
colloids 
and interfaces

Review

Sessile Droplets on Deformable Substrates

Gulraiz Ahmed 1,2, Nektaria Koursari 1, Anna Trybala 1 and Victor M. Starov 1,*
1 Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU,

UK; gulraiz.ahmed@ucp.edu.pk (G.A.); N.Koursari@lboro.ac.uk (N.K.); A.Trybala@lboro.ac.uk (A.T.)
2 Department of Mechanical Engineering, University of Central Punjab, Lahore 54000, Pakistan
* Correspondence: v.m.starov@lboro.ac.uk; Tel.: +44(0)-1509-222508

Received: 20 September 2018; Accepted: 2 November 2018; Published: 6 November 2018 ����������
�������

Abstract: Wetting of deformable substrates has gained significant interest over the past decade
due to a multiplicity of industrial and biological applications. Technological advances in the
area of interfacial science have given rise to the ability to capture interfacial behavior between
a liquid droplet and an elastic substrate. Researchers have developed several theories to explain
the interaction between the two phases and describe the process of wetting of deformable/soft
substrates. A summary of the most recent advances on static wetting of deformable substrates
is given in this review. It is demonstrated that action of surface forces (disjoining/conjoining
pressure) near the apparent three-phase contact line should be considered. Any consideration
of equilibrium droplets on deformable (as well as on non-deformable) substrates should be based on
consideration of the excess free energy of the system. The equilibrium shapes of both droplet and
deformable substrate should correspond to the minimum of the excess free energy of the system.
It has never been considered in the literature that the obtained equilibrium profiles must satisfy
sufficient Jacobi’s condition. If Jacobi’s condition is not satisfied, it is impossible to claim that the
obtained solution really corresponds to equilibrium. In recently published studies, equilibrium
of droplets on deformable substrates: (1) provided a solution that corresponds to the minimum
of the excess free energy; and (2) the obtained solution satisfies the Jacobi’s condition. Based on
consideration of disjoining/conjoining pressure acting in the vicinity of the apparent three-phase
contact line, the hysteresis of contact angle of sessile droplets on deformable substrates is considered.
It is shown that both advancing and receding contact angles decrease as the elasticity of the substrate
is increased and the effect of disjoining/conjoining pressure is discussed. Fluid inside the droplet
partially wets the deformable substrate. It is shown that just these forces coupled with the surface
elasticity determine the deformation of the deformable substrates.
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1. Introduction

Wetting of deformable substrates has gained significant interest over the last decade, particularly
due to its wide range of applications. These applications occur in both nature (including biological
processes) and a range of industrial processes. Elastic solids, including foams, cosmetics, paper,
polymeric materials, gels and melts, have been incorporated in several applications such as inkjet
printing [1], forensic science [2], surface coating, pesticide spraying and spray painting [3].

The well-known Young’s equation has been widely used to predict equilibrium contact angle, θe,
on rigid solid substrates [4]. It gives the liquid–solid, liquid–vapor, and vapor–solid surface tension
relationships and is based on consideration of the balance of horizontal forces. However, Young’s
equation cannot be considered when the substrate is deformable, where the vertical component
(γ sin θe) of the surface tension remains unbalanced. Substrate deformation should balance this extra
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force in the case of deformable substrate. However, even after modification, Young’s equation still
cannot be applied directly, as it gives rise to deformation singularity (surface deformation goes to
infinity) near the three-phase contact line [5–13]. To avoid this singularity, several researchers have tried
different approaches. It was initially suggested that surface tension should be uniformly distributed
near the contact line to mitigate the singularity [6–10].

Lester was the first to model a sessile droplet on a soft substrate where the Neuman’s triangle is
considered [5]. The author identified the significance of a vertical component of liquid surface tension
applied at the three-phase contact line. Neumann’s triangle [14] is a triangle of forces distributed in
a certain way over the contact line so that the resultant force vanishes [5]. Using the same concept, Style
and Dufresne generalized a three-dimensional configuration, which allowed applying Neumann’s
consideration for small droplets on soft solids [11]. However, it is important to mention that Neumann’s
triangle of forces applied near the three-phase contact line could only be regarded as valid in the case of
an equilibrium configuration [5] and as long as the necessary equilibrium conditions are satisfied [13].

Unfortunately, Neumann’s approach (despite being widely used) is in a contradiction with
thermodynamics because it ignores the full thermodynamic equilibrium of liquid with vapor and
solid substrate (see the full discussion in [15]), but most importantly, according to Neuman’s approach,
a vapor pressure at which the droplet is at equilibrium is not specified. That is, according to Neumann’s
equation, the droplet can be at equilibrium even with undersaturated vapor. The latter is in a drastic
contradiction with Kelvin’s equation: according to Kelvin’s equation, droplets can be at equilibrium
with over saturated vapor only. It is also important to mention that Neumann’s equation ignores
surface forces action in the vicinity of the apparent three phase contact line.

