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Abstract

Students must navigate large catalogs of courses and make appropriate enrollment de-
cisions in many online learning environments. In this context, identifying key concepts
and their relationships is essential for understanding course content and informing course
recommendations. However, identifying and extracting concepts can be an extremely
labor-intensive and time-consuming task when it has to be done manually. Traditional
NLP-based methods to extract relevant concepts from courses heavily rely on resource-
intensive preparation of detailed course materials, thereby failing to minimize labor. As
recent advances in large language models (LLMs) offer a promising alternative for au-
tomating concept identification and relationship inference, we thoroughly investigate the
potential of LLMs in automatically generating course concepts and their relations. Specifi-
cally, we systematically evaluate three LLM variants (GPT-3.5, GPT-40-mini, and GPT-40)
across three distinct educational tasks, which are concept generation, concept extraction,
and relation identification, using six systematically designed prompt configurations that
range from minimal context (course title only) to rich context (course description, seed
concepts, and subtitles). We systematically assess model performance through extensive
automated experiments using standard metrics (Precision, Recall, F1, and Accuracy) and
human evaluation by four domain experts, providing a comprehensive analysis of how
prompt design and model choice influence the quality and reliability of the generated
concepts and their interrelations. Our results show that GPT-3.5 achieves the highest
scores on quantitative metrics, whereas GPT-40 and GPT-40-mini often generate concepts
that are more educationally meaningful despite lexical divergence from the ground truth.
Nevertheless, LLM outputs still require expert revision, and performance is sensitive to
prompt complexity. Overall, our experiments demonstrate the viability of LLMs as a tool
for supporting educational content selection and delivery.

Keywords: Al in education; concept generation; large language models; relation identification;
prompt engineering

1. Introduction

In MOOC environments, learners often have the autonomy to select courses based on
their interests and educational objectives. However, the vast array of available courses can
make it challenging for students to identify the most suitable courses to satisfy their diverse
needs [1]. To support informed decision-making, it is essential to provide students with the
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core concepts of a course and the relationships between the concepts. Such information
offers valuable insights into the course content and the prerequisites necessary for effective
learning [2]. While educational institutions and MOOC platforms often provide a sharing
environment for course materials, syllabi, and keywords, faculty members or academic
staff have to create these resources manually. This process is both time-consuming and
resource-intensive, posing a significant challenge to scalability [3].

To address this, researchers have focused on the automatic extraction of course
concepts [3,4] and the relations between these concepts [5,6] using course information.
For example, Lu et al. [4] proposed DS-MOCE, which leverages pre-trained language
models and discipline-specific embeddings to extract course concepts from MOOCs with
minimal manual annotation. Aytekin et al. [5] presented a machine learning-assisted
framework that integrates semantic analysis and expert validation to generate concepts
with prerequisite relations. While these approaches effectively identify concepts and their
relationships, they exhibit several notable limitations. One major challenge is their heavy
reliance on detailed course content [4]. Existing studies typically extract course concepts
from textual materials and predict relationships based on metrics such as the location and
frequency of concepts within the text, making it difficult to generate high-quality course
concepts when limited information is available [3]. Therefore, these methods focus on
explicit textual features rather than conceptual inference, and they struggle to generate
concepts that may not appear in the text or that occur infrequently, even though these
concepts are crucial for understanding the course [3]. For example, consider the following
course description: “This course introduces supervised and unsupervised learning, cover-
ing linear regression, logistic regression, decision trees, and K-means clustering”. Previous
methods would identify concepts like supervised learning, unsupervised learning, linear
regression, and K-means clustering. However, they would likely fail to recognize important
but unstated concepts such as Bayesian classification, model evaluation, overfitting, and
data preprocessing, which are essential to understanding machine learning. Similarly, the
identification of inter-conceptual relationships is highly constrained by the availability
of conceptual information [7]. Previous methods often rely on explicit co-occurrences or
external knowledge bases, making them tend to identify only surface-level associations
rather than capturing deeper semantic or causal relationships between concepts.

