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Appendix A 

Optical calibration in-flight check 

 

1.A.- Procedure for capillary coating  

 

The capillary was coated with an oleophobic / hydrophobic film by using Acota Certonal FC-734 

perfluoropolymer. 

The coating process was performed according to the following four sequential steps 

a.- Full immersion of the capillary into CrO3 + H2SO4  (chromic mixture), gently stirring the 

liquid mixture during 10 minutes. 

b.- Washing the capillary under flowing tap water, flushing and removing the chromic mixture 

from the external side and from the internal bore during about one minute. Subsequently, rinsing the 

capillary by dipping several times into a bath of twice-distilled water (the water trapped inside the 

capillary was removed each time by a nitrogen flow). 

c.- Drying of the capillaries overnight, in an oven at 100 °C (the capillary was placed inside a 

glass beaker). 

d.- Coating of the capillary by full immersion into a bath of Acota Certonal FC-734 

perfloropolymer, during 20 seconds. After evaporation of the solvent (by flowing externally and 

internally a slow nitrogen stream), the operation is repeated a second time. 

 

2.A- Detection of capillary diameter and of drop profile 

 

In the course of the experiment time-line, about eighty-thousand time-tagged 1000x1000-pixel 

drop images, sampled at 35-second intervals, were telemetered in concomitance with the downlink 

transmission stream of the data packets. Visual inspection of the drop behavior, in contact with the 

capillary tip, and of possible objectionable items inside the field of view were the principal aims of 

the telemetered images. In addition, such images allowed the in-flight check of the optical 

calibration, at certain statistically-selected instances during the time-line. 

 

For the purpose of an in-flight calibration check, the images were contrast enhanced, properly 

adjusting the grey-level distribution, by a dedicated software for image processing. Actually the 

visualisation of the interface profile, separating the two adjoining liquid phases, is a critical item (in 

particular the difference of the standard refractive indexes between hexane and water is very small, 



that is, n  =  1.375 – 1.333 = 0.042, while the difference between fused-quartz capillary and water 

is n  =  1.458 – 1.333 = 0.125).  

 

Fig. S1a shows an example of the detection of capillary diameter and of drop profile for a 

1000x1000-pixel drop image acquired during an oscillation experiment. The capillary diameter and 

the cap-shaped drop edge was acquired in pixel units by discrimination at the 128-grey-level, using 

a sub-pixel resolution procedure. 

 

 
 

Fig. S1a.- Detection of capillary diameter and of drop profile for a 1000x1000-pixel drop 

image acquired during an oscillation experiment (specifically, temperature T= 20 °C, injection 5-1, 

amplitude A = 20% , frequency f = 0.08 Hz). Image magnification = 2.5x. Image time-tag value = 

2014-07-20   19:07:59.075. 

 

Fig. S2a shows an example of the detection of capillary diameter and of drop profile for a 

1000x1000-pixel drop image acquired during a growing drop experiment. The capillary diameter 

and the cap-shaped drop edge was acquired in pixel units by a grey-level gradient algorithm, using a 

sub-pixel resolution procedure. 

 



 
 

Fig. S2a.- Detection of capillary diameter and of drop profile for a 1000x1000-pixel drop image 

acquired during a growing drop experiment (temperature T= 20 °C,  injection 4-1). Image 

magnification = 1.0x. Image time-tag value = 2014-07-18   01:56:22.103. 

 

The knowledge of the capillary diameter, d = 0.984 mm, allowed the stability of the on-ground 

optical calibration parameters to be confirmed (namely, for 2.5x-optical magnification c = 2.583 

m/pix and for 1.0x-optical magnification c = 6.515 m/pix). Together with the calibration 

assessment, the drop-edge detection enabled the transformation from pixels to Cartesian co-

ordinates of the drop profile points and hence the determination of the geometrical properties of the 

drop in SI-units. 

 

3.A- Drop geometrical properties: comparison between intermittent one-second packets 

 

Sequences of one-second time-tagged packets, each one containing twenty 33-point drop profiles 

and the capillary reference points, were telemetered in intermittent mode with the main one-second 

time-tagged packets, containing all the experimental geometrical and physical properties. 

