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Kacper Przykaza * , Klaudia Woźniak, Małgorzata Jurak and Agnieszka Ewa Wiącek
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Abstract: Polyetheretherketone (PEEK) biomaterial is a polymer which has been widely used since
the early 90s as a material for human bone implant preparations. Nowadays it is increasingly used
due to its high biocompatibility and easily modeling, as well as better mechanical properties and price
compared to counterparts made of titanium or platinum alloys. In this paper, air low-temperature
and pressure plasma was used to enhance PEEK adhesive properties as well as surface sterilization.
On the activated polymeric carrier, biologically-active substances have been deposited with the
Langmuir-Blodgett technique. Thereafter, the surface was characterized using optical profilometry,
and wettability was examined by contact angle measuring. Next, the contact angle hysteresis (CAH)
model was used to calculate the surface free energy of the modified surface of PEEK. The variations
of wettability and surface free energy were observed depending on the deposited monolayer type
and its components.

Keywords: PEEK polymer; plasma activation; Langmuir-Blodgett coatings; wettability; surface
free energy

1. Introduction

Polyaryletherketones (PAEK) are high-performance thermoplastic polymers with great mechanical
and dielectric properties such as electrical resistivity, compressive strength, and elastic and Young
modules. One of them is polyetheretherketone (PEEK), semicrystalline linear polymer, whose degree
of crystallinity is between 30 and 35 percent. In its structure, there are aromatic rings combined by
oxygen bridges and esters functional groups (Figure 1) [1–5]. Owing to all of the previously mentioned
properties, PEEK is used for parts of machines which work in hard conditions and also is used to
prepare prostheses and implants of back, skull, facial, and spine bones [1,5–8].
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with a positive response of the human body and avoidance of undesirable effects such as infections,
allergies, or implant rejection [6,7]. That is why the PEEK surface needs to be modified. One of
the physical methods for modification is plasma treatment. As a result, the new groups are created
on the surface, and then its character is changed. Therefore, it is possible to form physisorbed or
chemisorbed monolayers on activated polymer support. Beyond polymers, the standard materials
for many implants designed are titanium, bioactive glass, diamond-like carbon, or ceramics [2,9,10].
The commonly used and well-accepted materials for the film formation on implant surfaces are
lipids/phospholipids or their polymeric derivatives [11,12] that mimic natural cell membranes [10].
They are applied for the preparation of the implant coatings by means of numerous techniques,
such as Langmuir-Blodgett/Schaefer, solution spreading, self-assembly, and liposome adhesion
techniques [13–16]. The obtained films with lipids should strengthen the intimate interface between
the cells and the artificial material [17]. As a consequence of that, the platelets adhesion, blood clot
formation, and the amount of adhering bacteria can be limited. This facilitates the combating or
eradication of side effects (e.g., infections) on these surfaces [15]. Therefore, in the development of
medical devices, the modifications, including plasma treatment and lipid coatings, are conducted
simultaneously with the investigations of bacterial biofilm formation on the implants [9,18].

In this paper, the low-temperature air plasma was used to activate the PEEK surface for removal
of any pollutions [8,19] and as the pre-deposition process followed by immobilization of biologically
active substances, i.e., 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), cholesterol (Chol) and
cyclosporine A (CsA) (Figure 2), by means of the Langmuir-Blodgett technique. DPPC and Chol
were chosen because they are the main components of human cell membranes, thus mimicking their
structure and behavior. CsA is a cyclic polypeptide used as an immunosuppressant to prevent implant
rejection. Simultaneous use of CsA with DPPC or Chol allows for the binding of both compounds as
the mixed film to the polymer surface. This can strengthen their effect on organisms which leads to the
increased biocompatibility, and finally, the positive response of tissues to the implanted biomaterial.
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Investigations of surface roughness and the wettability of potential implants are very important
due to the different polarities of the tissues contacted with the polymer material. Therefore, it is
necessary to select the appropriate type of modification to obtain a polymer surface with the desired
surface properties. One of the thermodynamic functions which characterize interactions at the interface
quantitatively is the surface free energy. Due to the lack of direct methods for its determination in
the literature, there are many theoretical models to evaluate it [20]. In this paper, the model proposed
by Chibowski was applied [20,21]. This approach is based on the Young equation and assumes that
when an advancing contact angle is measured there is no film behind the liquid’s drop. However,
during receding contact angle measurements on the three-phase contact line, the liquid film is present
behind the drop [20–22]. Taking the above into account, one can derive Equation (1) to calculate the
total surface free energy of solid γs.