The integration of Large Language Models (LLMs), such as GPT, into educational prac-
tices has garnered increasing attention as educational paradigms evolve and technology-
driven approaches gain prominence. With their ability to understand context, generalize
beyond literal content, and infer implicit relationships, LLMs have the potential to overcome
key limitations of traditional NLP methods. Recent studies have explored the use of LLMs
for generating course-related content, including knowledge concepts and syllabi [8-11].
However, despite these promising capabilities, LLM-generated outputs can sometimes
include factual inaccuracies or logical inconsistencies. While such issues may be relatively
easy to identify in general tasks like essay writing or programming, they become signif-
icantly harder to detect in more specialized educational tasks, such as the generation of
knowledge concepts or prerequisite structures [12,13]. These subtleties pose challenges for
quality assurance and highlight the need for rigorous and systematic evaluation of LLMs’
performance in educational contexts, especially in tasks that involve curriculum-level
concept modeling and relation identification. This challenge underscores the need for sys-
tematic evaluation of Al-generated outputs to ensure their reliability and educational value.
However, none of these studies have systematically evaluated LLMs’ ability to generate
and extract curriculum concepts, let alone explored their potential for identifying inter-
conceptual relationships. Existing LLM-based studies in education have primarily been
exploratory and narrow in scope. For instance, Yang et al. [9] examined the feasibility of us-
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ing GPT to expand course concepts, but without systematic benchmarking or cross-model
comparison. Similarly, Ehara [10] only compared GPT-generated concepts with manual
annotations, while other efforts have focused on qualitative coding [14] or tutoring support
rather than curriculum-level concept modeling. These works demonstrate the potential
of LLMs but remain fragmented, typically addressing single tasks and lacking rigorous
evaluations that combine automated metrics, statistical analysis, and expert validation. In
contrast, our study provides the first systematic and comparative evaluation of multiple
LLM variants across concept generation, concept extraction, and relation identification,
under six carefully designed prompt configurations. This design enables us to highlight
when and how LLMs can reliably support educational applications.

Motivated by this gap, we conduct a systematic evaluation of LLMs’ ability to generate
course concepts and identify their inter-conceptual relationships. This paper explores
the feasibility of applying LLMs in the educational domain, with a particular focus on
their ability to generate relevant concepts and relations based on course information. To
comprehensively assess the capability of LLMs in educational concept identification, we
examine both concept generation and concept extraction. Concept generation represents an
open-ended task that explores the breadth of concepts LLMs can propose, while concept
extraction provides a constrained setting that allows for corrective filtering and precision.
Studying both tasks together enables us to capture complementary perspectives on the
strengths and limitations of LLMs. To this end, we conduct a comprehensive evaluation
of LLM-based models across three core tasks: concept generation, concept extraction, and
relation identification. Our experiments systematically vary the input granularity through
six tailored prompts and evaluate three LLM variants (GPT-3.5, GPT-40-mini, GPT-40). We
assess performance using both automatic metrics and human expert evaluations, comparing
LLM-generated outputs not only with traditional NLP baselines, but also against human-
annotated ground truth from a real-world dataset. Our study aims to address the following
key research questions:

RQ1: How do different input prompts affect LLMs’ performance in course concept

generation and extraction across varying levels of contextual detail?

RQ2: To what extent can LLM-generated course concepts align with human-annotated

ground truth and outperform traditional NLP baselines in terms of quality and coverage?
RQ3: Can LLMs accurately infer prerequisite relationships between course concepts,

and how does their performance vary under different information conditions?

RQ4: Can we use LLM-generated concepts and relations for supporting practical

educational scenarios?

This study makes the following contributions:

¢  We systematically evaluate LLMs across three core educational tasks: concept genera-
tion, concept extraction, and relation identification.

*  We design six levels of prompt configurations that vary in informational granularity,
enabling fine-grained analysis of how input context affects LLMs’ performance across
different task constraints.

*  We show the effectiveness and reliability of LLM-generated outputs through com-
prehensive quantitative and qualitative evaluations, including comparisons with
traditional NLP baselines and human expert assessments.

*  We demonstrate the practical value of LLM-generated concepts and relations in educa-
tional scenarios such as course metadata enrichment, knowledge graph construction,
and prerequisite-aware course recommendation.

By addressing these questions, this study contributes to the growing body of knowl-
edge on the application of Al technologies in education. Our results demonstrate that
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LLMs can generate high-quality knowledge concepts and accurate inter-conceptual re-
lations across both prompt styles. Furthermore, detailed course information enhances
LLMs’ ability to produce more standardized and higher-quality knowledge structures.
This approach not only saves significant time and effort compared to manual construction
but also provides students with a more efficient way to understand and select courses.
Moreover, it offers valuable insights for the development of Al-driven educational tools,
such as course recommendation systems, paving the way for more effective and scalable
solutions in the education sector.

2. Related Work
2.1. Concept Extraction and Relation Identification

Educators have long recognized the critical role of concepts and their prerequisite rela-
tionships in learning resources, as these are essential for helping students understand the
curriculum and select suitable courses. Significant progress has been made in automating
the identification of key concepts and relations within educational materials.

