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Abstract: Microbial Enhanced Oil Recovery (MEOR) is one of the tertiary recovery methods. The high
viscosity and low flow characteristics of heavy oil makes it difficult for the extraction from oil
reservoirs. Many spore-forming bacteria were isolated from Oman oil fields, which can biotransform
heavy crude oil by changing its viscosity by converting heavier components into lighter ones. Two of
the isolates, Bacillus firmus BG4 and Bacillus halodurans BG5, which showed maximum growth in
higher concentrations of heavy crude oil were selected for the study. Gas chromatography analysis
of the heavy crude oil treated with the isolates for nine days showed 81.4% biotransformation for
B. firmus and 81.9% for B. halodurans. In both cases, it was found that the aromatic components in
the heavy crude oil were utilized by the isolates, converting them to aliphatic species. Core flooding
experiments conducted at 50 ◦C, mimicking reservoir conditions to prove the efficiency of the isolates
in MEOR, resulted in 10.4% and 7.7% for B. firmus and B. halodurans, respectively, after the nine-day
shut-in period. These investigations demonstrated the potential of B. firmus BG4 and B. halodurans
BG5 as an environmentally attractive approach for heavy oil recovery.

Keywords: spore forming bacteria; Bacillus firmus; Bacillus halodurans; Microbial Enhanced Oil
Recovery; biotransformation; heavy oil recovery

1. Introduction

Global energy requirements demand an increased production of crude oil. During conventional
recovery methods, about 30–40% of crude oil is recovered while rest remains trapped in the
reservoir [1–4]. Enhanced oil recovery (EOR) targets the trapped crude oil. Crude oil is a fossil
fuel which is considered as non-renewable energy source. It is composed of a mixture of different
hydrocarbons (including alkanes/paraffins, alkenes/olefins, cycloalkanes/naphthenes, and aromatics),
complex hydrocarbons (such as polycyclic aromatic hydrocarbons), resins, asphaltenes, along
with certain other hetero-species, containing nitrogen, oxygen and sulfur [5]. Heavy crude oil is
characterized by high density or specific gravity, more resistant to flow with an American Petroleum
Institute (API) gravity of less than 20◦. Extraction of heavy crude oil needs higher energy input.
Current methods of extraction include open-pit mining, steam stimulation, the addition of sand to the
oil, and the injection of air into well to create subterranean fires that burn heavier hydrocarbons to
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generate heat. Transportation of these types of crude oil through pipelines poses much difficulty and
requires certain diluting agents. Sometimes heavy and light crude oils are mixed to facilitate transport
through pipeline. This will result in contamination of the light crude and a reduction in its value [6].

Enhanced oil recovery (EOR) is a tertiary method of extracting residual oil from the reservoirs
after the primary and secondary phases of production. EOR methods adopted will either modify the
properties of reservoir fluids and/or the reservoir rock characteristics such as reducing the interfacial
tension between oil and water, reducing oil viscosity, and displacing oil through porous rocks [7,8].

Microbial enhanced oil recovery (MEOR) has become an important, fast developing tertiary
recovery method which uses microorganisms or their metabolites to enhance the recovery of residual
oil [7–10]. MEOR is different from conventional EOR methods such as CO2 injection, steam injection,
chemical surfactant and polymer flooding, in that it involves injecting live microorganisms and
nutrients into the reservoir so that bacteria and their metabolic products mobilize the residual oil.
It is considered to be a more environmentally friendly method since it does not involve any toxic
chemicals and it is easy to carry out in fields since it does not need any modifications of existing
water-injection amenities [11–13]. MEOR takes place by different mechanisms, such as reduction of
oil-water interfacial tension and alteration of wettability by surfactant production, selective plugging
by microorganisms and their metabolites, oil viscosity reduction by gas production or degradation
or biotransformation of long-chain saturated hydrocarbons, and production of acids which improves
absolute permeability by dissolving minerals in the rock [14]. The microbial metabolic products
include biosurfactants, biopolymers, acids, solvents, gases, and enzymes. The bacteria used in
MEOR are usually hydrocarbon-utilizing, non-pathogenic, and are naturally occurring in petroleum
reservoirs [15].