It is worth remembering that surface forces come into play as soon as the thickness of the liquid
layer is <0.1 µm. Manifestation of surface forces action appear in thin liquid layers (<0.1 µm, that is in
the vicinity of the apparent three-phase contact line) of disjoining/conjoining pressure [15]. Note that
the term “apparent three-phase contact line” is used to emphasize that there is no real sharp contact
line but instead there is a transition zone, where capillary and surface forces act simultaneously [15].
The disjoining/conjoining pressure acts in the vicinity of the apparent three-phase contact line in
both rigid and deformable substrates. That is, surface forces action in the vicinity of the apparent
three-phase contact line is compulsory in both rigid and deformable substrates. Consideration of
action of disjoining/conjoining pressure in the vicinity of the apparent three-phase contact line in the
case of rigid substrates allows calculating via disjoining/conjoining pressure isotherm equilibrium the
droplet profiles, equilibrium contact angles [15] and hysteresis of contact angle (static advancing and
static receding contact angles) [16]. Recently, surface forces effect near the apparent contact line for
droplets on deformable substrates are taken into account [13,15–20].

The most recent theoretical and experimental studies are reviewed in this article and a brief
description is provided of equilibrium and hysteresis contact angles of sessile droplets where
disjoining/conjoining pressure is taken into account [18–20].

2. Theoretical and Experimental Analysis

Several experimental studies on droplet wetting of deformable substrate have been undertaken
recently primarily due to substantial progress in imaging techniques [21–27]. High-resolution
cameras allow capturing droplet profiles near the three-phase contact line and subsequent substrate
deformations. This allows developing understanding of theoretical concepts underlying the
experiments [28–31]. In the most recent experimental studies, Style et al. characterized the indentation
of glass particles using confocal microscopy [32] while Camara et al. experimentally investigated
the effect of Laplace pressure on deformation caused by drops of 1-butyl-3-methylimidazolium
hexafluorophosphate ionic liquid on a silicone elastomeric polymer [26]. The authors also
experimentally investigated the effect of the film thickness on the deformation of the substrate and
found that for thinner films the solid support located underneath the drop affects both the wetting
ridge and the dimple below the liquid [27]. Jerison et al. used confocal microscopy to measure
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the displacement of water on an elastic substrate and described a symmetric model that fits these
profiles [22]. In the past few years, it has been possible to record high resolution images in both
temporal and spatial coordinates.

Andreotti et al. presented recent advances of solid capillarity. They discussed the importance
of surface stresses on the deformation and several questions related to the mechanics involved at
the interface of soft solids were addressed [33]. The authors stated that stretching the interface
causes the energy to increase proportionally to the surface energy [33]. However, the Shuttleworth
effect arises when the surface energy depends on the strain and in this case the derivative of surface
energy also affects the surface stress [33,34]. Other related materials, e.g., polymer melts, and their
thermodynamic properties, e.g., glass-transition temperature, in relation to their mechanical properties
are also discussed in [33]. It has been reported that the glass-transition temperature of a polymer melt
can be reduced depending on the boundary conditions [33,35,36]. The relationship between surface
stress and bulk deformation is also discussed in [33]. In the same article, the significance of the critical
elastocapillary length on the capillary effects, measured on nano-scale for polymers and micro-scale
for gels, is also discussed [33].

The relationship between surface stress and surface energy was analyzed by Style et al. [12]
for static wetting problems. In [12] the authors used the term “elastocapillarity” to describe the
phenomenon of solid deformation as affected by mechanical properties of the substrates. The surface
stresses theory is outlined and the importance of elastocapillary length on surface stress and elasticity
is identified. Surface stress causes a stress jump across the interface of the deformable substrate [12].

However, in the above-mentioned theories, the most important phenomena, the action of surface
forces near the apparent three-phase contact line and the influence of the surface forces on deformation
of soft solids, are ignored.

In the next section, a new modeling technique for the investigation of wetting of soft substrates is
reviewed, where surface forces action near the apparent three-phase contact line is considered. Surface
forces are introduced using simplified disjoining/conjoining pressure isotherm. Although the selected
configuration of the disjoining/conjoining pressure isotherm is simplified, it is still able to capture
essential properties of a real disjoining/conjoining isotherm: (i) surface forces are present over short
range; (ii) partially wetting droplets are referred to when appropriate values of parameters are selected;
and (iii) the regions of influence of surface forces have stable thin fluid films. Elasticity of the soft
substrate is introduced using Winkler’s model [37]. Substrate’s deformation and the droplet profile are
deduced via the physical characteristics of the disjoining/conjoining pressure isotherm and substrate’s
elasticity [18].

