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Abstract

:

The diffusiophoretic migration of a circular cylindrical particle in a nonelectrolyte solution with a solute concentration gradient normal to its axis is analytically studied for a small but finite Péclet number Pe. The interfacial layer of interaction between the solute molecules and the particle is taken to be thin, but the polarization of its mobile molecules is allowed. Using a method of matched asymptotic expansions, we solve the governing equations of conservation of the system and obtain an explicit formula for the diffusiophoretic velocity of the cylinder correct to the order Pe2. It is found that the perturbed solute concentration and fluid velocity distributions have the order Pe, but the leading correction to the particle velocity has the higher order Pe2lnPe. The correction to the particle velocity to the order Pe2 can be either positive or negative depending on the polarization parameter of the thin interfacial layer, establishing that the solute convection effect is complicated and can enhance or retard the diffusiophoretic motion. The particle velocity at Pe=0.6 can be about 17% smaller or 0.2% greater than that at Pe=0. Under practical conditions, the solute convection effect on the diffusiophoretic velocity is much greater for a cylindrical particle than for a spherical particle, whose leading correction has the order Pe2.
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1. Introduction


A colloidal particle, when suspended in a fluid solution non-uniform in a solute concentration, will spontaneously move as a result of physical interaction between the solute molecules and the particle. This motion is known as diffusiophoresis and was widely applied to particle motility and manipulations [1,2,3,4,5]. In the solution of a nonelectrolyte solute with a uniform concentration gradient ∇^C∞, the diffusiophoretic velocity of a colloidal sphere of radius a with a thin but polarized interfacial diffuse layer is [6]


U^0=kTηL*K(1+β^a)−1∇^C∞, 



(1)




where L* is a characteristic length for the particle-solute interaction, K is the Gibbs adsorption length characterizing the strength of adsorption of the molecular solute, β^ is the polarization coefficient of the thin diffuse layer, η is the fluid viscosity, k is the Boltzmann constant, and T is the absolute temperature. On the other hand, the corresponding diffusiophoresis of spheroidal and cylindrical particles has been analyzed [7,8,9], and the migration velocity of a long circular cylindrical particle in transverse solute gradients is also given by Equation (1).



The derivations of Equation (1) for both spherical and circular cylindrical particles assume that the Péclet and Reynolds numbers are zero. For the diffusiophoresis of a large colloidal particle in a high solute concentration gradient, the value of the Péclet number Pe may have the order unity, and the solute convection may become notable in comparison with the solute diffusion in the fluid [10]. The diffusiophoresis of a spherical particle at a nonzero Pe was first studied by Keh and Weng [11] using a perturbation method of matched asymptotic expansions [12,13], and the solute concentration and fluid flow fields around the particle as well as the diffusiophoretic velocity of the particle were determined to O(Pe2). Moreover, numerical calculations of the diffusiophoretic velocity of a colloidal sphere up to Pe=50 and an asymptotic analysis of the diffusiophoresis of a slightly non-spherical particle at a small finite Pe have been presented for the limiting case β^/a=0 [14].



The objective of the present work is to analyze the diffusiophoresis of a long circular cylinder in transverse directions when the Péclet number is small but nonzero. We employ the perturbation method to solve the problem, and an analytical formula to correct Equation (1) for the diffusiophoretic velocity up to O(Pe2) for an arbitrary value of the polarization parameter β^/a will be given by Equation (18) together with Equations (22), (33), and (39).




2. Analysis


2.1. Equations of Conservation and Boundary Conditions


Consider the two-dimensional problem of the diffusiophoresis of a long circular cylindrical particle of radius a in a solution of a nonionic solute normal to its axis, as shown in Figure 1. The uniform gradient of the solute concentration prescribed far from the particle is E∞ex (=∇^C∞), and its migration velocity is U^ex (with no rotation owing to the symmetry), where ex is the unit vector in the x direction. For convenience, the polar coordinates ρ^,ϕ are set to translate with the particle.