γs =
γL(1 + cos θa)

2

2 + cos θr + cos θa
(1)
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Equation (1) includes the advancing (θa) and receding (θr) contact angles for one liquid with a
well-known surface tension (γL). In literature, the difference between θa and θr is called the contact
angle hysteresis (CAH) [20]. This phenomenon for thin films is caused by many factors resulting
from the nature of molecules and the interactions between them. In addition to the most obvious
ones, i.e., the surface roughness and its heterogeneity, the contact angle hysteresis also depends on
the surface topography and rigidity of molecules, as well as on the molecular organization on the
solid surface [23,24]. Moreover, different hysteresis values are determined by the type of measuring
liquid used, liquid sorption and/or liquid retention, size, and shape of liquid molecules, and most
importantly, interactions at the solid/liquid interface. Therefore, CAH provides additional information
about the mechanism of liquid behavior in contact with the solid surface. The advantage of this
approach is the possibility to evaluate the total surface free energy from the CAH of one liquid [20–22].
Use of three different liquids gives three different values of energy, which indicates the apparent
character of the determined γs. However, in most cases, the arithmetic mean is similar to the total
surface free energy calculated from other approaches which consider the division of energy into the
components (polar and apolar) [20,21]. Additionally, the Chibowski equation works even when the
contact angle is equal to zero (total spreading). On the other hand, when the hysteresis is zero, and
inserting θa = θr = θ to the Equation (1), one can obtain the surface free energy equal to half of the
work of adhesion ( 1

2 WA) [20]. However, even on perfectly-prepared monolayers or mica surface
with Angstrom scale roughness, the hysteresis is observed and the CAH model works properly.
Therefore, it was used for the determination of the presented below wettability of the thin layers on
the polymer support.

2. Materials and Methods

The PEEK tiles with dimensions of 20 × 30 × 5 mm3 were cut from commercially available
TECAPEEK natural (size 1000 × 500 × 5 mm3, PROFILEX, Orchów, Poland) and prepared for the
modifications according to a defined procedure, which included rinsing with water from the MilliQ
system (conductivity of 18.2 MΩcm at 25 ◦C) with the addition of neutral extrane (1mL/100 mL),
rinsing with methanol, and three times with water. During each stage of rinsing, the polymer tiles
immersed in washing liquid were exposed to ultrasounds for 15 min. The plates were then dried in a
vacuum oven for 24 h at room temperature and subsequently transferred to a desiccator.

Cleaned polymeric matrices have been subjected to a low-temperature (20 ◦C) and low-pressure
(0.2 mbar) air plasma (460 W) activation process using Diener Electronic (Germany). In each case, the
activation time was 60 s, with a continuous air flow of 22 sccm (standard cubic centimeters per minute).
Immediately after the activation process, the monolayers of bioactive substances were transferred with
the Langmuir-Blodgett (LB) technique to the polymer surfaces.

Firstly, the activated PEEK plate was attached to the dip-coater arm coupled with the
Langmuir-Blodgett trough (LB 2000, KSV, Helsinki, Finland), dipped under the water subphase
to carry out coating by pulling out using the LB technique. The scheme of the process is presented in
Figure 3.
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In order to obtain the self-assembled monolayers, solutions of DPPC, Chol, and CsA (DPPC and
Chol were purchased from Sigma-Aldrich, Sain Luis, MS, USA, CsA from Alfa Aesar, Haverhill, MA,
USA, with purity above 99%) at a concentration of 1 mg/mL in chloroform: methanol (from Avantor
Performance Materials Poland S.A, Gliwice, Poland) in a 4:1 ratio (v/v) were prepared. Mixtures of
CsA-DPPC and CsA-Chol were prepared by mixing appropriate volumes of one-component solutions.
All systems were used just after preparation and accurate solution volumes were spread using a
microsyringe onto the water subphase filling the clean Langmuir trough. After 10 min of solvent
evaporation, the following procedure was done with the LB technique. Moving barriers compressed
substances spread onto the air/water interface to obtain the given value of surface pressure, high
enough to coat the solid support with the packed monolayer. The surface pressure of the transfer has
been chosen based on the π-A isotherm curves (surface pressure versus area per molecule) as well as
reference to the other authors [25]. Values of the transfer parameters are presented in Table 1.