For a droplet to be at equilibrium on deformable substrate, four conditions have to be satisfied:
(i) the first variation of excess free energy is equal to zero; (ii) second variation is positive; (iii)
transversality condition is satisfied; and (iv) Jacobi’s sufficient condition is fulfilled. Until now, the
fourth condition has always been neglected by researchers in this area. In [18], a solution is deduced
for both droplet and deformable substrate profiles, where disjoining/conjoining pressure action in the
vicinity of the apparent three phase contact line was taken into account. For the first time in [19], the
essential Jacobi’s condition for the solution of the liquid droplet on a soft substrate obtained in [18] is
verified. In Section 4, the verification of the Jacobi’s sufficient condition for already obtained solution
of equilibrium droplets on deformable substrates is undertaken.

Contact angle hysteresis (advancing and receding contact angles) is frequently connected to
surface roughness and surface heterogeneities. However, these are not the only causes for the
existence of contact angles hysteresis. Lately researchers have illustrated that hysteresis exist on
smooth homogeneous solid substrates [38–40]. It has been observed that contact angle hysteresis on
a rigid substrate is dependent on surface forces action in the vicinity of the three-phase contact line [16].
Recently, this theory has been extended and applied to investigation of contact angle hysteresis of
droplets on deformable/soft substrates [20]. In Section 5, the findings of these quasi-equilibrium states
that exist on deformable substrates are discussed.
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3. Equilibrium of Droplets on Soft Substrates

In this section, a new approach for wetting of soft substrates is developed by introducing action
of surface forces near the three-phase contact line of the droplet. In this section, a simplified linear
disjoining/conjoining pressure isotherm, Π, is used to introduce surface forces action and elasticity
of the substrate is incorporated through the use of Winkler’s model [37,41]. According to Winkler’s
model, the deformation in the soft substrate is regional and has a direct relation with the applied
pressure, P [18]:

hs = −KP (1)

where K specifies elasticity coefficient of the deformable substrate, and hs is the local deformation of
the substrate in the z-axis due to the pressure applied from the fluid above (see Figure 1).

Colloids Interfaces 2018, 2, x FOR PEER REVIEW  4 of 17 

 

3. Equilibrium of Droplets on Soft Substrates 

In this section, a new approach for wetting of soft substrates is developed by introducing action 
of surface forces near the three-phase contact line of the droplet. In this section, a simplified linear 
disjoining/conjoining pressure isotherm, Π, is used to introduce surface forces action and elasticity 
of the substrate is incorporated through the use of Winkler’s model [37,41]. According to Winkler’s 
model, the deformation in the soft substrate is regional and has a direct relation with the applied 
pressure, 𝑃 [18]: ℎ = −𝐾𝑃 (1) 

where 𝐾 specifies elasticity coefficient of the deformable substrate, and ℎ  is the local deformation of 
the substrate in the z-axis due to the pressure applied from the fluid above (see Figure 1). 

 
Figure 1. Schematic diagram of droplet on a deformable substrate: Spherical (Bulk) region, Π(ℎ − ℎ ) = 0 ; Transition region, Π(ℎ − ℎ ) ≠ 0 ; ℎ, the liquid profile; ℎ , deformation of the 
substrate; ℎ , equilibrium flat film; 𝜃 , apparent equilibrium contact angle; 𝑡 , height of the droplet 
at which surface forces (disjoining/conjoining pressure) start to act; 𝐿 , radial length corresponding 
to 𝑡 ; 𝐿, Effective radius of the droplet; 𝑟, 𝑧, co-ordinate system. 

Assume 𝑃  to be the ambient pressure of air. Local deformation of the deformable substrate 
due to presence of ambient air pressure is given by: ℎ = −𝐾𝑃  (2) 

Equilibrium thin film of fluid covers the deformed soft substrate, which is calculated according 
to a combination of the Kelvin’s equation and disjoining/conjoining pressure isotherm [15]: Π(ℎ ) = 𝑃 = 𝑅 𝑇𝜈 ln 𝑝𝑝  (3) 

where 𝑅  is the air gas constant, 𝑇 refers to temperature,  𝜈  is fluid’s molar volume, and vapor 
pressure, 𝑝 , is greater than 𝑝  (saturated pressure). According to Kelvin’s equation, droplet 
remains at equilibrium only in oversaturated vapor. The excess free energy of the equilibrium thin 
film on the deformed substrate in front of the liquid droplet per unit area is given by [15,18]: 𝐹 ,𝑆 = 𝛾 + 𝛾 + 𝑃 ℎ + ℎ2𝐾 + Π(ℎ)𝑑ℎ (4) 

where 𝑃 = 𝑃 − 𝑃 , and 𝛾  and 𝛾  are vapor–liquid and liquid–solid surface tensions, 
respectively. Excess free energy present in a droplet is infinite. Therefore, free energy from the thin 
film must be subtracted from the free energy that exists in the droplet on a deformable substrate 
[15,18]. Hence, the droplet excess free energy on a soft substrate is (see Figure 1): 𝐹 − 𝐹 , = 𝛾∆𝑆 + 𝛾 ∆𝑆 + ∆𝑉 + 𝐹  + 𝐹  (5) 

where ∆ means “in comparison with a flat equilibrium thin liquid film”. 
Equation (5) can be rearranged as: 

