-wall building block, xyloglucan (XG), which acts as a binder. Since this binder can also affect the
rheology of the resulting ink, we evaluated the viscosity profiles of the inks composed at different mass
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ratios of XG to CNC (4 wt% overall solids for all compositions). As shown in Figure 2, shear-thinning
behavior was observed for all samples that contain CNCs, while the viscosity at any given shear rate
was higher for higher XG concentrations. For instance, the viscosity of the pure CNC dispersion at
4 wt% (0:1 XG:CNC ratio) and at 0.1 s−1 was an order of magnitude lower compared to the 1:4 XG:CNC
dispersion (i.e., 30 Pa·s versus 300 Pa·s). However, at high XG concentrations (1:4 and 1:10 XG:CNC),
the gel structure collapsed as indicated by the curves at high shear rates. We note that although XG is
a soluble polymer, pure solutions of XG at 4 wt% (the highest concentration tested and used in this
work) exhibited Newtonian behavior, where viscosity is unaffected by shear.
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of XG content on the overall viscosity and the shear thinning behavior of CNCs. Legend indicates the
ratio of XG:CNC.

The increase in CNC viscosity due to the addition of XG is most likely related to the binding
XG to the CNCs [62,63]. Eronen et al. studied the adsorption of XG and other hemicelluloses onto
nanofibrillar cellulose and found that XG adsorption occurred to a greater extent compared with other
hemicelluloses [64]. Moreover, a strong association between XG and CNCs has been demonstrated in
LbL studies, where film thickness attained a constant value at high XG concentrations, whereas an
unlimited linear build-up of bilayers was observed for dilute XG [65]. This observation suggests that
at low concentrations XG acts as a crosslinking agent, whereas at high concentrations, XG exerts a
slippery effect. The interactions between CNCs and XG resulted in surface coverage of CNCs by XG
and bridging between CNCs, phenomena that potentially explain the increase in viscosity observed
when XG was added to a CNC dispersion. Thus, the XG in our system mimicked its role in the plant
cell wall by “gluing” together cellulosic building blocks into 3D objects and also acted as a rheological
modifier. The following printing experiments were conducted with samples comprised of both CNCs
and XG (pure XG was excluded due to its Newtonian behavior).

3.2. DCW 3D Printing of Aerogels

We first printed a pure CNC dispersion (0:1 XG:CNC, 4 wt%) via DIW without freezing to
demonstrate that this extrusion-based technique can be used for printing relatively low concentrations
of CNCs (Figure S1). However, as is seen in Figure S1, the resultant object (cylinder height and diameter
= 5 mm) was slightly distorted, demonstrating the need for rapid fixation as was discussed previously.
Therefore, in subsequent experiments, the challenge of fixation was tackled through a combination of
the shear-thinning rheology of CNCs coupled with immediate directional freezing. We emphasize that
in the absence of freezing, objects printed and dried under ambient conditions from CNC dispersions
simply collapse into films.

The ink compositions containing both CNCs and XG were 3D printed using DCW (4 wt% overall
solids) and the resultant printed objects were lyophilized to obtain 3D printed aerogels (discussed
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below in more detail). As indicated above, DCW subjects the deposited samples to a temperature
gradient, where temperatures gradually increase further into the printed object, away from the
temperature-controlled cooling plate, resulting in directional ice crystal growth in the vertical direction.
We note that a cooling platform kept at a constant temperature is expected to result in uneven ice
crystal growth throughout the printing process due to the increasing distance between the cold surface
and the printed layers. To preserve the ice growth rate as the 3D structure evolves, the temperature of
the platform is lowered throughout the printing process and the freezing rate is tuned to avoid either
fast or slow ice growth. Rapid ice growth results in the deposition of liquid ink on top of an already
completely frozen layer, causing poor adhesion between discrete 2D layers. Conversely, slow ice
growth leads to longer printing times and distortion of the shape of the printed structure.

A balance between the two mechanisms of fixation is therefore required. Appropriate rheological
properties of the ink as well as maintaining control of the ice growth rate within the sample throughout
printing by rapid adjustment of the temperature of the platform are essential.