Table 1. Experimental transferring parameters.

Substance(s) Compression Speed
[mm/min]

Surface Pressure during
Transfer [mN/m]

Transfer Speed
[mm/min]

DPPC 20 30 5
Cholesterol 20 30 5

CsA 20 15 5
DPPC-CsA 20 15 5

Cholesterol-CsA 20 15 5

After the transfer process, the samples were dried in vacuum oven for 24 h at room temperature.
Analysis of the obtained surfaces was made on the basis of measurements of the contact angles of
three probe liquids with well-defined values of their surface tensions: Water from the MilliQ system,
formamide (Acrōs Organics, Geel, Belgium, 99.5%) and diiodomethane (Sigma-Aldrich, Saint Luis,
MS, USA, 99%). For this purpose, a contact angle measuring kit (DGD ADR model with GBX S.A.R.L)
has been used. During the procedure, the temperature, humidity, and inclination of the measuring
chamber were kept constant. Moreover, to reduce the influence of moisture from the air, an inert gas,
nitrogen, was additionally pumped to the chamber interior. On the modified PEEK surfaces, 6µL
drops of the test liquids were deposited with a microsyringe and the advancing contact angles were
determined using WinDrop++ software. Next, 2µL of the liquid was sucked back and the receding
contact angle of the drop was measured by the same formula [13].

To characterize the changes in the surface topography the optical profilometry was applied. Also,
in order to have better insight into polarity changes, the thermodynamic function—total surface free
energy (SFE)—has been evaluated based on the contact angle hysteresis (CAH) approach.

2.1. Surface Roughness Characterization

Using optical profilometer Bruker Contour GT-K1 (Germany), the surface characterization has
been conducted based on the topography of 10 different places on each sample surface (62 × 47 µm2).
The statistics of Ra (average roughness), Rq (root-mean square) and Rt (peak-to-valley difference) were
calculated with the exploit of Vision 4.20 software (Veeco).

Average roughness (Ra) is the mean of the difference, in absolute value, between the average
height and that of each single point of the sample:

Ra =
1
n

n

∑
i=1

∣∣Zi − Z
∣∣ (2)

where Zi is the observed height at a certain point i, Z is the average of the Z values within the given
area, and n is the total number of data points within the given area in one image.
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Rq =

√
1
n

n

∑
i=1

(
Zi − Z

)2 (3)

Root-mean-square (Rq) average roughness of the surface, defined as the standard deviation of the
elevation—within the given area, was calculated from Ra by taking the same measurements, squaring
them, dividing the total by the number of measurements, and taking the square root of the result. Rq is
more sensitive to occasional highs and lows, in comparison Ra. Peak-to-valley difference (Rt) is the
maximum height of the profile:

Rt = Rp + Rv (4)

where Rp/Rv is the distance between the maximal/minimal point on the surface, respectively, and the
mean height of the surface.

The statistics of Ra, Rq and Rt parameters were presented in the next part of manuscript. The
obtained standard deviations of the calculated parameters are as follows: Ra (0.10–0.27µm); Rq

(0.12–0.28 µm); Rt (0.72–2.82 µm).

2.2. Surface Free Energy (SFE) Determination

Chibowski proposed SFE (γs) estimation, introducing the concept of contact angle hysteresis,
which is the difference between the advancing (θa) and receding (θr) contact angles of the probe
liquid [20]. Based on this approach, the concisely-named CAH, it is possible to evaluate the total
SFE of the solid using only one probe liquid by measurements of advancing and receding contact
angles (Equation (1)). Values of SFE estimated fromthe CAH approach presented in the next parts of
this manuscript are represented by an arithmetic mean of surface free energy values (γs) calculated
separately from the contact angle hysteresis of water (γW

s ), formamide (γF
s ), and diiodomethane (γDM

s ).