Figure 1. Schematic diagram of droplet on a deformable substrate: Spherical (Bulk) region,
Π(h− hs) = 0; Transition region, Π(h− hs) 6= 0; h, the liquid profile; hs, deformation of the substrate;
he, equilibrium flat film; θe, apparent equilibrium contact angle; t1, height of the droplet at which
surface forces (disjoining/conjoining pressure) start to act; L1, radial length corresponding to t1; L,
Effective radius of the droplet; r, z, co-ordinate system.

Assume Pair to be the ambient pressure of air. Local deformation of the deformable substrate due
to presence of ambient air pressure is given by:

hse = −KPair (2)

Equilibrium thin film of fluid covers the deformed soft substrate, which is calculated according to
a combination of the Kelvin’s equation and disjoining/conjoining pressure isotherm [15]:

Π(he) = Pe =
RgT
νm

ln
psat

p
(3)

where Rg is the air gas constant, T refers to temperature, νm is fluid’s molar volume, and vapor
pressure, p, is greater than psat (saturated pressure). According to Kelvin’s equation, droplet remains
at equilibrium only in oversaturated vapor. The excess free energy of the equilibrium thin film on the
deformed substrate in front of the liquid droplet per unit area is given by [15,18]:

Fe, f ilm

S f ilm
= γ + γs + Pehe +

h2
se

2K
+
∫ ∞

he
Π(h)dh (4)

where Pe = Pair − Pliquid, and γ and γs are vapor–liquid and liquid–solid surface tensions, respectively.
Excess free energy present in a droplet is infinite. Therefore, free energy from the thin film must be
subtracted from the free energy that exists in the droplet on a deformable substrate [15,18]. Hence,
the droplet excess free energy on a soft substrate is (see Figure 1):

F− Fe, f ilm = γ∆S + γs∆Ss + ∆V + Fsur f ace f orces + Fde f ormation (5)
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where ∆ means “in comparison with a flat equilibrium thin liquid film”.
Equation (5) can be rearranged as:

F− Fe, f ilm = 2π
∫ ∞

0
f
(
h, h′, hs, h′s

)
dr (6)

where

f
(
h, h′, hs, h′s

)
= r

 γ
√

1 + h′2(r)− γ + γs

√
1 + h′2s (r)− γs+

Pe(h− hs)− Pehe +
h2

s
2K −

h2
se

2K
+
∫ ∞

h−hs
Π(h)dh−

∫ ∞
he

Π(h)dh

 (7)

and r is the radial length. Under equilibrium conditions, the excess free energy mentioned in Equation
(6) should attain a minimum value. To fulfill this condition, the first variation in Equation (6) should
equal to zero, which leads to two Euler equations, i.e., for liquid and substrate profiles:

γ

r
d
dr

rh′

(1 + h′2)1/2 + Π(h− hs) = Pe (8)

γs

r
d
dr

rh′s
(1 + h′2s )

1/2 −Π(h− hs)−
hs

K
= −Pe (9)

Equations (8) and (9) are two interlinked differential equations for two unknown profiles:
for liquid droplet, h(r), and depth of deformed soft substrate, hs(r). In case of low slope approximation,
h′2 � 1, h′2s � 1, which is acceptable for small contact angles, is used below. It is important to observe
that Equation (8) is unlike the usual capillary equation for the non-deformable substrate, because it
now has contribution of hs in the disjoining/conjoining pressure, which can be determined using
Equation (9). Equations (8) and (9) are interconnected and are normally only computed numerically.
Therefore, the problem is further simplified with the use of linear disjoining/conjoining pressure
isotherm so that analytical solutions are obtained.

Π(h) =

{
P1 − ah at h ≤ t1

0 at h > t1
(10)

where P1 and t0 are defined in Figure 2, t1 is the height of the droplet where influence of surface
forces start, and a is the slope of the linear disjoining/conjoining pressure isotherm. The subsequent
radial length from the origin to the point t1 is L1 (see Figure 1). The selected linear dependency
of disjoining/conjoining pressure isotherm Π(h) on h according to Equation (10) still portrays the
essential properties mentioned in Section 2 (for details, see [18]).
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Disjoining/conjoining pressure cannot be ignored near the apparent three-phase contact line;
therefore, substrate deformation is linked directly with the parameters of the disjoining/conjoining
pressure isotherm (see Table 1).

Table 1. Physical properties used for calculation of droplet profile and deformation in the substrate [18].