Biological processing of heavy oil is a cost-effective and eco-friendly approach which provides a
higher selectivity to specific reactions to upgrade heavy oil. Microbial systems which are capable of
biotransforming oil fractions are used in heavy oil reservoirs for increased oil recovery by reducing the
oil viscosity [16]. Many microorganisms capable of biotransforming hydrocarbons using crude oil as
the sole carbon source have been identified [16–22]. A successful field trial using oil biotransforming
bacteria without injection of nutrients has been reported [3,23]. The role of spore-forming bacteria
in crude oil biotransformation, and competent Bacillus strains existing in many oil-polluted sites
have been widely studied [24–28]. The economy of countries, such as Oman, is highly dependent
on revenues generated from crude oil production and a cost effective, environmentally friendly
alternative method of upgrading and producing heavy crude oil will be a significant benefit. Also,
the transportation of heavy oil through pipelines will be facilitated by biotransformation. The goal of
this study was therefore to demonstrate the potential of Bacillus halodurans and Bacillus firmus for the
biotransformation of heavy crude oil (4.57◦API).

2. Materials and Methods

All chemicals and media were from Sigma-Aldrich Co. (St. Louis, MO, USA), Analytical Reagent
(AR) grade.

2.1. Culture Media and Cultivation

Two different media were used for the isolation of bacterial cells for the biotransformation study,
Bushnell-Haas (BH) [29] and mineral salt (Medium C) [30]. Medium C (pH = 7 ± 0.2) contained (g L−1):
NH4NO3 (4.002); KH2PO4 (4.083); Na2HPO4 (7.119); MgSO4·7H2O (0.197). To this was added, 1 mL of
trace metal solution containing (g L−1): CaCl2 (0.00077); FeSO4.7H2O (0.0011); MnSO4·4H2O (0.00067);
Na-EDTA (0.00148). The BH medium (pH = 7 ± 0.2) consisted of (g L−1): MgSO4 (0.2); CaCl2 (0.02);
KH2PO4 (1.0); K2HPO4 (1.0); NH4NO3 (1.0); FeCl3 (0.050). All media were sterilized by autoclaving at
121 ◦C at 15 psi for 15 min.



Colloids Interfaces 2018, 2, 1 3 of 18

2.2. Characterization of Soil and Oil Samples

A total of 10 different soil samples were characterized for pH, mineralogy analysis using X-ray
diffraction (XRD), extractable total petroleum hydrocarbons (eTPH) and moisture content as described
previously [20]. Briefly, the heavy crude oil contaminated soil samples were mixed with anhydrous
sodium sulfate to remove moisture in a capped conical flask. The eTPH was estimated by mixing
10 g of sample with 30 mL of dichloromethane (DCM, high pressure liquid chromatography (HPLC)
grade, 99% pure), capped tightly, mixed well by inverting the flasks several times and then transferred
to a mechanical shaker for 4–5 h and allowed the sediments to settle for 1 h. The solvent with
the hydrocarbon was filtered through Whatman® qualitative filter paper, Grade 1 110 mm into a
pre-weighted conical flask and allowed to concentrate overnight [31–33]. The moisture content of the
soil samples were found to be in the range 0.018 to 0.024 m3/m3. The heavy crude oil viscosity was
measured using a Rheolab QC rotational viscometer and API gravity with a DSA 5000 M density meter.

2.3. Isolation of Spore Forming Bacterial Strains Using Heavy Crude Oil as Carbon Source

Spore-forming bacteria were isolated from soil samples contaminated with heavy crude oil.
The sampling site was a contaminated area near oil wells of one of the oil rigs in Oman. The subsurface
soil samples (8 cm below surface) were aseptically collected from seven different regions in random
manner around each well and mixed together. The soil samples were collected with pre-sterilized
shovels into sterilized bags, properly labelled and transferred to the laboratory and stored at 4 ◦C until
use. Heavy crude oil samples used in the study were collected from the oil field in sterile bottles and
stored for further studies.