3. Results and Discussion

The main aim of the study was to determine the changes in the surface properties of the PEEK
support before and after modifications activating its surface with cold air plasma and depositing
layers of biologically-active substances or their mixtures. In the aspect of biocompatibility, it
should be emphasized that cold plasma treatment causes highly effective surface sterilization, killing
100% of living and sporulating microorganisms [8]. Besides the main aim of the biocompatibility
increase of the PEEK surface, another is to improve the potential use of polymeric materials in tissue
engineering. Polymers can carry therapeutic substances and can be used repeatedly thanks to cold
plasma sterilization.

3.1. Contact Angles

3.1.1. Plasma-Activated and Untreated PEEK Surfaces

The values of advancing contact angles measured on the untreated PEEK surfaces were estimated
as 87.5◦ (Figure 4A), which is in the range of 75◦–95◦obtained by other authors [26–28]. Usually, the
process of plasma treatment of polymers increases their surface polarity by introducing new surface
functional groups rich in oxygen and/or nitrogen, which also increase the surface roughness in the
micro-scale [3,4,29]. These statements were reflected in our experiments. The hydrophobic surface
of PEEK after plasma activation became highly polar, which can be seen in Figure 4A. The water
advancing contact angles dropped drastically from 87.5◦ to 36.4◦, while formamide completely spread
on the activated PEEK surface even without forming a drop. Therefore, the contact angle was assumed
to be zero, although on the unmodified PEEK surface it was measured as a high value of 70.0◦. It is
worth noting that the activation of PEEK by the cold air plasma did not affect the interactions with the
non-polar diiodomethane (Figure 4A).
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the advancing contact angles of the measuring liquids was observed (Figures 4A and 5A). The
one-component films of DPPC and Chol interacted in a similar way with test liquids, respectively, and
for PEEK/DPPC the following values were obtained: θa

water = 66.6◦; θa
formamide = 49.7◦; θa

diiodomethane

= 41.2◦ and for PEEK/Chol: θa
water = 64.3◦; θa

formamide = 51.3◦; θa
diiodomethane = 35.0◦. Nevertheless,

the presence of CsA also caused changes in the surface wetting properties, but in a completely different
way. The average values of the advancing contact angles of water remained unchanged compared to
those on the plasma treated PEEK surface, similarly to the formamide droplets for which the contact
angles were estimated as about 7.0◦ (Figures 4A and 5A). However, in the case of diiodomethane,
the impact caused by dispersion forces was much weaker and the advancing contact angles of this
liquid were observed as 43.9◦ (Figure 4A). The described results suggest how molecules of different
substances interact with the activated PEEK surface and how they bind to it and/or arrange on the
polymer. The high values of formamide advancing contact angles obtained for the DPPC and Chol
layers compared to those on the plasma treated PEEK indicate that the hydrocarbon parts of the
molecules are directed towards the air. The behavior of protein molecules is more complicated because
CsA has a complex structure and a high possibility of conformational changes depending on the
surrounding environment [30]. It forms loosely packed layers which allow liquids to be more intensely
contacted with the surface of the polymer. Alternatively, the CsA molecules can attach to the surface of
the polymer in such a way that their polar parts are directed towards the air.
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3.1.3. Binary Monolayers

In the case of the two-compound DPPC-CsA or Chol-CsA coatings containing variable molar
fractions of CsA peptide (XCsA = 0.25; 0.5 and 0.75), significant changes depending on the CsA content
were observed, especially using the polar test liquids. For the DPPC-CsA systems the advancing
contact angles of water at XCsA = 0.25 dropped from 66.6◦ (DPPC) to 59.7◦ (XCsA = 0.25) and gradually
decreased to 46◦ and 39.8◦ for XCsA = 0.5 and 0.75, respectively. Therefore, for the second polar liquid,
formamide, also similar changes were observed: θa