Physical Property Value

γ 72 dyne/cm
t1 3× 10−6 cm
t0 7× 10−7 cm
a 1× 1011 dyne/cm3

K 1× 10−11 cm3/dyne
Pe −1× 105 dyne/cm2

γs 1 dyne/cm

Effect of variation of Pe, a, K and γs on substrate deformation and its subsequent effect on the
droplet profile is presented below.

3.1. Influence of Change of Excess Pressure, Pe

Excess pressure of the droplet is changed according to 0 ≤|Pe|≤|P2|. Figure 3 illustrate shapes of
the droplet and substrate with variation in Pe. An increase in Pe causes equilibrium thin film height, he,
to reduce. This causes an increase in the span/spread and height of the droplet. Consequently, this
also causes an increase to the extent of the deformation of the substrate in the radial direction, but also
reduces the depth to which the substrate gets deformed to.
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Figure 3. Computed shapes of the droplet and deformation of the substrate: 1, 1′−|Pe|= 130, 000 dyne/cm2;
2, 2′−|Pe|= 85, 000 dyne/cm2; and 3, 3′−|Pe|= 40, 000 dyne/cm2 [18]. Reproduced with permission
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3.2. Influence of Change of Slope of the Disjoining/Conjoining Pressure Isotherm, a

The value of the slope of the disjoining/conjoining pressure isotherm is varied in the following
range 1× 1011 ≤ a ≤ 1× 1012 dyne/cm3 to see its impact on the depth of deformation in the soft
substrate and resulting shape of the droplet. Figure 4 demonstrates that slope a also affects the droplet
shape: increasing a causes the maximum height of the droplet to increase which also increases the span
of the droplet in radial direction. The equilibrium contact angle for droplet on a deformable substrate
increases as a increases. Slope of the adopted disjoining/conjoining pressure isotherm does not affect
the vertical depth of deformation of the soft substrate.
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Elsevier B.V.

3.3. Influence of Change of Elasticity Coefficient, K

Elasticity coefficient controls the depth of deformation of the soft substrate. Here, elasticity
coefficient is changed according to 1× 10−13 ≤ K ≤ 1× 10−11 cm3/dyne. The effect of decreasing the
elasticity coefficient (i.e., K ∼ 0) causes the shape of the droplet on deformable substrate to approach
the shape of the droplet on non-deformable substrate (see Figure 5). It is also shown that, as elasticity
coefficient is increased (i.e., substrate becomes more elastic), the equilibrium contact angle reduces
marginally and the depth of deformation of the soft substrate increases (i.e., more deformation).



Colloids Interfaces 2018, 2, 56 8 of 16
Colloids Interfaces 2018, 2, x FOR PEER REVIEW  8 of 17 

 

 

Figure 5. Computed shapes of the droplet and deformation of the substrate: 1, 1 − 𝐾 = 1 × 10  
cm3/dyne and 2, 2 − 𝐾 = 4.5 × 10  cm3/dyne. ND, Non-Deformable substrate; D, Deformable 
substrate [18]. Reproduced with permission from [18]. Copyright © 2017 Elsevier B.V. 

3.4. Influence of Change of Substrate Surface Tension, 𝛾  

Substrate surface tension is changed in the range 0.001 ≤ 𝛾 ≤ 30  dyne/cm. Increasing 𝛾  
causes equilibrium contact angle to slightly increase, as displayed in Figure 6. It is also observed that 
transition from the bulk/spherical part of the droplet to thin liquid film ahead of the droplet is smooth. 
However, when 𝛾  approaches zero, this transition does not remain smooth and changes to a sharp jump. 

 
Figure 6. Computed shapes of the droplet and deformation of the substrate: 1, 1 − 𝛾 = 0.001 
dyne/cm and 2, 2 − 𝛾 = 30 dyne/cm [18]. Reproduced with permission from [18]. Copyright © 2017 
Elsevier B.V. 

4. Equilibrium Conditions of Droplets on Deformable Substrates 

As discussed above, excess free energy must remain at minimum in equilibrium conditions. 
Solely for this situation, the obtained shapes of the liquid droplet and deformed substrate are in actual 

z 
[c

m
]

Figure 5. Computed shapes of the droplet and deformation of the substrate: 1, 1′ − K = 1 ×
10−11 cm3/dyne and 2, 2′ − K = 4.5 × 10−12 cm3/dyne. ND, Non-Deformable substrate; D,
Deformable substrate [18]. Reproduced with permission from [18]. Copyright © 2017 Elsevier B.V.