For the isolation of spore forming isolates, 1 g of soil sample mixed with 10 mL distilled water
was vortexed thoroughly and the vegetative cells were killed by boiling the mixture in a water bath
at 90 ◦C for 30 min [20,26]. 5 mL of the supernatant served as an inoculum for the first enrichment
in both media in 250 mL conical flasks. 1% (w/v) heavy crude oil was added to the media used for
the isolation as the sole carbon source. The flasks inoculated with the supernatant were incubated
at 40 ◦C, 160 rpm for two weeks. A negative control flask without heavy crude oil was set up and
incubated at the same conditions. A 1% (w/v) aliquot from the first enrichment served as the inoculum
for second enrichment which was incubated at the same conditions for a further one week period.
The enrichment technique for the isolation of bacteria has already been reported [34,35]. The dilutions
from both the first and second enrichments were spread-plated on corresponding fresh agar plates and
incubated at 40 ◦C for 24 h. Well-isolated single colonies were picked up carefully and by successive
streaking in fresh agar plates resulted in pure isolates, which were stored in 60% (v/v) glycerol stock
solution at −80 ◦C.

2.4. Identification of Bacillus firmus and Bacillus halodurans

Among the 40 isolates studied, the ones which showed maximum growth on agar plates were
identified using a MALDI Biotyper (Bruker Daltonik GmbH, Bremen, Germany) [36] and 16S rDNA
sequencing. For the Biotyper identification, a direct smearing method was used where 24 h-grown
pure cultures were smeared on the target plate and layered with 1 µL sinapinic acid. The target plate
was inserted in the Matrix Assisted Laser Desorption/Ionization-Time of Flight-Mass Spectrometer
(MALDI-TOF/MS) instrument and the protein fingerprints were generated. The integrated software
generates an outcome list, by comparing the fingerprint of the reference sample with the reference
spectra in the database, in which species with the most similar fingerprints are ordered according to
their logarithmic score value (log (score value)) [37].

16S ribosomal DNA (rDNA) sequencing was performed using 27F and 1492R primers of the
genomic DNA isolated using PowerSoil DNA isolation kit (Mo Bio Laboratories Inc., Carlsbad,
CA, USA), as reported before [20]. The amplification reaction (Polymerase Chain Reaction (PCR)),
was performed using T100 thermal cycler. The amplification reaction was performed on a total volume
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of 25 µL containing: 12.5 µL master mix (Taq polymerase and deoxynucleotide triphosphate (dNTP)
mix), 9.5 µL double distilled water, 1 µL extracted DNA and 1 µL of each primer. PCR amplification
was performed with an initial denaturation step at 94 ◦C for 3 min followed by 35 cycles of a 1 min
denaturation step at 94 ◦C, a 2 min annealing step at 53 ◦C, and a 2 min elongation step at 72 ◦C,
with a final extension step at 72 ◦C for 7 min using a 2720 thermal cycler. The PCR products were
detected in 1.6% agarose gel electrophoresis. The PCR products were purified using QIAquick PCR
purification kit (QIAGen, Carlsbad, CA, USA). The BigDye® Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems™, Foster City, CA, USA) was used for de-novo sequencing. The sequencing was
done using 3130 XL Genetic Analyzer (Applied Biosystem-Hitachi, Waltham, MA, USA). The sequences
of the 16S ribosomal RNA (rRNA) genes identified in this study were submitted to the NCBI GenBank
databases under the accession numbers KP119100 and KP119100.

2.5. Growth Characteristics during Biotransformation under Aerobic Conditions

The effect of heavy crude oil concentration on the growth of the isolates in BH medium was
studied for a period of 10 days. The BH medium with 1% w/v, 3% w/v, 5% w/v and 7% w/v of heavy
crude oil was inoculated with the two strains of bacteria, B. firmus and B. halodurans and incubated at
40 ◦C and 160 rpm. One-way ANOVA was conducted to determine if the heavy crude oil concentration
had an effect on the growth of the isolate. A Kruskal-Wallis test was done to evaluate the effect of
crude oil concentration in the pH of the culture medium.