Early efforts to automate course concept extraction employed a range of semi-
supervised [15], embedding-based [3], and graph-driven techniques [16]. While effec-
tive to some extent, these approaches often suffered from scalability limitations, heavy
reliance on textual content, or vulnerability to semantic noise. Foster et al. [15] proposed a
semi-supervised learning approach for core concept identification using expert-annotated
features, but its reliance on labeled data limited scalability. Similarly, Changuel et al. [17]
tackled identifying effective learning paths from web document corpora by annotating
results and prerequisite concepts. Pan et al. [3] proposed a method to extract and rank
fine-grained course concepts in MOOCs using embedding-based representations and a
graph-based propagation algorithm, addressing challenges such as low-frequency concepts
in video captions. Manrique et al. [16] applied knowledge graphs to rank concepts, yet
their approach was constrained by entity-linking quality and knowledge completeness.
Yu et al. [18] expanded course concepts using external knowledge bases and interactive
feedback, but their method suffered from semantic drift and noise. Although these methods
effectively address concept extraction, they rely heavily on textual data and often incur
high computational costs due to complex models.

Given the importance of prerequisite relationships between concepts, numerous stud-
ies have focused on this area, although extracting such relationships from textual data
remains challenging. Many researchers have relied on unsupervised or supervised tech-
niques to detect prerequisite relationships, particularly between Wikipedia articles [16,19].
Liang et al. [20] proposed Reference Distance (RefD), a link-based metric that utilizes
Wikipedia hyperlinks to assess prerequisite relations. Pan et al. [6] introduced embedding-
based methods to identify relationships in MOOC:s, leveraging textual data for relational
inference. Yet, this method still heavily relies on explicit textual cues, failing to effectively
infer implicit concept relations that are common in many curricula. Manrique et al. [21]
explored the use of general-purpose knowledge graphs, such as DBpedia and Wikidata, to
model concept dependencies. Li et al. [22] presented LectureBank, a dataset of 1352 lecture
files for NLP and related domains, and explored prerequisite chain learning using graph-
based neural networks and traditional classifiers. Zhang et al. [23] developed a variational
graph autoencoder designed to estimate precedence relations within knowledge graphs.
More recently, Aytekin et al. [5] proposed ACE, a machine learning-assisted approach
that integrates expert feedback to construct Educational Knowledge Graphs, significantly
reducing the need for manual labeling.

While these methods have shown effectiveness in concept extraction and relationship
identification, they exhibit several limitations. Notably, they heavily depend on textual
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information from course materials and are unable to generate insights beyond the provided
text. Furthermore, improved performance often comes at the cost of increased computa-
tional overhead and more complex model architectures. Recent work has integrated large
language models (LLMs) and knowledge graphs to enhance concept identification [9,10,24].
However, few studies have systematically evaluated LLMs’ capabilities in concept genera-
tion and relation identification tasks.

2.2. Large Language Models in Education

LLMs pre-trained on extensive textual data have become a cornerstone of modern NLP
research. Recent advancements in NLP have led to the development of high-performing
LLMSs, such as GPT-3, GPT-4, and Claude, which excel in tasks like machine translation,
text summarization, and question-answering [25]. Furthermore, studies have demon-
strated that LLMs can achieve remarkable results in downstream tasks with minimal or no
demonstrations in the prompt [26-28]. The emergence of LLMs, such as GPT, introduces
new educational opportunities, including the automatic generation of educational content,
personalized learning experiences, and the enhancement of educational tools [29].

A growing body of research has explored diverse educational applications of
LLMs [11,30-32], such as course recommendation, content creation, and addressing data
sparsity [10,29]. For instance, Yang et al. [9] utilized GPT to expand course concepts, eval-
uating the feasibility of using GPT-generated concepts as a direct educational resource.
Similarly, Ehara [10] examined the effectiveness of GPT-generated concepts in enhancing
interpretability and found that while these concepts aligned well with standard course
content, they required further refinement to address inconsistencies. Barany et al. [14]
investigated GPT’s potential for qualitative codebook development, comparing manual,
automated, and hybrid approaches to evaluate their impact on code quality, reliability, and
efficiency in educational research. Castleman and Turkcan [33] investigated the integration
of knowledge bases into LLM-based tutoring systems, finding that enhanced access to
knowledge bases improved these systems’ comprehension and communication capabilities,
though they still fell short of human expertise. Lin et al. [34] explored GPT-generated
feedback for tutor training, aiming to improve educational tool quality. Beyond direct
applications, LLMs can also be incorporated into various educational tools, such as course
recommendation systems [31,32,35].