A dedicated software allows the conversion of the acquired pixel points (telemetered in arbitrary 

digital units) into SI-unit geometrical properties, persisting with the confirmed optical calibration 

parameters. The Fig. S3a shows an example of such an implemented tool, where the spherical cap-

shaped drop and the capillary tip are also visualized. 

 



 
 

Fig. S3a.- Example of a 33-point drop profile, with the reference capillary points. 

 

The Fig. S4a, as an example, illustrates a comparison of geometrical properties, in particular the 

radius values are here plotted (that is, the telemetered 3-point radius values are plotted on the left 

axis while the drop radius values, determined from the 33-point drop profile, are plotted on the right 

axis). The plot reports a selected part of an 8-frequency oscillation experiment in the injection 5-1 

sample. 

As seen in Fig.4a, the radius values, obtained from different telemetered sources, compare very 

satisfactorily, hence constituting a consistent set of experimental data. Actually all other 

geometrical drop properties compare in a similar fashion.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S4a.- Comparison of radii for an oscillating drop at frequency f= 0.08 Hz, amplitude A = 

20%, temperature T = 20 °C. Left axis, red points, telemetered 3-point radii, Right axis, blue points, 

drop radii determined from the 33-point drop profile. The origin of the time axis is arbitrarily taken 

at the initial time-tag of the start one-second packet for the 0.08-Hz experiment portion. Packet 

time-tag value = 14/07/20  19:06:32.146 . 

 

 

 

 

 



 

Appendix B 

Adjustment of pressure sensor calibration 

 

The offset-parameter value of the pressure-sensor calibration is inherent in the specific offset 

value of the pressure-sensor device and in the additional offset-value of the electronic measurement 

chain. As the total value is sensitive to temperature and mechanical stresses, the accurate in-flight 

adjustment of such parameter is fundamental for the interpretation of the experimental results and 

for their quantitative analysis. 

According to the Gauss-Laplace principle, the offset adjustment value is determined by the linear 

fit of a differential-pressure vs. inverse-radius plot, at constant interfacial tension, obtained during 

the ramp interval of a growing drop experiment. The intercept with the pressure axis is adjusted to 

cross the axis origin. 

In case a sample containing pure liquids is not available, samples with greatest surfactant 

concentration are privileged for the study of growing drop experiments, as the interfacial tension 

relaxation overwhelms the interfacial area expansion during the entire ramp interval. 

Fig. S1b illustrates an example for a growing drop experiment, selected for the in-flight pressure 

calibration at temperature T = 20 °C, for a sample at the injection 6-5. 

 

 

 

Fig. S1b.- Fitting of differential pressure vs. inverse radius data for injection 6-5 at T = 20 °C for 

a growing drop experiment, with filtered reference pressure and adjusted calibration parameters. 

 

 

 



The Fig. S2b shows the behaviour of the interfacial tension for the growing drop experiment of 

Fig. S1b, including the pre-ramp and post-ramp time. As seen, during the ramp the interfacial 

tension is almost constant around  = 4.8 -4.9 mN/m . 

 

 

 

Fig. S2b.- Interfacial tension  and interfacial area vs. time for injection 6-5 at T = 20 °C for a 

ramp experiment, including pre-ramp and post-ramp values (with filtered reference pressure and 

adjusted calibration parameters). The time interval of the ramp is t = 200 s , the selected range for 

the fit is t = [10 – 180 s ]. The time-origin in the plot has been set arbitrarily at the initial time tag of 

the experiment. 

 

A satisfactory agreement was observed between the offset value, obtained at the greatest 

concentration with the corresponding offset at the smallest available surfactant concentration, 

indicating a calibration stability during the entire microgravity experiments, from July 02 to August 

08, 2014. Fig. S3b illustrates an example of a growing drop experiment at temperature T = 20 °C, 

for a sample at the smallest available surfactant concentration, i.e., injection 1-1. For this small 

concentration, a satisfactory comparison of the offset value  is observed by taking just the upper 

extent of the ramp interval, while the interfacial tension matches the interfacial area expansion, as 

seen in Fig. S4b. 