formamide = 55.2◦; 36.4◦ and 7.2◦ at XCsA = 0.25; 0.5
and 0.75, respectively (Figure 4A). In the case of the Chol-CsA systems deposited on the activated
PEEK surface, the values of the advancing contact angles of polar liquids and their changes are very
close to the DPPC-CsA system. As the amount of CsA in the Chol film increases, the contact angles of
water and formamide decrease from θa

water = 64.3◦ and θa
formamide = 51.3◦ on the PEEK/Chol coating

to θa
water = 57.9◦; 41.3◦; 39◦ and θa

formamide = 33.2◦; 28.0◦; 17.3◦ at XCsA = 0.25; 0.5 and 0.75, respectively
(Figure 5A). The revealed results suggest that the addition of CsA to the DPPC or Chol film on the
PEEK support causes an increase in the strength of polar interactions between the polymer surface
and polar liquids. Nevertheless, diiodomethane, a non-polar substance which interacts mainly by
dispersive forces, for the DPPC-CsA system did not reveal significant changes as the amount of CsA
increased (θa

diiodomethane = 41.2◦; 40.0◦; 42.3◦ for DPPC; XCsA = 0.25 and 0.5), respectively. However,
only at the highest content of CsA, XCsA = 0.75, was a decrease of the diiodomethane advancing contact
angle to the value of 33.5◦ (Figure 4A). A similar tendency was observed for the Chol-CsA coatings
(Figure 5A). For the pure Chol layer deposited on the activated PEEK surface, the advancing contact
angle of diiodomethane was estimated as 34.9◦ and this value significantly increased (to 46.5◦) as
CsA was present in a molar ratio of 0.25. Further addition of CsA to the Chol layer caused a slight
decrease of θa

diiodomethane = 41.6◦ and 38.1◦ at XCsA = 0.5 and 0.75, respectively. Above results suggest
the weak dispersive interactions between diiodomethane test liquid and modified PEEK surface for
coatings composed of DPPC-CsA at XCsA = 0.5 (θa

diiodomethane = 42.3◦) and Chol-CsA at XCsA = 0.25
(θa

diiodomethane = 46.5◦) (compare Figures 4A and 5A).
The values of receding contact angles of probe liquids are necessary to obtain contact angle

hysteresis (H) and evaluate surface free energy (γs) from the CAH approach. It was obvious that for
the described systems the tendency of the receding contact angle changes would be the same as for
advancing ones (Figures 4A and 5A). The highest values of receding contact angles of polar liquids
were observed for the pure DPPC (θr

water = 55◦) and DPPC-XCsA = 0.25 (θr
formamide = 43.1◦) coatings.

The lowest ones were observed for the CsA (θr
water = 22.1◦) and DPPC-XCsA = 0.25 (θr

formamide = 3.1◦)
films (Figure 4A). In the case of non-polar diiodomethane, the highest values of receding contact angles
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were revealed on Chol-XCsA = 0.25 (θr
diiodomethane = 33.7◦) and the lowest ones on DPPC-XCsA = 0.75

(θr
diiodomethane = 21.4◦) (Figures 4A and 5A).

3.2. Contact Angle Hysteresis

Insets in Figures 4A and 5A present the values of contact angle hystereses (H) of three test
liquids determined for all from the modified PEEK surfaces. However, the percentage differences
( H∗100%

θ
liquid
a

) between the advancing and receding contact angles of each liquid are variable depending on