2.6. Biotransformation Studies Using GC-MS

Isolates, B. firmus and B. halodurans were incubated in BH medium containing 1% heavy crude
oil as the sole carbon source for a period of nine days to determine the biotransformation potential of
the isolate under aerobic conditions. Seed cultures of the corresponding isolates were prepared from
24 h grown isolates in Luria-Bertani broth at 40 ◦C and 160 rpm. One percent (v/v) of the seed culture
served as the inoculum for 100 mL BH medium with 1% heavy crude oil and incubated at the same
conditions described. The contents of each flask for each isolate were extracted on the third, sixth, and
ninth days of incubation for GC-MS analysis. All experiments were done in triplicate. The cell free
extract was analyzed for the production of biosurfactant using Drop Shape Analyzing system-DSA 100
(Krüss GmbH, Hamburg, Germany) by measuring the surface tension (ST) and interfacial tension (IFT).
IFT was measured against n-hexadecane.

The extraction of the biotransformed heavy crude oil at the third, sixth, and ninth days of
incubation by the isolates were done by vigorously mixing the contents with 20 mL DCM in a
separating funnel allowing the mixture to separate to different fractions. The DCM fraction with
biotransformed heavy crude oil was collected carefully in a glass collection tube. The collected fraction
was then purified by passing through silica G-60. The column was sequentially eluted with hexane to
obtain the aliphatic fractions and then with hexane:DCM (1:1) to elute the aromatic fractions [38].

The fractions were analyzed by GC MS/MS with DB 5 capillary column (30 m × 0.32 mm internal
diameter, 0.1 mm thickness) (Waters, Quattro MicroTM GC MS/MS, Micromass UK Ltd., Wilmslow,
UK) following EPA Method 1655 [39]. Helium was used as a carrier gas and a constant flow rate of
2 mL/min was set. Injector and detector temperatures were 350 and 370 ◦C, respectively. The oven
temperature program was: initial temperature 50 ◦C for 1 min, raised to 350 ◦C at a rate of 10 ◦C/min,
and a hold at 370 ◦C for 1 min.

2.7. Core Flooding Experiments

The core flooding experiments were performed to study the ability of the isolates to degrade heavy
crude oil under anoxic conditions and to evaluate the potential of the strain in heavy oil recovery. The
heavy crude oil sample used in the core flood experiments was degassed and dehydrated. The brine
was purged with nitrogen. The Berea sandstone cores (absolute permeability 350–360 × 10−2 µm2)
were cleaned in methanol using a Soxhlet apparatus. The cleaned cores after being dried at 80 ◦C for
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24 h were saturated with filtered, sterilized formation water for 12 h in a desiccator under vacuum.
The formation water was collected from one of the Oman heavy oil fields. The characteristics of
brine was as reported before [20]. The cores were then placed in the core flood apparatus and heated
in the oven provided in the system to 50 ◦C, mimicking the reservoir condition. The pore volume
was calculated as the difference in the wet and dry weights of the core and was flooded with four
pore volumes (PV) of brine at 0.4 cm3/min to ensure 100% brine saturation and to degas the core.
The cores were then injected with heavy crude oil until no more water was produced until it reached
the irreducible water saturation (Swr). The initial oil saturation was calculated volumetrically from the
amount of injected oil and produced water. Secondary recovery of the heavy oil was done by flooding
the core with brine at a rate of 0.4 cm3/min, until no more oil was produced. The residual crude heavy
oil in the core was measured from the volume of oil produced.