3.4. Influence of Change of Substrate Surface Tension, γs

Substrate surface tension is changed in the range 0.001 ≤ γs ≤ 30 dyne/cm. Increasing γs

causes equilibrium contact angle to slightly increase, as displayed in Figure 6. It is also observed
that transition from the bulk/spherical part of the droplet to thin liquid film ahead of the droplet is
smooth. However, when γs approaches zero, this transition does not remain smooth and changes to
a sharp jump.
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and 2, 2′ − γs = 30 dyne/cm [18]. Reproduced with permission from [18]. Copyright © 2017
Elsevier B.V.
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4. Equilibrium Conditions of Droplets on Deformable Substrates

As discussed above, excess free energy must remain at minimum in equilibrium conditions.
Solely for this situation, the obtained shapes of the liquid droplet and deformed substrate are in
actual for equilibrium. For a droplet to be at equilibrium on a deformable substrate, four essential
conditions for (i) first variation of the free energy, (ii) second variation of free energy, (iii) transversality
condition and (iv) Jacobi’s sufficient condition, must always be satisfied [15,19]. Solution obtained from
Jacobi’s condition should not disappear for a droplet on rigid/solid substrate (i.e., one-dimensional
problem) [15]. It is important to note that Conditions (i), (ii) and (iii) are necessary conditions of the
minimum of the excess free energy, while Condition (iv) is a sufficient condition of the minimum.
Altogether, these conditions give necessary and sufficient conditions of the minimum of the excess free
energy. Unfortunately, the vital fourth condition is always neglected when deformation of soft solids
under liquid droplets is considered. Under equilibrium conditions, simply if the Jacobi’s sufficient
condition is fulfilled, the estimated profiles of the fluid droplet and deformable substrate provide the
minimum of free energy. To the best of our knowledge, it is for the first time the fourth condition is
satisfied and the computed solution actually results in profiles for the droplet and the deformable
substrate at equilibrium [19].

For two-dimensional droplet, calculations are considerably easier to investigate if the Jacobi’s
condition is satisfied [19]. Therefore, here, two-dimensional droplets are considered. The excess free
energy of a liquid droplet resting on a deformable substrate is similar to the three-dimensional case
discussed earlier with dimensional modifications in Equations (6) and (7) (see [19])

F2D − F2De, f ilm =
∫ ∞

0
f2D
(
h, h′, hs, h′s

)
dx (11)

where subscript 2D is for two-dimensional and

f2D
(
h, h′, hs, h′s

)
=

 γ
√

1 + h′2(x)− γ + γs

√
1 + h′2s (x)− γs+

Pe(h− hs)− Pehe +
h2

s
2K −

h2
se

2K
+
∫ ∞

h−hs
Π(h)dh−

∫ ∞
he

Π(h)dh

 (12)

where x is the tangential coordinate. The corresponding equations for the two-dimensional droplet
profile and deformed substrate are similar to the ones obtained for the three-dimensional case, i.e.,
Equations (8) and (9). Equations (8) and (9) in two-dimensional case are simplified to:

γh′′

(1 + h′2)3/2 + Π(h− hs) = Pe (13)

γh′′s
(1 + h′2s )

3/2 −Π(h− hs)−
hs

K
= −Pe (14)

Solution of Equations (13) and (14) using the parameters of the disjoining/conjoining pressure
isotherm mentioned in Table 1 is obtained in low slope approximation as above. Dependency of
apparent equilibrium contact angle, θe, is plotted against elasticity coefficient, K, in Figure 7.

As expected, upon increase in the elasticity of the soft substrate the apparent equilibrium contact
angle of the droplet decreases. Second essential condition, δ2 f2D > 0, is always satisfied [18]. Next is
to check if Jacobi’s sufficient condition is fulfilled.

To achieve minimum of Jacobi’s condition, the following should be satisfied: determinant built
up by solutions of Jacobi’s equation must not disappear at any location, x, within the area of interest
(see below) [19,42]. Under low slope approximation, Jacobi equations for the four unknown functions
uji(x) are generated, where i, j = 1, 2 for the system of Equations (11) and (12) are as follows:

γu′′1i + [ Π ′(h− hs)u1i − Π ′(h− hs)u2i] = 0 (15)
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γsu′′2i +
[

Π ′(h− hs)u1i − Π ′(h− hs)u2i +
u2i
K

]
= 0 (16)

For the selected disjoining/conjoining pressure isotherm (see Figure 2), Equations (15) and (16)
become linear differential equations corresponding to all Jacobi’s functions. Initial conditions for four
Jacobi’s functions [19,43]: 

u11(0) = u12(0) = u21(0) = u22(0) = 0
u′11(0) = 1 , u′22(0) = 1

u′12(0) = u′21(0) = 0

 (17)

Zero initial conditions and linearity of Jacobi’s equations means that u12(x) and u21(x) are
equal to zero. Therefore, there are only two unknowns, i.e., u11(x) and u22(x). Jacobi’s condition,

D(x) =

∣∣∣∣∣ u11 0
0 u22

∣∣∣∣∣ = u11u22 should be positive for x > 0. According to Koursari et al. [19], both

u11(z) and u22(z) are positive for both spherical and transition regions (see Figure 2). This implies
that D is positive at all x > 0 (see Figure 8). Jacobi’s condition is therefore satisfied, which means that
solutions for both liquid and deformable substrate provide minimum of the excess free energy of the
system [19].
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Note that the validity of the Jacobi’s condition for the deduced solutions of both droplet shape
and shape of the deformable substrate undertaken in [19], was checked for the first time. The latter
means that any solution of the same problem developed earlier or to be developed in the future should
be checked for a validity of the Jacobi’s condition for the deduced solution.

