
colloids 
and interfaces

Communication

Luminescent Sol-Gel Glasses from
Silicate–Citrate–(Thio)Ureate Precursors

Pavlo Kuzema 1,* , Yulia Bolbukh 1, Agnieszka Lipke 2, Marek Majdan 2 and
Valentyn Tertykh 1

1 Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str.,
03164 Kyiv, Ukraine; yu_bolbukh@yahoo.com (Y.B.); tertykh@yahoo.com (V.T.)

2 Faculty of Chemistry, Maria Curie-Skłodowska University, pl. Maria Curie-Skłodowskiej 2, 20-031 Lublin,
Poland; agalipke@gmail.com (A.L.); majdan.marek8@gmail.com (M.M.)

* Correspondence: coralchance@gmail.com; Tel.: +38-044-424-9474

Received: 9 December 2018; Accepted: 11 January 2019; Published: 14 January 2019
����������
�������

Abstract: Recent advancements in synthesis and analysis of the composites based on silica and
carbon quantum dots have revealed great potential of such systems in bioimaging, sensor, as well
as solid-state lighting applications. Most of the synthetic methods for obtaining such materials
are still relatively complex and costly. The aim of this work was to study the luminescent
properties of silica-based composites prepared by the simple sol-gel method using low-cost
silicate–citrate–(thio)ureate precursors. The glassy composites were prepared by acid hydrolysis
of ethyl silicate (40%) in aqueous solution of citric acid ureates or thioureates with the citric
acid-to-(thio)urea molar ratio of 1:1, 1:1.5 or 1:3. The results of spectrofluorimetric analysis have
shown that heat-treated at 270 ◦C such silica gels upon UV excitation (with an optimum at
λexc = 360 nm) emit light in a visible spectrum (400–600 nm). Upon this, photoluminescence efficiency
of ureate-derived glasses (quantum yield 70.53% for 1:1.5 sample) appeared to be much higher
than that for thioureate-derived glasses (quantum yield 11.25% for 1:3 sample) suggesting that the
preparation conditions to obtain the glasses with optimal photoluminescence characteristics are quite
different in case of urea and thiourea. Thus, citrate–ureate-derived silica glasses already demonstrate
very good potential to be efficient materials for different fluorescence-related applications.

Keywords: silica; citric acid; urea; thiourea; carbon dots; sol-gel; thermal treatment; luminescent
properties

1. Introduction

Development of novel inexpensive environmentally friendly materials that convert UV light
into visible light is of great importance, especially taking into account the fast growing solid-state
lighting industry. In this respect, carbon-based quantum dots (CDs) are highly attractive due to their
low toxicity, chemical inertness, high photostability and fluorescence [1]. Photoluminescence (PL)
quantum yield (QY) for native CDs is usually quite low because of the presence of emission traps at
the surface layer. It is necessary to form a passivation layer on the surface in order to improve their
brightness. Also, higher PL QY can be achieved when layered and more crystalline graphene-based
CDs are used [2]. Table 1 shows the PL properties of some CDs synthesized using various methods.
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Table 1. Photoluminescent characteristics of carbon dots synthesized by different methods.

CD Size, nm Synthetic Technique PL QY, % Reference

2–4 Hydrothermal treatment of orange pericarp up to 9 [3]

5–9 Solvothermal reaction between SiCl4 and
hydroquinone (CDs, doped with Si atoms) 19 [4]

5 CDs modification with oligo(ethylene glycol) diamine
(with subsequent doping with ZnS, ZnO or TiO2) 20 (up to 78) [5]

2–4 Heating of oligoethylenimine–β-cyclodextrin in
phosphoric acid 30 [6]

<10 Thermal treatment of O,O′-bis(3-aminopropyl)
polyethylene glycol (with further doping with ZnS) 40 (60) [7]

5 Hydrothermal method using urea and citric acid 45 [8]

3–4 Hydrothermal oxidation of
branched polyethylenimine 55 [9]

2–5 Heating of glucose with amino acids in
alkaline medium up to 69 [10]

5–9 Hydrothermal synthesis using citric acid
and L-cysteine 73 [11]