We define some dimensionless operator, variables, and constants as follows:


∇=a∇^, 



(2)






ρ=ρ^a,  C=C^−C(0)E∞a−U^ta,  v=v^U(0),  p=ap^ηU(0), 



(3)






U=U^U(0),  β=β^a,  Pe=aU(0)D, 



(4)




where C^, v^, and p^ are the solute concentration, fluid velocity, and pressure distributions, respectively, t is the time, C(0) is the prescribed solute concentration at the particle center in the absence of the particle, D is the diffusion coefficient of the solute, and U(0)=kTL*KE∞/η is a characteristic particle velocity relating to Equation (1). With these definitions, the equations of conservation and boundary conditions of the molecular solute and fluid momentum at nonzero Pe can be expressed as [11]


Pe(v·∇C+U)=∇2C, 



(5)






∇2v−∇p=0,  ∇·v=0; 



(6)






ρ=1:  ∂C∂ρ=−β1ρ2∂2C∂ϕ2, 



(7)






v=−1ρ∂C∂ϕeϕ, 



(8)






ρ→∞:  C→ρcosϕ, 



(9)






v→− Uex, 



(10)




where eϕ and eρ are the unit vectors in the ϕ and ρ directions, respectively. The fluid velocity field v(ρ,ϕ) and solute concentration distribution C(ρ,ϕ) will be solved from the previous coupled equations.




2.2. Solution for the Velocity Field


The drag force exerted on the particle vanishes since it is freely suspended in the fluid. The solution to Equation (6) satisfying this requirement and the boundary conditions (8) and (10) can be obtained via


v=∑n=1∞Bn{n(ρ−n+1−ρ−n−1)cosnϕ eρ+[(n−2)ρ−n+1−nρ−n−1]sinnϕ eϕ}, 



(11)




where the coefficients Bn are integrals related to the solute concentration field (with the symmetry C(ρ,2π−ϕ)=C(ρ,ϕ)) over the particle surface,


Bn=−nπ∫0πC(1,ϕ)cosnϕ dϕ, 



(12)




and the diffusiophoretic velocity of the particle is


U=−B1=1π∫0πC(1,ϕ)cosϕ dϕ. 



(13)








2.3. Solution for the Solute Concentration Field


We adopt the method of matched asymptotic expansions to solve for the solute concentration distribution. Namely, the “inner” and “outer” solute concentration distributions first satisfy the boundary conditions at the particle surface (ρ=1) and at infinity (ρ→∞), respectively, and then they are matched at some distances from the surface [15,16,17,18]. We hold C(ρ,ϕ) for the inner concentration distribution and let Γ(R,ϕ) denote the outer concentration distribution, in which R=Pe ρ and Γ=Pe C. Then, C(ρ,ϕ) will be solved by using Equations (5) and (7), whereas Equations (5) and (9) satisfied by Γ(R,ϕ) should be expressed as


V·∇Γ+U=∇2Γ, 



(14)






R→∞:  Γ→Rcosϕ, 



(15)




where v(ρ,ϕ) and V(R,ϕ) represent the inner and outer fluid velocity fields, respectively.



The inner and outer solute concentration and fluid velocity solutions and the diffusiophoretic velocity of the particle can be expressed in the expansions [19,20]


C=C0+C1PelnPe+C2Pe +C3Pe2lnPe+C4Pe2+…, 



(16)






Γ=Γ0+Γ1PelnPe+Γ2Pe +Γ3Pe2lnPe+Γ4Pe2 +…, 



(17)






v=v0+v1PelnPe+v2Pe +v3Pe2lnPe+v4Pe2+…, 



(18)






V=V0+V1PelnPe+V2Pe +V3Pe2lnPe+V4Pe2+…, 



(19)






U=U0(α0+α1PelnPe+α2Pe+α3Pe2lnPe+α4Pe2+…), 



(20)




where U0=(1+β)−1, which is the particle velocity at Pe=0 in Equation (1), the coefficients Ci(ρ,ϕ), Γi(R,ϕ), vi(ρ,ϕ), Vi(R,ϕ), and αi with i=0, 1, 2, … are independent of Pe. Subsequently, the inner and outer concentration fields Ci and Γi are determined by matching Equations (16) and (17) at the same orders of Pe through the requirement


limρ→∞(Pe C)=limR→0Γ. 