5. Hysteresis of Contact Angle for Sessile Droplets on Soft Substrates

There exists only a single equilibrium contact angle, θe, of droplet on a smooth homogeneous
substrate. As stated earlier, droplet must be at equilibrium with oversaturated vapor corresponding to
Kelvin’s equation [15]. Therefore, experimentally, only quasi-equilibrium contact angles are observed,
which are known as hysteresis contact angles: static advancing contact angle θa > θe, and static
receding contact angle θr < θe [20].

Static advancing and receding contact angles are calculated using quasi-equilibrium states of
a droplet on a soft substrate. Let us note, that such consideration is undertaken in [20] for the first time
and had not been tried before. Motion of the droplet starts when excess pressure is not equivalent
to its value at equilibrium, P 6= Pe. This motion can be subdivided into “slow microscopic” before
some critical values of applied pressure is reached and “fast macroscopic” processes above the critic
value [20]. Fast macroscopic processes occur in the bulk/spherical part of the droplet, whereas slow
microscopic motion takes place in the transitional region (see Figure 9).

In advancing and receding droplets, the value of excess pressure is vital. As it reaches critical
values of Pa and Pr, the motion of the droplet changes from microscopic to macroscopic. Subsequently,
the macroscopic contact angle reaches θa and θr. In advancing droplets, pressure is less than Pe,
the gradient of the droplet profile increases and reaches infinity at some critical point (marked in
Figure 9A) when excess pressure tends to Pa. Advancing droplet has an apex, Ha, and the radius, Ra,
as shown in Figure 9. On the other hand, when pressure is increased from Pe, microscopically the
gradient of the droplet profile starts to decrease causing it to become horizontal, i.e., zero slope, as
shown in Figure 9B, in which, Hr, is the apex and Rr, is the radius for a receding droplet (see Figure 9B).
It is shown in [20] that quasi-equilibrium states of the droplet can be described using Equations (13)
and (14) where the equilibrium excess pressure, Pe, is replaced by quasi-equilibrium pressures, Pa or Pr.
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Dangerous points (inflection points) exist in advancing and receding droplets. In advancing 
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Figure 9. Droplet on a deformable substrate: just before advancing (A); and just before receding (B)
begins (1, quasi-equilibrium part of the droplet; 2, inflection points; 3, flow zone; 4, equilibrium thin
liquid film in front). Reproduced with permission from [20]. Copyright © 2018 Elsevier B.V.
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Dangerous points (inflection points) exist in advancing and receding droplets. In advancing
droplet, inflection point is present at thickness, h3, and, in receding droplet, inflection point is present
at thickness, h4 [20,40] (see Figure 9). Boundary conditions for both cases are:

h′′ = 0, h′ = −∞, at h = h3 (18)

h′′ = 0, h′ = 0, at h = h4 (19)

Numerical solution is only possible for Equations (13) and (14) because of their coupled nature.
To simplify calculations, piecewise linear function of h disjoining/conjoining pressure isotherm is
adopted [20]:

Π(h) =



a(t0 − h) 0 ≤ h ≤ t1

b(h− t2) t1 ≤ h ≤ t3

c(t4 − h) t3 ≤ h ≤ t5

d(h ≤ t6) t5 ≤ h ≤ t6

0 h > t6

(20)

where t1, t2, t3, t4, t5, t6 are different regions of adopted disjoining/conjoining pressure isotherm,
and a, b, c, d are corresponding slopes of these regions. Selected disjoining/conjoining pressure
isotherm has following vital properties: (i) stability condition, Π ′(h) < 0 when 0 ≤ h ≤ t1 (α-films [15]
and t3 < h < t5 (β-films [15]) is satisfied; (ii) corresponds to partial wetting; and (iii) surface forces
action is short ranged, i.e., h = t6. These parameters are carefully selected to resemble as closely
as possible the actual disjoining/conjoining pressure isotherm used in [40] to verify calculations
of advancing/receding contact angles on rigid/solid substrates (see Table 2 and Figure 10) [20].
The additional simplification adopted in [20] is as follows: γs, the solid/liquid interfacial tension,
has been neglected. However, in this case, the low slope approximation has not been used.

Table 2. Properties of disjoining/conjoining pressure isotherm for advancing/receding contact angles [20].