2–3 Hydrothermal synthesis using citric acid and urea
(or thiourea) 78 (71) [12]

Most of these methods are not quite satisfactory because of the necessity to use costly equipment,
the complexity of synthesis procedure, or low PL QY. In particular, in the majority of cases, the CDs
obtained demonstrate relatively low PL QY (usually, less than 50%). In order to improve the CDs
brightness, their doping with some salts and oxides has been proposed [5,7]. For instance, ZnS-doped
CDs with passivation using the molecules of oligomeric poly(ethylene glycol) diamine (PEG1500N),
after column gel fractionation demonstrate PL QY 78% [5]. However, the procedure of such CDs
synthesis is relatively complex. Among the variety of methods to obtain highly luminescent CDs it is
worth noting the hydrothermal synthesis of N- or N,S-doped CDs, using citric acid (C-source) and
urea (N-source) or thiourea/L-cysteine (N,S-sources) [11,12]. The main advantages of this synthetic
route are the low cost and the ease of implementation and scaling, whereas PL QY of the CDs obtained
reaches 70–78%.

Taking into account that the conditions for production of inexpensive environmentally friendly
high-luminescent materials are still in development, as well as because of the need to enlarge the
application area of CDs and to restrain their solid-state PL quenching, further development of the
synthetic routes to obtain novel CD-based composites with improved PL characteristics is relevant.
In this aspect, a promising approach is the formation of CDs with doped heteroatoms either on the
surface or inside the bulk of oxide materials, in particular silica. On the one hand, silica as a substrate,
will localize CDs growth, blocking the agglomeration of nanoparticles during heat treatment, on the
other hand, the doping of CDs with silicon contributes to the increase of the PL characteristics of the
CDs. Besides, it has been shown that silica gel glasses produced from silicate carboxylate precursors
exhibit high PL characteristics [13]. Recent advancements in synthesis and analysis of silica/CDs
composites revealed great potential of such systems in bioimaging, sensor, as well as solid-state
lighting applications, and depending on the synthesis methods and the precursors used, it is possible
already to achieve the PL QY from typically 7–14 up to 60% [14–22]. Table 2 gives the PL characteristics
of some carbon-containing silica-based materials synthesized using various methods.
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Table 2. Photoluminescent characteristics of carbon-containing silica-based materials synthesized by
different methods.

CD Size, nm Synthetic Technique PL QY, % Reference

-
Thermal treatment of sol-gel glasses from

tetraalkoxysilane or 3-aminopropyltriethoxysilane
(APTES) and various carboxylic acids

up to 45 [13]

1.3–1.7
Heat treatment of sol-gel materials from

tetraethoxysilane (TEOS) and APTES in the presence of
hexadecyltrimethylammonium bromide

up to 60 [14]

8
Sol-gel synthesis from organoalkoxysilanes in the
presence of CDs obtained via the hydrothermal
synthesis using citric acid and ethylenediamine

9–14 [17]

4.5 TEOS hydrolysis in the presence of glucose and
1,2-ethylenediamine up to 13 [19]

-
Sol-gel synthesis from TEOS in the presence of CDs

obtained via the hydrothermal synthesis using citric acid
and ethylenediamine

21.5 [20]

4–9
N-(3-(trimethoxysilyl) propyl) ethylenediamine
hydrolysis in the presence of CDs obtained by

solvothermal treatment of p-phenylenediamine
41.72 [21]

- Pyrolysis of citric acid (thio)ureates at the fumed
silica surface 7–11 [22]

Most of the synthetic methods are still relatively complex and costly or the materials produced
possess relatively low PL QY. In [22], the simple and inexpensive route to produce luminescent
silica-based nanomaterials was used: citric acid ureates were deposited from aqueous or ethanol
solutions onto fumed silica surface. After drying and further thermal treatment at the temperature of up
to 270 ◦C, such materials were found to demonstrate fluorescent properties, however, PL QY was quite
low (within 7–11%). The aim of this work was to further develop this synthetic approach by preparing
sol-gel silica-based composites from silicate citrate (thio)ureate precursors and by investigating their
PL characteristics.