 

 



 

 

 

 

Fig. S3b.- Fitting of differential pressure vs. inverse radius data for injection 1-1 at T = 20 °C for 

a growing drop experiment, where just the upper range of the ramp is selected (results with filtered 

reference pressure and adjusted calibration parameters). 

 

In addition to the growing drop experiments, Fig. S4b also shows a subsequent step experiment, 

generating an almost fresh interfacial area. Actually, as seen in the right side of Fig. 4b, in 

concomitance with the step change of interfacial area, the interfacial tension raises to the value 

pertinent to pure water/pure n-hexane, around  = 51.1 mN m-1 [ 1b ], indicating a reliable in-flight 

calibration. 

 

 

 



 

 

Fig. S4b.- Interfacial tension and interfacial area vs. time for a ramp experiment and for a 

subsequent step experiment (results with filtered reference pressure and adjusted calibration 

parameters), for a sample at injection 1-1 and at T = 20 °C. The time interval of the ramp is t = 250 

s , the selected range for the fit is   t = [150 – 250 s ]. 
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Appendix C 

 

Data conversion from arbitrary digital units to units of the international system 

Successively to the qualifying items of i) arrangement of data packets in the form of 8-frequency 

experiment sequences (par. 2.3.), ii) synchronization (paragraph 2.4.), iii) optical calibration check 

(par. 2.4.1.), iv) pressure calibration adjustment (par. 2.4.2), the telemetered-data files were 

converted from arbitrary digital-units (DU-units) into units of the international system (SI-units) by 

the fixed specific calibration factors.  

In the course of this conversion, each 1-second packet is split in twenty fractions of second (i.e.,  

tn = 0.05 x n, n = 0, 1,….19, s) and hence each radius value, r , in each packet was multiplied by half 

the concomitant differential-pressure value, p (determining twenty values of the interfacial tension 

according to the Gauss-Laplace equation). Within the same second, the corresponding interfacial 

area values, A, were determined via the drop radius values, r, and drop height values, h, according 

to the proper expression for a spherical cap-shaped drop, i.e, A = 2 r h. 

The effective conversion procedure, applied to all experiment sequences (pertaining to all 

samples in Tab. 1) resulted in a reliable set of SI-unit values for the interfacial properties (as a 

function of time, frequency, temperature and concentration) for the studied mixed surfactant 

systems. 

 

Frequency domain analysis: measurement value of interfacial dilational viscoelastic modulus 

In the low-frequency range the used algorithm involved the expansion into Fourier series of the 

oscillation cycles of interfacial tension and area (at 5%, 10% and 20% amplitudes) and subsequent 

determination of the modulus, i.e. the real part and imaginary part of the interfacial viscoelasticity, 

according to its definition in the frequency domain [1c]. The properties of the fundamental harmonic 

are retained for determining the viscoelasticity, while the higher harmonics of the Fourier series 

expansion (if any) are considered just for the determination of the total harmonic distortion (THD) 

parameter. 

In the high-frequency range the determination of the interfacial viscoelasticity required a specific 

algorithm, as already described for a similar microgravity experiment [2c]. 

 

Definition of interfacial dilational viscoelastic modulus 

The interfacial dilational viscoelastic modulus is a physical quantity defined in the frequency 

domain by a complex expression [3c] 
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where ω represents the angular frequency, Δγ × exp[-i(ωt + )] is the interface response to the 

imposed area perturbation A × exp(-it)/A0,  and A are the oscillation amplitudes of the 

interfacial tension and the interfacial area, respectively,  the phase shift between perturbation and 

response, A0 is the mean interfacial area of the sinusoidal cycle, r andi are the real and imaginary 

parts, respectively, of the complex viscoelasticity *(i). 

The definition of *(i) in Eq.(1c) is extended by the existence of a Fourier transform 

relationship between the three physical quantities involved in interfacial extension/contraction 

processes, that is, fractional-area change (time domain), interfacial tension change (time domain) 

and interfacial dilational modulus (frequency domain) [4c] : 
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where F is the Fourier transform operator. 