For the core flooding experiment, the mother inoculum was prepared by 24 h-grown isolates in
Lysogeny broth (LB) medium (in Luria Bertani broth) (OD620 = 1.324; 1.06 × 109 CFU/mL for B. firmus
and OD620 = 1.672; 1.34 × 109 CFU/mL for B. halodurans). Freshly prepared sterile BH medium was
added to the mother inoculum in a ratio of 1:4. One PV of the mixture was injected into the core
and the system was shut in for 9 days at 50 ◦C. For evaluating the potential of the strains in extra
heavy oil recovery, after the shut in period, the extra recovered oil was collected in graduated tubes
by flooding with brine, and then measured. A control experiment was performed at same conditions,
but without the injection of the isolates. The effluent collected during the tertiary recovery was tested
for the presence of the isolates by MALDI Biotyper. The extra recovered oil was analyzed by GC-MS
for determining the biotransformation of heavy crude oil. Scanning electron microscopy (SEM; JEOL,
JSM-7600F Field Emission SEM, Tokyo, Japan) analysis of the core specimen from the outlet, middle
and inlet portions was done after fixation using glutaraldehyde and osmium, dehydration using
ethanol and critical point drying. The specimens were then mounted on stubs and were coated with
gold using sputter coater for SEM analysis [20].

2.8. Statistical Analysis

All data analyses were done using the statistical software MINITAB 14 (Minitab, Ltd., Coventry,
UK) with a maximal Type 1 error rate of 0.05. Kruskal-Wallis non parametric test was used where the
assumptions of analysis of variance (ANOVA) were not met.

3. Results

3.1. Characterization of Soil and Oil Samples

The heavy crude oil-contaminated soil samples were collected and stored appropriately. The pH
of the 10 soil samples were measured as 8.5 ± 0.5. The eTPH of the soil samples were ~4.2% and the
moisture content of ~0.024 m3/m3. The mineral compositions of the 10 soil samples measured by XRD
showed that all of the soil samples contained calcite and quartz; albite and palygorskite were present
in 8 soil samples out of 10 samples tested. Other minerals observed were anorthite, dolomite, gypsum,
halite, microcline, muscovite, rutile, suhailite and takanelite (Table 1). The heavy crude oil sample
viscosity was determined as 650,000 mPa·s and as 4.57◦ API.

3.2. Isolation and Identification of Oil-Oxidizing Bacteria, Bacillus firmus and Bacillus halodurans

The isolates that were capable of utilizing heavy crude oil as carbon source were isolated based
on their morphology. The isolates which showed maximum growth on agar plates in short period
of time were selected for the study. The isolates were identified initially by MALDI-Biotyper as
Bacillus firmus and Bacillus halodurans with a score value above 1.8. Phylogenetic analysis of the 16S
rRNA genes of the isolates BG4 and BG5 revealed >97% similarity to the sequences of Bacillus firmus
and Bacillus halodurans, respectively.
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Table 1. Minerology of soil samples from XRD analysis.

Mineral
Soil Samples

SA SB SC SD SE SF SG SH SI SJ

albite 1 1 0 1 0 1 1 1 1 1
anorthite 1 0 0 0 0 0 0 1 0 0

calcite 1 1 1 1 1 1 1 1 1 1
dolomite 0 1 0 0 0 0 0 0 0 0
gypsum 1 0 1 1 0 1 1 0 1 1

halite 0 1 0 1 0 0 1 1 0 1
microcline 0 0 0 0 0 0 0 1 1 0
muscovite 0 0 0 0 0 1 0 0 0 0

palygorskite 1 1 1 1 1 1 1 0 1 0
quartz 1 1 1 1 1 1 1 1 1 1
rutile 0 0 1 0 0 0 0 0 0 0

suhailite 0 1 0 0 0 0 0 0 0 0
takanelite 0 0 0 0 1 0 0 0 0 0

1 = present; 0 = absent.