2. Materials and Methods

Silica-based composites were prepared by acid hydrolysis of ethyl silicate (40%) in aqueous
solution of citric acid ureates or thioureates with the citric acid-to-(thio)urea molar ratio of 1:1, 1:1.5
or 1:3. The typical procedure of synthesis was as follows: A total of 83 mg of citric acid and 26 mg of
urea or 33 mg of thiourea (all the reagents are of chemical purity grade) were added into a glass with
5 mL of distilled water, and then the mixture was stirred with a magnetic stirrer until the complete
dissolution of the reagents. After that, the obtained solution of citric acid mono(thio)ureate was added
to a solution of ethyl silicate acidified with concentrated hydrochloric acid solution. Full quantitative
description of the components used for all the samples preparation is given in Table 3.

The prepared sols were left to stir overnight. Then the samples were dried at 60 ◦C for 3 h and at
105 ◦C for another 3 h. Obtained transparent glassy gels were further thermally treated with gradual
temperature increase up to 270 ◦C (the heating rate was about 1 ◦C/min) and maintained at 270 ◦C
for additional 1 h. After cooling to room temperature, the resulted amber-to-dark brown colored
glassy monoliths were powdered in the agate mortar and subjected to spectrofluorimetric analysis.
Fluorescence spectra were obtained using a Photon Technology International spectrofluorimeter
equipped with a continuous wave xenon arc (Xe-arc) lamp as a light source. Spectral resolution was
maintained at 1 nm. The absolute quantum yields of the fluorescence of solid samples were determined
using a K-Sphere “Petite” integrating sphere (Photon Technology International, Inc., Edison, NJ, USA).
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Table 3. Sample preparation: components ratio.

Sample Ur(ThUr):CA
Molar Ratio

V(ES-40),
mL

V(H2O),
mL

m(CA),
mg

m(Ur),
mg

m(ThUr),
mg

V(HCl),
mL

1 1:1 25 5 83 26 0.3
2 1.5:1 25 5 82 38 0.3
3 3:1 25 5 64.5 60.5 0.3
4 1:1 25 5 83 33.3 0.3
5 1.5:1 25 5 83 50 0.3
6 3:1 25 5 64.5 77.7 0.3

Ur = urea, ThUr = thiourea, CA = citric acid, ES-40 = ethyl silicate (40%).

3. Results and Discussion

Formation of silica glasses by the acid-catalyzed sol-gel route proceeds through several basic steps:
(1) partial hydrolysis of liquid ethyl silicate precursor; (2) polycondensation of formed colloid-like
oligomers; (3) additional hydrolysis which promotes polymerization and crosslinking leading to a
three-dimensional matrix formation. All the reactions may occur simultaneously (Scheme 1).
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Scheme 1. The process of gel formation by ethyl silicate hydrolysis.

After drying at 60 ◦C and then at 105 ◦C, the resulting transparent silica-based glasses (presumably
containing citric acid (thio)ureates condensed inside the silica matrix) were crushed and preliminary
tested on luminescent properties with UV-blue flashlight. Blue and in some cases greenish glow
were observed suggesting no notable white luminescence from the samples (Figures S1 and S2,
Supplementary Materials). In contrast to that, after thermal treatment at 270 ◦C the resulted
amber-to-dark brown glasses under UV-blue flashlight irradiation demonstrate notable fluorescence
(Figures S1 and S2), and even a phosphorescence in the case of ureates. At this stage of preliminary
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analysis the citrate ureate-derived silica-based glasses seemed to possess brighter luminescence than
those from citrate thioureate precursors.