(21)







Certainly, the fluid velocity expansion coefficients vi can be written by using Equations (11) and (18) as


vi=∑n=1∞Bn,i{n(ρ−n+1−ρ−n−1)cosnϕ eρ+[(n−2)ρ−n+1−nρ−n−1]sinnϕ eϕ}, 



(22)




where the coefficients Bn,i should be calculated from Equation (12) with C(1,ϕ) being replaced by Ci(1,ϕ) and B1,i=−U0αi. The leading outer fluid velocity coefficients Vi(R,ϕ)=vi(ρ,ϕ) can be obtained by Equation (22) with the substitution of R/Pe for ρ,


V0=U0α0(−cosϕ eρ+sinϕ eϕ), 



(23)






V1=U0α1(−cosϕ eρ+sinϕ eϕ), 



(24)






V2=(−U0α2cosϕ+2B2,0R−1cos2ϕ)eρ+U0α2sinϕ eϕ, 



(25)






V3=(−U0α3cosϕ+2B2,1R−1cos2ϕ)eρ+U0α3sinϕ eϕ, 



(26)






V4=[U0(α0R−2−α4)cosϕ+2B2,2R−1cos2ϕ+3B3,0R−2cos3ϕ]eρ+[U0(α0R−2+α4)sinϕ+B3,0R−2sin3ϕ]eϕ, 



(27)






V5=[U0(α1R−2−α5)cosϕ+2B2,3R−1cos2ϕ+3B3,1R−2cos3ϕ]eρ+[U0(α1R−2+α5)sinϕ+B3,1R−2sin3ϕ]eϕ, 



(28)






V6=[U0(α2R−2−α6)cosϕ−2(B2,0R−3−B2,4R−1)cos2ϕ+3B3,2R−2cos3ϕ+4B4,0R−3cos4ϕ]eρ+[U0(α2R−2+α6)sinϕ−2B2,0R−3sin2ϕ+B3,2R−2sin3ϕ+2B4,0R−3sin4ϕ]eϕ, 



(29)







The zeroth-order contributions (valid for Pe=0) are evident, with the expressions


α0=−B1,0/U0=1, 



(30)






C0=(ρ+1−β1+βρ−1)cosϕ, 



(31)






Γ0=Rcosϕ, 



(32)






Bn,0=0  for n≥2. 



(33)







The solute concentration and fluid velocity fields surrounding the particle are fore-aft symmetric or antisymmetric to this order.



The equations governing the solute concentration coefficients C1, C2, C3, Γ1, Γ2, Γ3, Γ4, and Γ5 are derived from Equations (5), (7), (14)–(20), and (22)–(33) as


∇2C1=∇2C3=0, 



(34)






∇2C2=(1+β)−2[−(1−β)ρ−4+2ρ−2cos2ϕ], 



(35)






Λ(Γj)=0   for j=1, 2, 3, and 5, 



(36)






Λ(Γ4)=[(1+β)−1R−2+2B2,2R−1cosϕ]cos2ϕ, 



(37)






ρ=1:  ∂Ci∂ρ=−β1ρ2∂2Ci∂ϕ2, 



(38)






R→∞:  Γi→0  for i≥1, 



(39)




where the operator


Λ=∇2+(1+β)−1(cosϕ∂∂R−sinϕ∂R∂ϕ). 



(40)







Solving for the previous equations and matching according to Equation (21) to O(Pe2) lead to


C1=−12(1−β)(1+β)−2, 



(41)






C2=14(1+β)−2{2[2β(1+2β)−1ρ−2−1]cos2ϕ−(1−β)(ρ−2+2lnρ)−2+(1+2β)−1G}, 



(42)






Γ1=Γ2=Γ3=0, 



(43)






Γ4=12(1+β)−2(1+2β)−1[(3+3β−2β2)K0(R′)+2βK1(R′)cosϕ]exp(−R′cosϕ)+[4B2,2(1+β)2−1]R−1cosϕ−B2,2(1+β)(1−2lnR+cos2ϕ), 



(44)




where G=2(3+3β−2β2)ln[2(1+β)], Km is the modified Bessel function of the second kind of order m and R′=R(1+β)−1/2. Note that C1 is independent of position.



The substitution of Equations (41) and (42) into Equations (12) and (13) for C results in the following coefficients up to O(Pe):


α1=−B1,1/U0=0, 



(45)






α2=−B1,2/U0=0, 



(46)






Bn,1=0  for n≥2, 



(47)






B2,2=12(1+β)−2(1+2β)−1, 



(48)






Bn,2=0  for n≥3. 



(49)







Equations (45) and (46) indicate that the correction up to O(Pe) for the solute convection effect on the particle velocity is identically zero. This is a consequence of the fact that only terms of cosnϕ with even n exist in Equations (41) and (42) for C1 and C2, but only the odd cosϕ term of the solute concentration profile over the particle surface can contribute to the particle velocity in Equation (13). Even so, the solute concentration and fluid velocity distributions surrounding the particle to this order are fore-aft asymmetric.