While numerous studies have explored the application of LLMs’ generative capabil-
ities in education, their focus has largely been limited to specific and small-scale tasks.
For example, Yang et al. [9] used GPT to expand course concepts without systematic
benchmarking, Ehara [10] only measured similarity between GPT-generated and manual
concepts, and Barany et al. [14] investigated GPT for qualitative coding or tutoring support
rather than curriculum-level concept modeling. These efforts remain fragmented, lack
cross-model comparisons, and do not incorporate rigorous statistical or expert validation.
In contrast, our work provides the first systematic and comparative evaluation of multiple
LLMs across three fundamental tasks, which are concept generation, concept extraction,
and relation identification, under six carefully designed prompt configurations, with both
automated metrics and expert assessments. These efforts remain fragmented and primarily
exploratory. To move beyond such piecemeal investigations, our work establishes a sys-
tematic benchmark that evaluates multiple LLMs across tasks and prompts with rigorous
automated and expert-based assessments.

3. Methodology

We conducted our experiments on the MOOCCube dataset [36], which contains
683 courses, 25,161 unique concepts, and 1027 prerequisite relations. Each course includes
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textual descriptions, subtitles, and manually annotated concepts. For evaluation, we
randomly sampled 100 courses across multiple domains; this same subset was used for all
models and baselines to ensure comparability. The overall workflow for utilizing LLMs
for concept generation and relation identification is illustrated in Figure 1. Specifically, we
developed two concept-level tasks, concept generation and concept extraction, as well as a
relation-level task, relation identification. These tasks aim to evaluate the performance of
LLMs in both concept-level and relation-level tasks. To facilitate these tasks, we designed
specific prompts for LLMs to generate the required concepts and relations.

Task:

Generate new course
concepts based on
provided Course
Information

Course Information: Task: Course Information: Task: Concept Information:
Course name Select numbered concepts Course name Judge two concepts’ Concept A/B name

Course discription related to the course from Course discription prerequisite-dependency Concept A/B related course
Course concept Concept List based on Course concept based on given Concept Contextualized

Course subtitle Course Information Course subtitle Information concept A/B snippet

Input Input
Candidate

GPT Models Concept List: \{%))]l GPTModels (3] GPTModels

Concepts with ID

Format Check:
Generate at least 30
concepts

Output

Course Concepts:
New concepts based on
given Task and Course
Information

Format Check:
Generate at least 30

concepts
. below the threshold
Output Output
)
Concept IDs: Dependency scores:

Concept IDs that related to
the course

" Format Check:
The sum of scores between
the two concepts should be

Score between (-1,1);
Score suggests different

(a) Concept Generation

rerequisite relations

- \prerequisite refations )

(b) Concept Extraction (c) Relation Identification

Figure 1. Workflow of utilizing LLMs to perform two concept-level tasks and one relation-level task.
(a,b) are concept-level tasks, while (c) is relation-level task [37].

3.1. Concept-Level Tnsk Design
3.1.1. Concept Generation

The concept generation task allows LLMs to produce outputs based on the input
prompt without strict constraints or predefined response ranges. This task leverages the
model’s semantic understanding and generative capabilities to generate diverse and poten-
tially innovative responses. Previous studies on concept generation tasks have primarily
focused on open-ended generation tasks [24,38]. As shown in Figure la, we utilize LLMs
to generate relevant concepts for each course. We leverage the target course and its related
information and incorporate this information to construct a prompt for LLMs. The prompt
for the concept generation task consists of three components: task description, format
indicator, and information injection. As illustrated in Figure 2, the task description specifies
the objective, such as concept generation, and outlines the required information. The
format indicator defines the desired output structure and the number of concepts to be
generated. To ensure LLMs meet the specified requirements where LLMs may overlook
parts of the prompt requirements, a retry mechanism is implemented to verify that the
output aligns with the prompt’s criteria. Information injection provides LLMs with rele-
vant course details, including course name, description, related concepts, video subititles,
and examples.