Figure 1 gives excitation and emission PL spectra for the samples of thermally treated at 270 ◦C
silica gel which contained the salts with citric acid-to-urea ratio 1:1, 1:1.5 and 1:3. As one can see,
the range of wavelengths 325–375 nm is the most efficient for excitation of luminescent emission
in the visible region (for the case of 450 and 500 nm wavelengths detection), the maximum being
at about 360 nm (Figure 1a,b). Under UV irradiation with excitation wavelengths λexc = 335 nm
and 360 nm, the maximum luminescence is in the area of 430–520 nm (two PL maxima at about 445
nm and 500 nm, Figure 1c,d), that is, a phosphor red shifts the radiation spectrum, demonstrating
nearly excitation-independent PL. Such type of PL (within λexc = 340–400 nm) is also a characteristic
for the aqueous solution of graphene-based N-doped CDs prepared via the hydrothermal synthesis
route using citric acid and urea as the precursors [12]. The optimal λexc for those objects was also
360 nm, however, the difference is that only one PL maximum was observed—at 435 nm. The authors
implied [12] that excitation-independent PL should originate from the uniformity of both the size
and the surface state of sp2 clusters contained in graphene-based quantum dots. The proposed
mechanism of graphene CDs formation envisages citric acid self-assembling into nanosheets structure
(due to intermolecular H-bonding) and then dehydrolysis to give graphene nanoparticles with lots
of carboxyl and carbonyl groups at the surface (O-states). The surface states (O-states and N-states
in the case of N-doped CDs) are supposed to be responsible for the PL mechanism [11]: during
UV irradiation electrons are excited from the ground state and trapped by the surface states, high
density of doped N-states being able to facilitate a high yield of radiative recombination when excited
electrons return to the ground state. When the density of N-states is higher than that of the O-states
(or N-states are enhanced and/or O-states are suppressed like in the case of N,S-doped CDs), bright
excitation-independent PL occurs. Slight red shift of first PL maximum (445 nm vs. 435 nm) in our
case may be related to the influence of SiO2 environment suggesting that some Si-O-C bonding with
incorporated carbon-based structures may occur. This influence of silica matrix becomes even more
evident if one analyzes the second PL maximum at 500 nm (Figure 1c,d). Excitation-independent
PL with maximum at about 550 nm was also observed for CDs obtained by condensation between
tetraethoxysilane and glucose in the presence of 1,2-ethylenediamine [19]. It was assigned to the
confined growth of CDs in silica network. The Si-O-C linkage at the CDs surface is known to be
required to induce PL of C-doped silica materials, and, therefore, “glucose was a required component
to produce the chromophore and silica backbone, such as auxochrome, significantly affecting both
intensity and wavelength of the fluorescence” [19]. In our case, under anhydrous conditions (when
water was eliminated from the gel), citric acid may interact (via the carboxyl groups, Scheme 2)
with residual ethoxysilyl groups and in substantial amount may be retained in the gel as a silyl
citrate species:

Upon heating, this citrate may either participate in CDs growth process (by the mechanism
described above) to produce luminescent carbon-based structures with Si-O-C links, or it may
decompose to create the C substitutional defects for Si, which are also assumed to be the luminescent
species in the lattice. The scheme of PL mechanism for the simplest case of Si substitution with C is
shown below (Scheme 3).
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In order to confirm the assumption that citric acid interaction with ethoxysilyl groups could
contribute to the second PL peak, we compared the PL spectra for the silica-based glasses prepared
from the precursors with different citric acid-to-urea ratios (Figure 1). At 1:1.5 ratio no significant
qualitative changes were found, but at 1:3 ratio, when there is enough amino groups of urea molecules
to engage all the carboxyl groups of citric acid molecules into 1:1 interaction, the first PL peak
became more intense than the second one (Figure 1d). Thus, we attribute the first PL peak to
the carbon-based luminescent species which are not or weakly bound to silica backbone and, like
N-doped graphene-based CDs obtained via the hydrothermal synthesis, demonstrate bright blue
excitation-independent luminescence when exposed to UV irradiation. The second PL peak is
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apparently due to the luminescent carbon-based species bound to silica matrix via Si-O-C links, which
demonstrate green-yellow excitation-independent luminescence when exposed to UV irradiation.
Upon this, one may alter the luminescent properties by changing the citric acid-to-urea ratio. The PL
QY for the sample with the highest PL intensity observed (1:1.5, Figure 1) was determined to be 70.53%.
This value is close to the one determined for aqueous solution of N-doped CDs produced via the
hydrothermal route (78% [12]). This result suggests that the conditions for obtaining luminescent
silica-based glasses from silicate citrate ureate precursors were close to optimal. Moreover, unlike
pure N-doped CDs, these materials possess much higher possibilities for fluorescence tuning and,
therefore, they are much more promising for different fluorescence-related applications, especially
solid-state lighting.