the surface composition and polarity. To fully describe the phenomena on the polymer surface, the
behavior of the molecules during a film compression and transfer onto the polymer support should
be considered. It is necessary to take into account the morphology, thickness, and intermolecular
interactions between monolayer compounds during the process using the Langmuir trough. The
previous research conducted by our team [31,32] as well as by other authors [33,34] has shown that
at the interface between water and air, DPPC-CsA and Chol-CsA are in the state of expanded liquid,
which is characterized by loose packing of molecules. This state is determined by the repulsion
between components (negative values of excess Gibbs energy of mixing) [35]. We assumed that the
basic physicochemical properties of the monolayer do not change when transferred to a polymer
substrate. Therefore, the looser film is more permeable to the liquid, and thus affects the value of the
contact angle hysteresis, because the liquid can penetrate deeper when measuring the receding contact
angle. For instance, for the water contact angles, it changes from a minimum of 16% for DPPC-CsA at
XCsA = 0.5 to 38.3% for Chol-CsA at XCsA = 0.5 (Insets in Figures 4A and 5A). The percentage difference
between the average advancing and receding contact angles was estimated as 23.2% (water), 32.0%
(formamide), and 30.0% (diiodomethane) for PEEK coated with DPPC, CsA, and binary DPPC-CsA
layers. For second system including Chol, CsA and mixed Chol-CsA layers, those differences were
evaluated as 33.6% (water), 28.2% (formamide) and 30.0% (diiodomethane). During the advancing
contact angle measurement, the probe liquid interacts with the monolayer deposited on the polymer
plate similarly as in the other measurements [22]. In consequence, there may occur many phenomena
such as the reorientation of molecules, their aggregation (e.g., under the influence of a liquid, e.g.,
water) or even desorption if the adhesion forces to the solid surface are insufficient [22]. According to
Belman et al. [23], the lipid monolayer upon contacting with water probe liquid can even transform to
the bilayer structure partially, leaving holes in the film and facilitates the liquid penetration into the
layer during the measurement of receding contact angle, thus giving rise to the contact angle hysteresis.
It should be taken into account that similar mechanisms can occur in our systems.

3.3. Surface Free Energy

In fact, to have better insight into the changes of surface wetting properties the further analysis of
the binary DPPC-CsA and Chol-CsA monolayers was conducted based on the values of surface free
energy. They were estimated from the CAH approach (described precisely in the introduction) using
the advancing and receding contact angles of each probe liquid separately and then an arithmetic
mean of these three values (as total one) was determined (γtot

s ).
The cold air plasma activation caused the significant increase of γwater

s of PEEK surface free energy
from value 33.1 to 63.8 mJ/m2 and γ

f ormamide
s from 35.8 to 58.0 mJ/m2. However, no essential change in

γdiiodomethane
s was observed, i.e.,48.1mJ/m2 before and 48.2 mJ/m2 after plasma treatment. The above

results can prove the creation of highly polar groups on the PEEK surface after plasma modification,
which seem not to affect the dispersive interactions with diiodomethane. The γtot

s value of PEEK rises
from 39.0 to 56.7 mJ/m2 (Figure 4B). These findings are in agreement with those of other authors
(increase from about 40.0 to 55 mJ/m2 after 60 s cold plasma treatment was observed) the more that the
PEEK came from another factory [36]. Moreover, it should be announced that cold plasma treatment
of PEEK surfaces above 60 s does not change its surface free energy significantly and the memory
effect of surface free energy appears. Additionally, the surface free energy of plasma activated PEEK
surfaces (60 s) did not change significantly up to 48 h of storage after plasma treatment according
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to Rymuszka et al. [36]. As mentioned before, a deposition of one component Chol, DPPC, or CsA
monolayer induced the substantial decrease of γS of PEEK surface free energy estimated from contact
angles of each test liquids, especially polar ones comparing to those measured on the activated surface
(γwater

s = 63.8 mJ/m2; γ
f ormamide
s = 58.0 mJ/m2; γdiiodomethane

s = 48.2 mJ/m2). Presence of the DPPC
film caused the decrease of γwater

s by 16.0 mJ/m2, γ
f ormamide
s by 12.4 mJ/m2 and γdiiodomethane

s only by
5.1 mJ/m2. The similar decrease was observed in the case of the Chol coating, γwater

s by 15.9 mJ/m2,
γ

f ormamide
s by 13.1 mJ/m2 and γdiiodomethane

s by 3.2 mJ/m2. However, the pure CsA film changed the
surface polarity in a different way. There were observed a little increase in γwater

s by 0.3 mJ/m2

and a slight decrease in γ
f ormamide
s by 0.4 mJ/m2 as regards the PEEKair surface. Surprisingly, the

biggest change occurred in γdiiodomethane
s which decreased by about 6.2 mJ/m2 (Figures 4B and 5B). The

γtot
s values of the PEEK surfaces coated with DPPC and Chol described above fell from 56.7 mJ/m2