To maintain continuous ice growth throughout the printed layers, the inks were extruded onto a
Peltier plate, whose temperature could be rapidly and efficiently controlled. A thermal camera was used
for feedback to control the temperature by monitoring the height of the 0 ◦C plane, which corresponds
to the plane of the ice growth front, such that a continuous thin liquid layer was maintained on top of
the frozen sample throughout the entire printing process. This liquid phase was approximately one
printed layer thick, quantified via thermal imaging (Figure 3). Practically, the rate of ice growth was
monitored and the temperature of the platform was adjusted as the sample was printed. This setup
enabled the cryo-3D printing of CNC-based inks by depositing a liquid sample directly onto the
cold stage in the first layer, followed by printing onto the unfrozen top layer in subsequent layers
without disruption to the underlying ice crystal growth, which is key to CNC alignment within the
structure [34,66].

Colloids Interfaces 2019, 2, x 7 of 15 

 

direction. We note that a cooling platform kept at a constant temperature is expected to result in 
uneven ice crystal growth throughout the printing process due to the increasing distance between 
the cold surface and the printed layers. To preserve the ice growth rate as the 3D structure evolves, 
the temperature of the platform is lowered throughout the printing process and the freezing rate is 
tuned to avoid either fast or slow ice growth. Rapid ice growth results in the deposition of liquid ink 
on top of an already completely frozen layer, causing poor adhesion between discrete 2D layers. 
Conversely, slow ice growth leads to longer printing times and distortion of the shape of the printed 
structure. 

A balance between the two mechanisms of fixation is therefore required. Appropriate 
rheological properties of the ink as well as maintaining control of the ice growth rate within the 
sample throughout printing by rapid adjustment of the temperature of the platform are essential. 

To maintain continuous ice growth throughout the printed layers, the inks were extruded onto 
a Peltier plate, whose temperature could be rapidly and efficiently controlled. A thermal camera was 
used for feedback to control the temperature by monitoring the height of the 0 °C plane, which 
corresponds to the plane of the ice growth front, such that a continuous thin liquid layer was 
maintained on top of the frozen sample throughout the entire printing process. This liquid phase was 
approximately one printed layer thick, quantified via thermal imaging (Figure 3). Practically, the rate 
of ice growth was monitored and the temperature of the platform was adjusted as the sample was 
printed. This setup enabled the cryo-3D printing of CNC-based inks by depositing a liquid sample 
directly onto the cold stage in the first layer, followed by printing onto the unfrozen top layer in 
subsequent layers without disruption to the underlying ice crystal growth, which is key to CNC 
alignment within the structure [34,66]. 

 

Figure 3. An example of the thermal imaging obtained while 3D printing layers of an XG:CNC (1:100) 
ink. The height (H) of the sample and the thickness of the top layer of liquid that had not yet been 
frozen (Δ) are indicated. 

3.3. Scanning Electron Microscopy (SEM) 

SEM of sample cross-sections was used to image the morphologies of the 3D DCW printed 
aerogels at right-angle (tangential) and parallel (longitudinal) positions to the cold stage. Figure 4 
presents tangential cross-sectional SEM images of the 3D printed aerogels at five XG:CNC ratios. 
Neither voids nor cylindrical filament shapes were present between layers, indicating that 
continuous ice crystal growth and homogenous freezing was indeed achieved within these printed 
objects. Moreover, the pure CNC sample exhibited a lamellar morphology (Figure 4b) that evolved 
into a tubular structure as more XG was included in the ink (Figure 4c,d), until eventually the 
structure of the aerogel became disordered (Figure 4e,f). Longitudinal cross-sectional SEM images 
showed that the pure CNC sample had an organized lamellar structure (Figure 5b), the 1:100 XG:CNC 
sample had an open-cell foam structure (Figure 5c), and the 1:50 XG:CNC sample (Figure 5d) had an 
ordered tubular structure that eventually degraded to a flakey structure with further increases in XG 
content (Figures 5e,f). 

Figure 3. An example of the thermal imaging obtained while 3D printing layers of an XG:CNC (1:100)
ink. The height (H) of the sample and the thickness of the top layer of liquid that had not yet been
frozen (∆) are indicated.