The equation governing the outer concentration coefficient Γ6 can be obtained by Equations (14), (17), (19), (20), and (23)–(29) using the lower-order results in Equations (32), (43), and (44),


Λ(Γ6)=B2,4R−1(cosϕ+cos3ϕ). 



(50)




The solution of Equations (36), (39), and (50) after matching it with Pe (C0+C1PelnPe+C2Pe) is


Γ5=0, 



(51)






Γ6=[AK0(R′)−2(1+β)B2,4K1(R′)cosϕ]exp(−R′cosϕ)+B2,4[4(1+β)2R−1cosϕ−(1+β)(1−2lnR+cos2ϕ)], 



(52)




where the coefficients A and B2,4 will be obtained after the successive matching process.



The governing equation for the inner concentration coefficient C4 obtained from Equations (5), (16), (18), (20), and (22) using the results of C0, C1, and C2 in Equations (31), (41), and (42) is


∇2C4=12(1+β)−3(1+2β)−1{[(β−4)ρ−3−βρ−1]cos3ϕ+[(3+β)(1−2β)ρ−5−(2−β−4β2)ρ−3+(3+4β−2β2)ρ−1]cosϕ}. 



(53)







The solutions to Equations (34), (38), and (53) after matching Γ6 in Equation (52) according to Equation (21) to O(Pe3) are


C3=14(1+β)−4(1+2β)−1(3+3β−2β2)[(1−β)ρ−1+(1+β)ρ]cosϕ, 



(54)






C4=−148(1+β)−3(1+2β)−1[2(1+3β)−1(2+17β)ρ−3−3(4−β)ρ−1−3βρ]cos3ϕ+116(1+β)−3(1+2β)−1{(3+β)(1−2β)ρ−3+(1+β)−1[11+27β−16β2+2β3−2(1−β)G +4(1+β)(2−β−4β2)lnρ]ρ−1+[3β−2G+4(3+4β−2β2)lnρ]ρ}cosϕ+2(1+β)B2,4ln[2(1+β)], 



(55)




while A=2(1+β)B2,4 is also resulted.



Substituting Equations (54) and (55) into Equations (12) and (13) for C, we obtain


α3=−B1,3/U0=14(1+β)−3(1+2β)−1(3+3β−2β2), 



(56)






α4=−B1,4/U0=116(1+β)−3(1+2β)−1(7+14β−10β2−2G), 



(57)






Bn,3=0  for n≥2, 



(58)






B3,4=−116(1+β)−3(1+2β)−1(1+3β)−1(4+β), 



(59)






Bn,4=0  for n=2 and n≥4. 



(60)




Equation (60) leads to A=0 and Γ6=0.





3. Results and Discussion


The problem of diffusiophoresis of a long circular cylindrical particle normal to its axis at small but finite Péclet numbers is analyzed in the previous section. Through the use of a procedure of matched asymptotic expansions, the diffusiophoretic velocity of the particle correct to O(Pe2) is expressed by Equation (20) with the coefficients α0=1, α1=α2=0, and α3 and α4 given by Equations (56) and (57). The solute concentration and fluid velocity distributions surrounding a circular cylinder undergoing diffusiophoresis are fore-aft symmetric or antisymmetric at Pe=0. However, these distributions turn asymmetric for finite values of Pe even to O(Pe), although the first correction to the particle velocity is of O(Pe2lnPe).



Some values of the particle velocity correction coefficients α3 and α4 as functions of the polarization parameter β  (=β^/a) are listed in Table 1. The coefficient α3 first decreases with an increase in β from 3/4 at β =0 (through the value zero at β ≅2.186) to a minimal value which is slightly negative (at β ≅3.743) and then increases with a further increase in β to zero as β →∞, while the coefficient α4 first increases with an increase in β from a negative value (7−12ln2)/16 (=−0.08236) at β =0 (through the value zero at β ≅2.709) to a maximal value which is slightly positive (at β ≅5.335) and then decreases with a further increase in β to zero as β →∞, showing that the role of solute convection in diffusiophoresis of a cylindrical particle is complex.