(PEEKair) to 45.5 mJ/m2 for DPPC and 45.9 mJ/m2 for Chol films. However, γtot
s of the CsA coating

revealed a smaller decrease by 2.1 mJ/m2 (Figures 4B and 5B). Introduction of the CsA molecules to
the Chol or DPPC monolayers in each case generated the slight increase of the obtained γtot

s . Moreover,
as the amount of CsA increased, the values of γtot

s increased as well, reaching the highest value at
XCsA = 0.75 (γtot

s = 55.1 mJ/m2) for the DPPC-CsA films and 54.2 mJ/m2 for the Chol-CsA film. The
latter one was nearly the same as for the pure CsA film (γtot

s = 54.6 mJ/m2) (Figures 4B and 5B).
The last figure (Figure 6) represents the changes in the γtot

s values of deposited monolayers as the
molecules of one component (DPPC or Chol) have been replaced by CsA, i.e., as the molar fraction
of CsA in the mixed monolayer increases. In all studied cases except system (Chol-CsA 0.75), the
addition of CsA to the DPPC or Chol film caused a little increase of the γtot

s value. These results
confirm the significant impact of CsA on the organization and behavior of layers of biologically active
substances mimicking the biological membranes (DPPC and Chol). Similar effects were observed by
other authors [34,37].
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Figure 6. Total surface free energy (γtot
s ) estimated from the contact angle hysteresis of water,

formamide, and diiodomethane by its arithmetic mean for differently coated PEEK surfaces.

In the presented manuscript, the polymer surfaces were coated with thin films of bioactive
substances. It is likely that the changes in its surface free energy result from the contact angle hysteresis.
From the literature, it is known that this parameter is due to largely the liquid penetration inside
film structure and/or molecules reorganization [23], as well as the liquid film remaining beyond the
droplet after receding the three-phase contact line [24]. As it was mentioned previously in the case
of monolayer coatings, the contact angles depend on their permeability relative to the test liquids. A
more ordered and packed monolayer is then the contact angle, and its hysteresis can be less affected
by the polymeric support surface. However, as reported by other authors [22], DPPC layer deposited
on mica forms a packed layer, giving a high contact angle but with longer contact with polar liquids
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during the measurement of receding contact angles, there is a spontaneous reorganization of the layer
and the receding angle is already much lower, and therefore, adequately high hysteresis occurs. On the
other hand, on the loosely packed DOPC layers lower advancing contact angles are obtained, but also
the hysteresis is usually smaller than for those packed like DPPC. So, all investigated cases should be
considered in relation to specific arrangements [22]. In the case of the systems described in this paper,
the PEEK surface was activated by cold plasma prior to the coating process, which was supposed to
increase the adhesion of molecules to its surface. However, in the case of such high energy surfaces,
apart from the strong physical adhesion, we cannot explicitly exclude the creation of the chemical
bonds between the thin film and polymer surface. Understanding the origin and the nature of the
hysteresis contact angle is especially important when describing changes in the surface free energy
using the CAH model. However, dissimilar behavior of probe liquids and in particular their contact
angle hystereses seem to be strictly connected with the mechanism of film penetration/retention as
well as with the surface roughness [38].

3.4. Surface Topography

Investigation of the topography and roughness of PEEK surfaces using the optical profilometry
revealed changes in the roughness parameters (Ra, Rq, Rt) depending on the kind of modification
(Figure 7). As expected, the low temperature and low-pressure air plasma caused increase of the
PEEK roughness in micro-scale, giving the Ra an increase from about 0.7 to 0.8 µm; Rq from 0.85 to
1.00 µm and Rt from 8.7 to 11.3 µm, which is in agreement with the experiments already conducted by
Wiącek et al. [3,4].
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Deposition of one and/or two-component layers on the activated PEEK support always leads to
the rise of the values of the Ra and Rq roughness parameters compared to those of the PEEKair sample
(Figure 7). This observation results in conclusions about the formation of nano-scale irregularity onto
micro-scale PEEK roughness caused by the layer preparation which can be enhanced by the PEEK
plasma activation. This process was already observed on cold plasma activated PEEK surfaces after
deposition of phospholipids by Jurak et al. [13]. Of the two-component films, the greater surface
roughness of PEEK was observed after modification with the DPPC-CsA system compared to the
Chol-CsA system. This can give information about the formation of another, possibly more compact
structure with different homogeneity on the PEEKair surface. Figure 8 shows the most representative
images of the obtained PEEK surfaces with the roughness parameters.
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On the basis of obtained topography images, one can state that the polymeric support plays a
main role in the process of thin film deposition as well as cold plasma activation. As an effect, the
same monolayer transferred onto a different solid support can reveal totally different behavior and
properties [39]. Therefore, the interactions between the deposited monolayer and activated polymeric
support are varied and can be determined by different types of factors: van der Waals forces, entropic
forces, and hydration forces. The surface roughness and the kind of biological film can determine
the magnitude of the above interactions [40]. In order to obtain the layer stability, the investigated
systems should achieve a minimum of the interaction potential energy determined mainly by the
layer composition.