3.3. Scanning Electron Microscopy (SEM)

SEM of sample cross-sections was used to image the morphologies of the 3D DCW printed aerogels
at right-angle (tangential) and parallel (longitudinal) positions to the cold stage. Figure 4 presents
tangential cross-sectional SEM images of the 3D printed aerogels at five XG:CNC ratios. Neither
voids nor cylindrical filament shapes were present between layers, indicating that continuous ice
crystal growth and homogenous freezing was indeed achieved within these printed objects. Moreover,
the pure CNC sample exhibited a lamellar morphology (Figure 4b) that evolved into a tubular structure
as more XG was included in the ink (Figure 4c,d), until eventually the structure of the aerogel became
disordered (Figure 4e,f). Longitudinal cross-sectional SEM images showed that the pure CNC sample
had an organized lamellar structure (Figure 5b), the 1:100 XG:CNC sample had an open-cell foam
structure (Figure 5c), and the 1:50 XG:CNC sample (Figure 5d) had an ordered tubular structure that
eventually degraded to a flakey structure with further increases in XG content (Figure 5e,f).
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(a) schematic of the direction of the observation and (b–f) SEM images of aerogels prepared from
different XG:CNC ratios of 0:1, 1:100, 1:50, 1:10, and 1:4, respectively.

To assess the quality of the 3D printed samples, we printed a sample using suboptimal settings;
a 0.1 mm line space gap was introduced between each printing path and printing was performed at
a constant platform temperature of −20 ◦C (Figure S2). Poor adhesion can be seen between layers,
as well as a printed filament with a circular cross-section, which is indicative of an inappropriately
large spacing between lines. Overall, the cross-sectional SEM images (Figures 4 and 5) indicate that the
inks were continuously printed to give bulk and homogeneous 3D structures, which had no discernible
layers. Additionally, these images show that the internal structure of the resultant aerogels could be
tuned by controlling the ratio of XG to CNC, from lamellae to tubes to disordered flakes, with increasing
XG concentration.

Interestingly, cross-sectional images of wood structures show a similar variety of structures
(Figure S3) [67]. In wood, cellulose chains are produced and aligned enzymatically by cellulose
synthase rosette complexes, whereas in this study, the alignment of cellulose was driven by the
direction of ice crystal growth. Previous studies on the ice templating of cellulose microfibrils
indicated an alignment change from a crosslinked network to a lamellar channel structure with
increasing thickness of the lamellae walls as the concentration of microfibrils was increased [68].
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This lamellar morphology has also been observed with cryo-cast CNC-polyvinyl alcohol mixtures [69],
where microstructure and pore morphology were fine-tuned by modifying the freezing rate and
concentration of the components [70].

3.4. Translational Cryostage

To better understand the differences in sample morphologies, we analyzed the ice crystal growth
using a custom-built motorized translational cryo-stage that enables real time observation of directional
freezing/ice crystal growth using optical microscopy [54,71]. Inks were deposited onto a glass slide
and covered with a cover slip. The bottom of the slide was in contact with copper plates at its left and
right sides, with a central unobscured viewing window. The temperatures of the copper plates were
fixed at specific values such that a constant ∆T (Thot = 1 ◦C, Tcold = −3 ◦C) was maintained at 4 ◦C
between the plates (Figure 6a).
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Figure 6. Directional freezing experiment: (a) schematic description of the translational cryostage
with a fixed ∆T (Thot = 1 ◦C, Tcold = −3 ◦C), and (b–f) microscope observation of samples at different
XG:CNC ratios of 0:1, 1:100, 1:50, 1:10, and 1:4, respectively. Temperature gradient is shown in scale
bars (100 µm, red = hot, blue = cold).

All samples underwent ice growth from the cold side of the slide, while no ice crystals were
present in the dispersion at the warm side (Figure 6). The ice crystals in the pure CNC dispersion
(Figure 6b) appeared rectangular with an average width of 60 µm, which corresponds well to the
features observed by SEM imaging. Moreover, the growth front of the ice crystals appeared straight.
As more XG was added, the rectangular ice crystals became rounder, wider, and more tubular in shape
(Figure 6c,d), until at high XG contents (1:10 and 1:4 XG:CNC ratios), the ice lacked a clear crystal
structure (Figure 6e,f), similar to the morphologies observed of the aerogels using cross-sectional SEM
(Figures 4 and 5).