3.3. Growth Characteristics of Bacteria during Crude Oil Degradation under Aerobic Conditions

The growth characteristic study of the two isolates showed that heavy crude oil concentration
up to 7% (w/v) had no significant effect on pH for both the isolates, where the pH increased from
~7.5 to ~9.5, at all crude oil concentrations. In contrast, the OD620 values showed significant effects for
1 and 3% (w/v) heavy crude oil concentrations for B. firmus in BH medium, while no significant effect
was found for B. halodurans. Statistical analysis was performed using MINITAB 14 for determining the
effect of heavy crude oil on the growth of the isolates. The ANOVA p-value for OD620 for B. firmus was
p = 0.004 < 0.05 and the post hoc analysis, Tukey test showed that the growth rate at 1% and 3% (w/v)
was significantly different from 5% and 7% (w/v) (Figures 1 and 2).
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3.4. Biotransformation Studies Using GC-MS

The biotransformed heavy crude oil incubated with B. firmus and B. halodurans for nine days
in BH medium was extracted with DCM on the third, sixth and ninth days of incubation and was
purified by passing through Silica G60 column. The fractions sequentially eluted with hexane and
hexane:DCM (1:1) were analyzed using GC-MS. The analysis showed 81.36% biotransformation of
heavy crude oil for B. firmus and 81.93% for B. halodurans compared to the abiogenic control. The total
aromatic fractions reduced during the period of incubation were 70.80% for B. firmus and 47.77% for
B. halodurans and aliphatics with 58.22 and 88.21% respectively. An increase in the concentration of
aliphatic compounds was also observed (Figures 3–6).
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3.5. Core Flooding Experiments

Berea sandstone cores were used to evaluate the potential of isolates in heavy oil recovery.
The experiment was conducted under anaerobic condition mimicking the oil field conditions.
Throughout the experiment, the temperature was maintained at 50 ◦C and a pressure of 1000 psi.
The oil initially in place (OIIP) in the core for B. firmus BG4 was 13.2 mL (Soi = 79.6%). The water
flooding (5 PV) resulted in recovery of 50.75% of initial oil (OI) corresponding to 6.7 mL of the initial
oil present in the core. After nine days incubation with the isolate B. firmus BG4, the system was again
injected with 5 PV of brine that resulted in a total recovery of 61.22% (7.18 mL) of initial oil present in
the core, in which 10.46% (0.68 mL) was contributed by the action of the isolate.

The OIIP in the core for B. halodurans BG5 was 14.2 mL, Soi = 84.02%. The water flooding resulted
in recovery of 54.92% (7.8 mL) of OIIP for B. halodurans. The tertiary recovery by B. halodurans after nine
days shut-in period resulted in 7.8% (0.5 mL) extra recovery of residual oil by the biotransformation of
heavy crude oil compared to the control experiment. The extra recovery measurements were based
on the residual oil (RO) present in the core (Figure 7a,b). No pressure changes were observed during
bacterial flooding. The effluent analyzed using MALDI Biotyper revealed the presence of the isolates.
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The migration of isolates inside the core was further determined by SEM analysis and the
bioconversion of heavy crude oil was estimated by GC-MS analysis [3,40–42]. The extra recovered oil
was analyzed using GC-MS which revealed that the biotransformation of heavy crude has occurred
anaerobically. The percentage of aromatic compounds was reduced, and the concentration of lighter
hydrocarbons has increased (Figure 8a–c; Tables 2 and 3). SEM analysis of the core indicated
the presence of both isolates inside the core, which indicated their ability to grow anaerobically
(Figures 9a,b and 10a,b).
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Table 2. GC-MS chromatogram analysis for the extra recovered oil due to biotransformation by
B. firmus.

RT Identified Compound Carbon No.

9.63 2-methyl-1-pentanol C6
9.82 cycloheptanol C7
10.06 1,2-dibromo-octane C8
10.65 2,4,4-trimethyl-1-hexene C9
11.08 1,2-dibromo-2-methyl-undecane C12
12.41 1,2-dibromododecane C12
13.17 3,7,11-trimethyl-1-dodecanol C15
13.67 1-nonadecanol C19
14.87 hexadecanoic acid, (3-bromoprop-2-ynyl) ester C19
15.39 1-bromoeicosane C20
17.15 5,15-dimethylnonadecane C21
18.12 2-nitro-1,3-bis(octyloxy)benzene C22
19.08 7-hexyldocosane C28
20.02 11-decyldocosane C32
21.76 tritriacontane C33
22.06 1-hexadecylheptadecylcyclohexane C39
22.58 tetratetracontane C44
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Table 3. GC-MS chromatogram analysis for the extra recovered oil due to biotransformation by
B. halodurans.