It should be taken into account that the rough support hinders the formation of the homogeneous
monolayers/coatings due to high energetic costs dealing with tight adherence. Despite that, the
monolayers were effectively transferred onto the activated PEEK and their presence affected the
measured contact angles as well as the determined surface free energy values depending on the film
composition. Thus, both the PEEK roughness and the deposited monolayer were found to determine
the wettability changes. It is believed that principal properties (molecular orientation, packing,
ordering) of the original Langmuir monolayers obtained at the air/water interface were maintained
after transferring even though some redistribution of the molecules in the mixed DPPC(Chol)-CsA
films can take place. In consequence, an imperfect coating can create the hierarchical arrangement
where nanometer-sized monolayers are attached to the micrometer-sized PEEK highs and/or fill
depressions in the polymer surface. These aspects seem to be essential for the origin of the contact
angle hysteresis when the liquid penetrates the surface cavities during the three-phase contact line
receding. In the present paper, the roughness of the one component layers was very similar, but only
for the DPPC and Chol surface, the analogous values of surface free energy were obtained. Although
in the case of the CsA layer the roughness is comparable to that of DPPC and Chol, the total surface
free energy significantly increased (Figures 6 and 7). For the mixed films, the highest values of the Ra,
Rq and Rt parameters were obtained for the DPPC-CsA surface at XCsA = 0.5 and 0.75, and the best
correlation between them, which can suggest that the biomolecules are homogeneously distributed
over the PEEK surface. Moreover, the highest roughness obtained for DPPC-CsA 0.75 corresponds to
the highest value of the total surface free energy (Figure 6). However, no exact correlation between the
CsA content and the roughness parameters was found. Similar relationships between the roughness
parameters appeared also for the binary Chol-CsA systems, but the values were lower than those
obtained for the mixed films containing DPPC, and likewise, the surface free energy values. Compared
to the Chol-CsA layers, DPPC with CsA forms more extensive domains with a brush structure due to
the presence of the long acyl DPPC chains capable of forming the lamellar structures. Such behavior
of the DPPC-CsA layers is caused by stronger repulsion between their molecules confirmed by the
high excess Gibbs energy values (unpublished data). Thus, received surfaces are intended to have
potential application in regenerative medicine to develop biomimetic strategies for artificial bone grafts
in tissue engineering.

4. Conclusions

The presented results confirm the formation of Langmuir-Blodgett films on the cold plasma
activated PEEK polymer. Significant changes in the values of advancing and receding contact angles
of the measuring liquids clearly indicate that, depending on the composition of the film, the polarity of
the surface changes. By using the Chibowski approach based on the contact angle hysteresis values
of a given liquid, it was possible to estimate changes in the surface free energy of the biological
modified PEEK surfaces. The one component (DPPC, Chol, CsA) and binary (DPPC-CsA, Chol-CsA)
monolayers noticeably alter the PEEK surface, which also was revealed in the change of the roughness
parameters of the modified PEEK surfaces. This affects the type and magnitude of interaction, which
manifests itself in changes in the value of the surface free energy. The obtained results may be
helpful in the development of a new generation of polymer coatings exhibiting biocompatible and
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immunosuppressive properties in different processes, for example, reducing inflammation, accelerating
wound healing, and preventing the rejection of implants.
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