Substitution of ureate with thioureate at citric acid-to-thiourea ratio of 1:1 leads to qualitative
changes in the luminescence spectrum (Figure 2). UV excitation with λ = 360 nm remains the optimal
for PL in the visible region, but the maximum luminescence is in the region of 500–550 nm (one PL
peak with λmax at about 507–520 nm with a shoulder at 445 nm, Figure 1c,d), that is, a phosphor red
shifts the radiation spectrum, demonstrating nearly excitation-independent PL in the blue region,
but in the green region, where emission peak is located, PL is excitation-dependent (λmax = 507 nm
at λexc = 335 nm and λmax = 517 nm at λexc = 360 nm). Weakly expressed PL maximum in the blue
region, like in the case of urea, can be attributed to the carbon-based luminescent species which
are not or weakly bound to silica matrix and are formed in much less amount than in the case of
urea. The PL maximum in the green region is probably due to the luminescent carbon-based species
bound to silica matrix via Si-O-C links. These species demonstrate green-yellow excitation-dependent
luminescence when exposed to UV irradiation, suggesting that their size and surface states are
not uniform. Such a difference in luminescent characteristics of thioureate- in comparison with
ureate-derived silica glasses may be explained if one assumes weaker thiourea (than urea) interaction
with citric acid and, therefore, stronger interaction of citric acid with residual ethoxysilyl groups during
the glasses formation and thermal treatment. This assumption is supported when we compare the PL
spectra for the silica-based glasses prepared from the precursors with different citric acid-to-thiourea
ratios (Figure 2). Indeed, notable qualitative changes were not observed in the spectra even at 3 times
higher thiourea concentration when there is enough amino groups of thiourea molecules to engage
all the carboxyl groups of citric acid molecules into 1:1 interaction (Figure 2c,d). Among the samples
where thiourea was used, the PL QY for the sample with the highest PL intensity observed (1:3,
Figure 2) was determined to be 11.25%. This value is much less than that determined for aqueous
solution of N,S-doped CDs produced via the hydrothermal route (71% [12]). This result suggests that
the conditions for obtaining highly luminescent silica-based glasses from silicate citrate thioureate
precursors were far from optimal. In particular, the temperature of glasses pyrolysis was probably too
high. Literature analysis suggests that starting from 140 ◦C thiourea isomerizes into thiocyanate, and
above 180 ◦C significant S loss occurs along with the release of a large amount of gaseous products [23].
At 270 ◦C the main solid products of thiourea decomposition are N-containing heterocyclic compounds
melam and melem [23]. The latter was found to possess the bright luminescent properties (PL QY
being up to 56.9%) [24], however, if it is present in silica matrix, its efficiency is not so high as in the
bulk state.

Thus, heat-treated at 270 ◦C silica glasses, prepared by acid hydrolysis of ethyl silicate
from aqueous-alcohol solutions in the presence of citric acid ureates or thioureates (with citric
acid-to-(thio)urea ratio 1:1, 1:1.5 or 1:3), upon UV excitation (with an optimum at λexc = 360 nm)
emit light in a visible spectrum (400–600 nm). Upon this, PL efficiency of ureate-derived glasses (PL QY
70.53% for 1:1.5 sample) appeared to be much higher than that for thioureate-derived glasses (PL QY
11.25% for 1:3 sample) suggesting that the preparation conditions to obtain the materials with optimal
PL characteristics are quite different in case of urea and thiourea. Citrate-ureate-derived silica glasses
already demonstrate very good potential to be efficient materials for different fluorescence-related
applications, however, to obtain sol-gel glasses from silicate-citrate-(thio)ureate precursors with
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optimized and tunable PL parameters, as well as to get more insight into the PL mechanism and factors
affecting these PL parameters, further, more systematic research needs to be carried out.
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