RT Identified Compound Carbon No.

3.47 1,2-dibromo-2-methylundecane C4
4.06 2-nitrocyclohexanone C6
5.51 2,5-heptadecadione C7
5.95 1,7-dichloroheptane C7
6.49 2,2-dimethyl-3-pentanol C7
6.84 1-chloro-heptane C7
8.10 N-methylcyclohexanamine C7
9.64 acetic acid, hexyl ester C8
9.80 1,2-dibromo-octane C8
11.06 1,2-dibromododecane C12
12.42 1-chlorododecane C12
13.18 1-nonadecanol C19
14.88 1- eicosanol C20
16.01 9-octadecenyl acetate C20
17.14 dimethylnonadecane C21
18.11 tetracosane C24
19.09 7-hexyldocosane C28
20.90 2-(1-decylundecyl)-1,4-dimethyl cyclohexane C29
21.76 11-decyldocosane C32
22.57 tritriacontane C33
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4. Discussion

Heavy crude oil, of significant economic value, poses difficulty in recovery because of its high
viscosity and low flow characteristics. EOR methods were employed to overcome the difficulty. MEOR
is a tertiary recovery method which can enhance the recovery of crude oil [43]. The soil sample pH
was found to be 8.5 ± 0.5, which was slightly alkaline in nature. It has already been reported that
the fractionation of hydrocarbons is higher under slightly alkaline conditions [44–46]. The eTPH was
found to be ~4.2%. The mineralogy study of the 10 soil samples showed that minerals such as calcite,
quartz, albite, palygorskite, anorthite, dolomite, gypsum, halite, microcline, muscovite, rutile, suhailite
and takanelite are present in the soil samples. The heavy crude oil sample viscosity and API gravity
were determined as 650,000 mPa·s and 4.57◦, respectively.

In this study, two indigenous strains, B. firmus and B. halodurans having the potential of
biotransforming heavy crude oil were isolated from heavy crude oil contaminated soil samples
collected from one of the Oman oil fields. There are reports for the ability of native bacteria to
mineralize crude oil hydrocarbons in oil contaminated sites [47,48]. Identification of the isolates were
done using protein profiling by Bruker’s MALDI Biotyper [36] and by 16S rRNA gene analysis showing
>97% sequence identity with respective genes in the National Center for Biotechnology Information
(NCBI) database [49].

Heavy crude oil is a complex mixture of organic compounds [50] and is somewhat resistant to
microbial action. Only a few microbes can act on crude oil, most of the strains identified being able to act
on a narrow range of substrates [51]. The community composition of indigenous bacteria in Gulf beach
sands indicated the abundance of members of the Gammaproteobacteria and Alphaproteobacteria
as the major players in oil degradation [52]. Polycyclic Aromatic Hydrocarbons (PAH)-degrading
capabilities of Arthrobacter, Burkholderia, Mycobacterium, Pseudomonas, Sphingomonas and Rhodococcus
were studied extensively [53]. B. stearothermophilus was reported to utilize only hydrocarbons of C15

to C17 [54], whereas A. borkumensis AP1, SK2, and SK7 could act only on alkanes ranging from C6 to
C16 [55]. The isolates B. firmus and B. halodurans are the first reports to biotransform heavy crude oil of
4.57◦ API gravity.