Freeze casting requires that two main conditions are met: (1) particles are rejected from the growing
ice front, and (2) the ice front has a non-planar morphology [72], both of which are met in the current
study. Several parameters may affect the interaction between the ice front and the particles, including
the size and polydispersity of the particles, as well as their shape, surface roughness, and surface
energy. In addition, additives may affect the viscosity and surface tension of the liquid, resulting
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in different microstructures [73,74]. In the current work, the system was composed of dispersed
nanoparticles (CNCs) and a dissolved polymer in water. These samples have different viscosities
(Figure 2), which may have affected the crystallization process. Zhou et al. observed ice crystals
widening in porous hydroxyapatite, occurring with a concurrent increase in viscosity due to small
particle size [75]. This is also similar to the current work, as we have found that added XG increased
the viscosity of CNC dispersions and also gave wider ice crystals (Figure 6), which generally resulted
in larger pore sizes in the final aerogel (Figures 4 and 5).

Hausmann et al. recently published a paper that evaluated particle alignment in a high
concentration CNC suspension by studying the rheology and flow in a needle [76]. This study
led to a model that proposed guidelines for designing inks for the alignment of particles. In our case,
since the direction of alignment matched that of the ice crystal growth, and since the concentration of
CNC was comparatively low, it seems that the most significant parameter for the alignment was the
ice templating.

3.5. Mechanical Properties

The DCW samples were kept frozen until lyophilization. The mechanical properties of the
resultant 3D aerogel objects were evaluated using unconfined compression tests of cylindrical samples
(Figure 7). The stress–strain behavior of all samples was typical of elastomeric foams: initially, a linear
elastic region was observed due to reversible compression of the foam walls, followed by a short plateau
(not apparent in all samples), and finally a sharp linear rise in stress due to irreversible densification
until the limits of the load cell were reached. Although the short plateau region was not seen in all
samples, the overall trend of increasing modulus with increasing XG content was observed in all
samples. The plateau may be related to the contribution of gas pressure within closed cells [1]. As more
XG was present, the modulus of the aerogels increased, except for the 1:100 XG:CNC ratio, probably
due to its irregular pore structure. Overall, the results indicate that an increase in modulus of over
70% could be achieved by including XG into CNC aerogels. Moreover, the 0:1 and 1:4 XG:CNC ratios
seemed to tend toward elastoplastic behavior, as inferred from the apparent yield stress seen in the
stress–strain curve.
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Finally, one of the great advantages of DCW is the ability to print objects at angles above
90◦ relative to the build platform (printing “overhang structure”) without the typical requirement
to use an additional a support material, thus eliminating the need for post-printing processing to
remove the support material. Indeed, a printed vase structure, with angles of ≈120◦ was printed
without support, demonstrating this advantage (Figure 8). We note that the fabrication of 3D aerogels
was reported for materials such as graphene [77,78], where the objects were obtained via printing
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aqueous dispersions, with water removal by lyophilization. However, this process, which results in
separate layers, is different than the freeze casting and printing under the feedback-controlled freezing
process used herein, which leads to formation of objects with continued long-range alignment of the
dispersed particles.
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4. Conclusions

We presented a new approach for plant cell inspired 3D printing by extrusion-based direct cryo
writing. The XG:CNC ink compositions contain plant cell wall components that result in structures
that mimic the organization within the plant cell wall due to directional freezing. Extrusion-based
3D printing onto a cold plate with thermal monitoring and on-line temperature control enabled the
printing of water-based inks of different XG:CNC ratios and relatively low solid contents. The freezing
process was accomplished by proper coordination between the printing flowrate and the freezing rate,
such that the two upper layers of the material remained unfrozen, while the material bulk was frozen.
This feature is key for enabling the layers to cohesively meld, giving an overall uniform material with
no filamentous features. Alignment of the resultant aerogel objects was generated from the freeze
casting, while XG:CNC ratios controlled the architecture. The main roles of the CNCs were to impart
the shear-thinning rheological behavior needed for the printing process, whereas the XG acted as a
binder to improve mechanical properties and to induce internal structure modifications to the 3D
printed construction.

We expect that this study will pave the way to the fabrication of 3D objects with controlled internal
morphologies, and consequently controlled mechanical properties.

Supplementary Materials: The following are available online. Figure S1: Photograph of 3D printed pure CNC
cylinders pre-freezing, Figure S2: SEM cross-section, Figure S3: Scanning electron micrographs of wood.
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