Physical Properties Values

γ 72.00 dyne/cm
P1 1.300× 1013 dyne/cm2

P2 −4.450× 108 dyne/cm2

P3 2.800× 107 dyne/cm2

P4 −6.500× 104 dyne/cm2

t0
P1
a = 2.299× 10−8 cm

t1 2.300× 10−8 cm
t2 t3 − P3

b = 2.083× 10−7 cm
t3 2.200× 10−7 cm
t4 3.000× 10−6 cm
t5 3.007× 10−6 cm
t6 2.000× 10−5 cm
a P1−P2

t1
= 5.652× 1020 dyne/cm3

b P3−P2
t3−t1

= 2.401× 1015 dyne/cm3

c P3
t4−t3

= 1.007× 1013 dyne/cm3

d P4
t5−t6

= 3.825× 109 dyne/cm3

K 2.000× 10−16 cm3/dyne, i.e., bK < 1
Va 1.000× 10−2 cm2
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Effect of variation of advancing droplet volume on advancing contact θa has been investigated
(see Figure 11A). As droplet volume increases, the advancing contact angle reduces. Advancing contact
angle on a deformable substrate is always less than on a non-deformable substrate [20,40]. Figure 11B
shows the effect of variation of volume on receding contact angle. As the volume of the droplet
increases, the receding contact angle reduces. Elasticity of the deformable substrate causes a decrease
in receding contact angle in comparison with solid substrate, but the amount of decrease is very small,
as depicted from the curves in Figure 11B. Both advancing and receding contact angles decrease for
a soft substrate. This behavior has been experimentally observed [44,45].
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6. Conclusions and Outlook 

The most recent advances are summarized in the area of static wetting of deformable substrates 
taking into consideration the effect of surface forces action coupled with elasticity of the substrate. 
Theoretical and experimental studies are reviewed in the area. Significant progress has been achieved 
in experimental investigations of deformations of soft solids due to recent advances in imaging 
techniques such as confocal microscopy and several theoretical models have been developed in an 
attempt to resolve the singularity caused by deformation of the substrates. The main conclusions are 
as follows: (i) any investigation of equilibrium of droplets on deformable substrates should be based 
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Figure 11. Effect of variation of volume of the droplet on: (A) advancing; and (B) receding contact
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6. Conclusions and Outlook

The most recent advances are summarized in the area of static wetting of deformable substrates
taking into consideration the effect of surface forces action coupled with elasticity of the substrate.
Theoretical and experimental studies are reviewed in the area. Significant progress has been achieved
in experimental investigations of deformations of soft solids due to recent advances in imaging
techniques such as confocal microscopy and several theoretical models have been developed in an
attempt to resolve the singularity caused by deformation of the substrates. The main conclusions are as
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follows: (i) any investigation of equilibrium of droplets on deformable substrates should be based on
consideration of surface forces acting in the vicinity of the apparent three-phase contact line; (ii) excess
free energy of the system droplet/deformable substrate should be considered and the equilibrium state
corresponds to the minimum of the excess free energy; (iii) variation of the excess free energy provide
two interconnected equations for both droplet and deformable substrate profiles; and (iv) solution of
these two interconnected equations should satisfy the Jacobi’s sufficient condition. Approaches based
on Conclusions (i)–(iv) are briefly discussed.
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Nomenclature

a, b, c, d
Slopes of different regions of disjoining/conjoining pressure
isotherm

α α− film
β β− film
D Deformable substrate
D(x) Jacobi condition
F, F2D Excess free energy in three and two-dimensional cases

Fe, f ilm, F2De, f ilm
Excess free energy of the equilibrium thin film on the
deformed solid in three and two-dimensional cases

γ Surface tension of the fluid
γs Surface tension of the substrate
H Apex of the droplet
Ha Apex of the advancing droplet
Hr Apex of the receding droplet
h Film thickness, equilibrium liquid profile, droplet height
he Stable equilibrium film thickness
hs Local deformation of the substrate

Local deformation of the substrate under the action of the
ambient pressure

h3 Thickness in the critical point for advancing droplet
h4 Thickness in the critical point for receding droplet
K Elasticity coefficient
l Characteristic length
µ Dynamic viscosity
ND Non-deformable substrate
Pair Pressure in the ambient air
Pe Equilibrium excess pressure
Pa Advancing pressure
Pr Receding pressure
p Vapor pressure
psat Saturated vapor pressure
Π(h) Disjoining/conjoining pressure isotherm
Q Flow rate
R Radius of curvature of the droplet
Ra Radius of curvature of the advancing droplet
Rg Gas constant
Rr Radius of curvature of the receding droplet
r Length along radial direction for three-dimensional case
T Temperature
t0, t1, t2, t3, t4, t5, t6 Parameters of disjoining/conjoining pressure isotherm
θe Equilibrium contact angle
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θa Advancing contact angle
θr Receding contact angle
u(x) Solution of Jacobi’s equation
V Volume of the fluid
Va Volume of the advancing droplet
Vr Volume of the receding droplet
vm Molar volume of the liquid
x Length along radial direction for two-dimensional case
z = x− L1 Co-ordinate in the tangential direction
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