The crude oil utilization capability of the isolates were determined by the study of growth
characteristics in heavy crude as the sole carbon source, the technique has been used in several studies
to determine the oil degradation potential of Pseudomonas and Bacillus sp. [47,56]. Higher concentrations
of hydrocarbons might inhibit biodegradation by limiting nutrient or oxygen supply or by its toxic
effects [57]. B. firmus and B. halodurans were shown to have significant growth in BH medium with up
to 7% heavy crude oil, which implicates the isolates’ tolerance to higher concentrations of heavy crude
oil. The pH of the medium turned became more alkaline during the growth period. It was already
reported that a slightly alkaline pH may enhance the rate of biodegradation [44–46]. The findings
suggest the isolates as being potential candidates for biotransformation of heavy crude oil.

Using GC-MS analysis showed 81.36% biotransformation of heavy crude oil for B. firmus and
81.93% for B. halodurans compared to the abiogenic control, which was about 8–10%. Spore forming
consortia isolated from Oman oil fields which could biotransform heavy oil after 12–21 days of
treatment has already been reported [20,26]. The ability of mixed bacterial consortia to degrade 28–51%
of saturates and 0–18% of aromatics present in crude oil or up to 60% crude oil was also reported [58,59].
B. stearothermophilus isolated from Kuwait oil fields was able to degrade pure hydrocarbons of a chain
length of C15 to C17, but were not able to degrade crude oil. A. borkumensis AP1, SK2, and SK7
was reported capable of utilizing only alkanes ranging from C6 to C16 [55]. This study showed that
isolates, B. firmus and B. halodurans were mostly utilizing aromatic fractions in the crude oil and
fractionation of which led to increase in the amount of aliphatic compounds. Several enzymes such as
oxidoreductase (laccases and cytochrome-P450 mono-oxygenase), xylene monooxygenase, catechol
2,3-dioxygenase, benzoyl-CoA reductase and others, are reported to play an important role in bacterial
biodegradation of crude oil and polycyclic aromatic hydrocarbons [5]. We are further analyzing these
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bacterial isolates for presence of genes encoding for such enzymes, which are responsible for heavy
crude oil biotransformation.

Heavy oil that is trapped in oil reservoirs after primary and secondary recovery can be recovered
by biotransforming the heavier fractions to lighter ones. Bacillus spp. that could degrade higher
n-alkanes (>C27) under anaerobic conditions were reported [60]. The most abundant compound
present during the ninth day of incubation was hexadecanoic acid (RT 14.87) for B. firmus and dodecane
(RT 12.42) for B. halodurans (Tables 2 and 3). Bacteria from the oil fields in Japan and China degrading
n-alkane were reported [33,61]. B. firmus and B. halodurans in this study showed fractionation of higher
n-alkanes having carbon numbers up to C54. It was reported that Thermus sp. which was isolated from
the reservoir of the Shengli oil field in East China, was capable of transforming crude oils [62]. MEOR
studies using Bacillus spp. showed an extra recovery of 9.6% at 37 ◦C and 7.2% at 55 ◦C in core flood rig
studies using crude oil of 26◦ API, due to the combined effect of biosurfactant and its biotransforming
ability [63]. An extra recovery of 16% of 13.3◦API crude oil was reported with B. licheniformis [64,65].
Youssef et al. [66] reported all the possibilities associated with microbial processes (both beneficial
in EOR and detrimental) relevant to petroleum industry as in-depth analysis. In this study the extra
recovered oil from tertiary recovery was 10.44% and 7.69%, respectively, for B. firmus and B. halodurans.

5. Conclusions

The ability of the isolates, B. firmus and B. halodurans, to grow at higher concentrations of heavy
crude oil and their biotransformation ability by converting heavy fractions of crude oil to lighter
ones, by utilizing mostly aromatic compounds indicated that the isolates showed promise for MEOR.
The extra recovery of crude heavy oil in the core flood experiments and migration of bacteria in porous
sand stone cores further confirms this. To the best of our knowledge, this is the first report of B. firmus
and B. halodurans capable of biotransforming heavy crude oil of 4.57◦ API. All these findings have
indicated that both isolates B. firmus and B. halodurans are promising candidates for MEOR applications
and should be studied further.
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