The definition of *(i) , according to Eqs. (1c, 2c), does not require any assumption about the 

microscopic structure of the studied interface or about the molecular mechanisms occurring in the 

interfacial layer or in its immediate proximity. The only implicit assumption in Eqs. (1c, 2c) is that 

the interface behaves as a time-invariant linear system, i.e., that the interface is in adsorption 

equilibrium condition and it is subjected to small amplitude perturbations. 

It is worth noting that the physical quantity *(i) is a constitutive property of the interfacial 

systems, taking a definite value at each particular frequency. Actually, *(i) can be conceived as 

the transfer function of the interfacial system, connecting the interfacial Δγ responses to interfacial 

area perturbations of any functional form in the frequency-domain or in the time-domain. In other 

words, the definition of *(i) can be expressed in terms of the  response to the unit-step function 

u(t). 

Specifically the Fourier transform in the numerator of the ratio in Eq. (2c) reads in explicit 

integral form: 
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and the analytical expression of the unit-step function, u(t), in the denominator reads: 
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where )(  is the Dirac delta function. 

Hence, combining Eq. (3c) and Eq. (4c) into Eq. (2c) and applying the Euler identity, the values 

of the real and the imaginary part of *(i) can be interpreted as the integration values of the 

(t)relaxation function excited by a unit step change of fractional area:  
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where the relaxation function is normalized as n(t) = (t)/(A/A0) [
4c].  

Moreover, a static elasticity constant value, E0, must be added to Eq. (5c) when the interfacial 

layer contains a component which is insoluble in both adjoining phases at the interface [5c].  

The expression of Eq. (5c), as for the case of Eq. (2c), is valid whatever is the mechanism at the 

molecular level which generates the observable interfacial viscoelasticity phenomenology. 



 

The definition of *(i) in Eqs. (1c, 2c, 5c)  still holds in nonideal initial adsorption equilibrium 

provided that the n(t) relaxation function vanishes at zero value in a time interval at least one 

order of magnitude shorter than the time-interval of the nonequilibrium condition evolution, at the 

start of  the interfacial layer excitation. 

In fast dynamic nonlinear condition, the interface anyway shows a viscoelastic behavior, but a 

modulus cannot be correctly defined, being the viscoelastic property instead conveniently described 

by Lissajous curves [6c]. 

 

Case of diffusion-controlled adsorption 

When the normalized relaxation function n(t) has the particular form of the Sutherland 

equation [7c] 
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then the integral expression in Eq. (5c) constitutes a transformed representation of the Lucassen 

model for the diffusion controlled adsorption mechanism: 
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Actually the Sutherland equation, Eq. (6c), is essentially the step response decay function that 

can be derived from the Fourier-transform expression in Eq. (2c), by insertion of *(i) in the form 

of the Lucassen model for the diffusional exchange at the interfacial layer, i.e., Eqs. (7c, 8c) [8c]. 

 

Case of Maxwell-model relaxation function 

The generalized Maxwell model is usefully applied to calculate the relaxation time spectra for 

multicomponent interfacial layers as well as for commercial mixtures of surfactants [9c]. A single 

element of the Maxwell model is constituted by an elastic spring and a viscous dash-pot in series, 

with parameters k and , respectively. Then the expression for the complex viscoelastic modulus is 

obtained by inserting in Eq. (5c) the Maxwell-model relaxation function of the interfacial tension, 

excited by a unit step change of fractional area:  
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Upon integration of Eq. (9c), the real part of the complex modulus reads 
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and the imaginary part reads 
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Appendix D 

The surface dilational viscoelasticity of an oil-water interface with two surfactants soluble in 

both oil and water 

 