The leading particle velocity correction terms α3Pe2lnPe and α4Pe2 in Equation (20), as calculated from Equations (56) and (57), are plotted versus the Péclet number in the range 0<Pe<1 in Figure 2a with β as a parameter and are plotted versus β in a wide range in Figure 2b with Pe as a parameter. For a given Péclet number, each correction term first increases with an increase in β from a negative value at β =0 to a maximal value which is slightly positive and then decreases with a further increase in β to zero as β →∞. The negative/positive nature of these indicate that the solute convection retards/enhances the particle’s movement. Note that the value of Pe2lnPe decreases with an increase in Pe from zero at Pe=0 to a minimum −(2e)−1=−0.184 at Pe=e−1/2=0.607 and then increases with a further increase in Pe back to zero at Pe=1. Moreover, results for the case of Pe approaching unity (say, Pe>0.6) in Equation (20) correct to O(Pe2) may not be sufficiently accurate [14] and are considered here only for the sake of comparison.



The normalized diffusiophoretic velocity of the cylindrical particle U/U0 is plotted versus the Péclet number in Figure 3a with β as a parameter and is plotted versus β in Figure 3b with Pe as a parameter. As expected, an increase in Pe can retard or enhance the particle’s movement. The particle velocity at Pe=0.6 can be about 17% smaller (for the case β=0, i.e., without the polarization effect) or 0.2% greater (for the case β =5) than that at Pe=0.



For the corresponding diffusiophoresis of a spherical particle of radius a, the particle velocity can also be expressed as Equation (20) but with the coefficients [21]


α0=1, α1=α2=α3=0, and α4=−77+63β−86β2360(1+β)3(1+2β). 



(61)







Note that the leading correction to the diffusiophoretic velocity has the order Pe2 for a spherical particle, in contrast to the order Pe2lnPe for a cylindrical particle. For a numerical comparison, results of the normalized particle velocity U/U0 of the spherical particle calculated using Equations (20) and (61) as a function of the parameters Pe and β are also plotted in dashed curves in Figure 3a,b. The dependences of U/U0 on Pe and β are qualitatively similar for the spherical and cylindrical particles. Under applicable and practical conditions (say, Pe≤0.6 and β ≤2.5), the value of U/U0 is substantially smaller (or the solute convection effect on diffusiophoresis is much greater) for a cylindrical particle than for a spherical particle.




4. Conclusions


The diffusiophoresis of a long circular cylindrical particle surrounded by a thin polarized diffuse layer in a nonelectrolyte solution normal to its axis is analyzed for small but nonzero values of the Péclet number Pe. We use the method of matched asymptotic expansions to solve the conservation equations and obtain an explicit formula for the diffusiophoretic velocity of the cylinder to the order Pe2. The values of the leading particle velocity correction terms α3Pe2lnPe and α4Pe2 of this formula vary over a wide range and can be negative or positive, showing that the effect of solute convection in the fluid can reduce or increase the particle velocity. The diffusiophoretic velocity at Pe=0.6 can be about 17% smaller or 0.2% greater than that at Pe=0, depending on the polarization parameter of the thin diffuse layer. Under practical conditions, the solute convection effect on diffusiophoresis is much greater for a cylindrical particle than for a spherical particle. Since the role of solute convection is complex, the analytical nature of this work provides physical insight to its effect on diffusiophoresis, which might be absent in numerical studies.
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Figure 1. Geometrical sketch for the diffusiophoresis of a circular cylindrical particle in a transverse direction. 
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Figure 2. The quantities α3Pe2lnPe (in dashed curves) and α4Pe2 (in solid curves) in Equation (20) (a) versus the Péclet number Pe for various values of the polarization parameter β; (b) versus β for various values of Pe. 
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Figure 3. The normalized diffusiophoretic velocity U/U0 of colloidal particles (a) versus the Péclet number Pe for various values of the polarization parameter β; (b) versus β for various values of Pe. The solid and dashed curves are plotted for a circular cylinder and a sphere, respectively. 
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Table 1. The particle velocity correction coefficients α3 and α4 in Equation (20) calculated from Equations (56) and (57) as functions of the polarization parameter β.






Table 1. The particle velocity correction coefficients α3 and α4 in Equation (20) calculated from Equations (56) and (57) as functions of the polarization parameter β.





	β
	α3
	α4





	0
	0.75000
	−0.08236



	0.01
	0.72076
	−0.08219



	0.1
	0.51340
	−0.08001



	1
	0.04167
	−0.02912



	10
	−0.00149
	0.00271



	∞
	0
	0
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