If there are two surfactants that are distributed between two immiscible liquids (e.g. oil and 

water), separated by a flat interface, then the variation of their concentrations under dynamic 

conditions is described by the set of Fick's equations  
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where  ,

jc  and  ,

jD  are the concentration and diffusion coefficient of the jth surfactant in the 

phases  and , respectively, t is the time, and x is the coordinate normal to the interface, located at  

x = 0 . We will consider a local equilibrium state at the interface when the concentrations in the two 

phases close to the interface (subsurface concentrations) 
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This equation is the first boundary condition for the set of equations Eqs. (1d) and (2d). The 

second boundary condition reflects the surfactants’ balance at the interface, accounting for the 

diffusional exchange between the interface and the two adjacent liquid phases 
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where j are the surfactants adsorptions at the interface, A is the area of the interface. Two 

additional boundary conditions are: 
  j0j cc ,       x +      and          j0j cc ,       x              (j = 1, 2) (5d) 

where 

j0c  and 

j0c  are the equilibrium concentrations. For established harmonic oscillations of the 

interface, periodicity of concentration variations can serve as initial conditions: 
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where  is the radial frequency of the oscillations. The general solutions of Eqs. (1d) and (2d) 

satisfying the boundary conditions Eq. (5d) and the initial conditions Eq. (6d) have the form 
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where 

jE  and 

jE  are the unknown integration constants. With these solutions, from the boundary 

condition Eq. (3d) one obtains 
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With account for the equilibrium conditions   j0jj0 cKc  this leads to 

  jjj EKE  (10d) 

This allows to exclude two unknown integration constants. To determine the remaining two 

integration constant one has to use the boundary conditions Eq. (4d). For small-amplitude harmonic 

oscillations of the interface the surface area variation can be expressed as 
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where A0 is the equilibrium surface area and A0 is the amplitude of the surface area variation. 

Then the boundary conditions Eq. (4) yield 
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where 0j are the equilibrium adsorptions. Taking into account that the adsorptions are also 

harmonic functions of time ti

jj0j e   and using the solutions Eqs. (7d) and (8d) one obtains 
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where ef

jD  are the effective diffusion coefficients defined as 
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In mixed adsorption layers comprising two surfactants the adsorptions are functions of the two 

surfactant concentrations:   2S1Sjj cc , , therefore the variations of adsorptions can be written as  

  22j11jj EaEa  (16d) 
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a . In Eq. (16d) the 

adsorptions are considered as functions of the surfactant concentrations in the phase , however 

they can be also considered as functions of the concentrations in the phase , i.e.   2S1Sjj cc , , 

because the concentrations on both sides of the interface are related via the equilibrium distribution 

coefficients, Eq. (3d).  



Eqs. (14d) and (16d) form a set of four linear equations with respect to the four unknown 

amplitudes: two 

jE  and two j . Following standard procedures one obtains 
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  are the characteristic relaxation frequencies. The surface dilational 

viscoelastic modulus can be written as 
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Then, using Eqs. (19d), (20d) and (21d) one obtains 

        


































11

21
2

02

01
1

2211

211202

22

12
1

01

02
2

2211

211201

a

a
i1i1

aa

aa
1

Za

a
i1i1

aa

aa
1

Z
(22d) 

where      
2211

2112
21

aa

aa
i11i11Z  . 

Thus, the surface dilational viscoelastic modulus of a surfactant mixture depends on two 

characteristic frequencies, D1 and D2, which characterize the rates of diffusional relaxation of the 

two surfactants in the mixture. These characteristic frequencies are determined by the effective 

diffusion coefficients ef

1D  and ef

2D , which depend on the diffusion rate in both liquid phases. The 

effective diffusion coefficients depend also on the surfactants’ distribution coefficients Kj. The 

diffusion in a phase, where the surfactant is more soluble, is more important for the surface 

dilational viscoelastic modulus. The surface dilational viscoelastic modulus of a mixture depends 

also on some equilibrium parameters: 0j, 0j and the ratios a12/a22 and a21/a11. If the second 

surfactant is absent, 0cc 0202  
, then 02 = 0, 02 = 0 and a21 = 0, and we obtain from Eq. (22d) 

the classical Lucassen/van den Tempel equation: 
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Eq. (22d) can be transformed to a form similar to that derived previously by Jiang et al. [2d]. 

However, these authors considered a system of two surfactants dissolved only in one liquid. In our 

case we have two surfactants dissolved in two liquids. This leads to the appearance of the effective 

diffusion coefficients ef

1D  and ef

2D  instead of the usual diffusion coefficients D1 and D2. 
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