To systematically assess the impact of varying information granularity on LLMs’
performance in generating course concepts, we designed six prompts by ablating the
information injection: Zero-Shot (P1), One-Shot (P2), Concept (P3), Desc (P4), Concept+Desc
(P5), and Subtitle (P6) to provide LLMs with different levels of contextual information.
As shown in Table 1, Zero-Shot (P1) and One-Shot (P2) offer minimal course information,
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Generation

Extraction

with Zero-Shot (P1) providing only the course name and One-Shot (P2) including both
the course name and an example. Concept (P3), Desc (P4), and Concept+Desc (P5) supply
more general course-related details, with Concept (P3) providing the course name, an
example, and related concepts; Desc (P4) offering the course name, an example, and
a course description; and Concept+Desc (P5) combining the course name, an example,
related concepts, and the course description. Subtitle (P6) delivers comprehensive course
information by extending Concept+Desc (P5) to incorporate subtitle information from the
course video. After designing these prompts to generate course knowledge concepts using
LLMs, we successfully generated relevant concepts for 100 courses, with each course having
a rich and comprehensive set of generated concepts. By structuring the prompts in this
manner, we aim to evaluate how varying levels of information granularity influence LLMs’
ability to generate relevant course concepts.

Zero Shot (P1):
One shot (P2): (SN CELID
Concept (P3): (LD D CHEITITED
Desc (P4):
Concept+Desc (P5):
Subtitle (P6):

Based on the provided course name, course description, existing course concepts, and course video subtitles, generate a set of new
course concepts that summarize the course content.

Please strictly adhere to the following requirements: 1. The generated course concepts must be directly relevant to the course
content and represent core knowledge points or technical terms. 2. Avoid generating overly general concepts. 3. The generated

Task Decsription

3 AP o 2 = 5 3 Format Indicator
concepts must be diverse and non-redundant, avoiding repetition with existing course concepts if provided. 4. Generate at least 30
course-related concepts. 5. Separate concepts using spaces without including additional content, punctuation, or formatting.
Below is an example for reference:
Course Name: Natural Disasters (Self-Paced); Course Description: Explore the causes ...; Existing Course Concepts: Climate-
Change, Natural-Disasters, ..., Course Video Subtitles: Natural disasters often occur ...; Qutput: Prediction ,Annotation, ... Example

The above example is for demonstration purposes only. The final generated concepts should be richer and adhere to the specified
requirements.

Course Name: {course_name} Course Description: {course_des} Existing Course Concepts: {existing_concepts} Course Video
Subtitles: {course videos}

Assistant: Response of ChatGPT-generated course concepts.

Information Injection

Below is detailed information about a course, including its name, description, a partial list of course concepts (separated by
spaces), and course video subtitle text from the course videos. Additionally, there is a numbered list of concepts representing
related knowledge points. Your task is to select the concept numbers relevant to the course and return only the selected numbers.

Please strictly adhere to the following rules: 1. Selected concept numbers must be directly related to the course content,
representing its core knowledge points or technical terms. 2. Return the numbers separated by spaces, without any additional
content or punctuation. 3. Selections must be made from the provided numbered list, no new numbers can be created. 4. At least
30 numbers must be returned. 5. Duplicate numbers are not allowed.

Below is an example for reference:

Course Name: Appreciation of Kunqu Art; Course Description: Kunqu is the most exemplary ...; Existing Course Concepts:
Notes Phonation Tone ...; Course Video Subtitles: Kunqu, known as the ..., Concept Number List: Experience:1 Structure:2
Harmony:3 ...; Output: 1235 9.

The above example is for demonstration purposes only. The final selected concept numbers should be comprehensive and aligned
with the specified requirements.

Course Name: {course_name} Course Description: {course_des} Existing Course Concepts: {existing_concepts} Course
Video Subtitles: {chunk} Concept Number List: {numbered_concepts_list}

Assistant: Response of ChatGPT-generated course concept numbers.

Task Decsription

Format Indicator

Example

Information Injection

Figure 2. Examples of concept generation and extraction task prompts [37].

Table 1. Information injection components across prompts (P1-P6) in concept generation and
extraction tasks.

Information Zer(f—lshot OneIiéhot P3 Concept P4 Description ConceI]:iDesc P6 Subtitle
Course Name v v v v v v
Example v v v v v
Related Concepts v v v
Course Description v v v
Video Subtitles v

3.1.2. Concept Extraction

The concept extraction task, distinct from concept generation, requires LLMs to select
the most appropriate concepts from a set of predefined options provided in the input
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prompt. The model must comprehend the options and make accurate, context-based
selections. This task emphasizes LLMs’ inference and context-based judgment abilities. To
comprehensively assess LLMs’ selection performance, we developed a novel method and
corresponding prompts. The overall workflow of the proposed method for the concept
extraction task is shown in Figure 1b. The difference in the concept extraction task is that
we provide a pre-defined and pre-numbered candidate concept list, as specified in the
prompt, and require LLMs to select the concepts from this list that are most suitable for
the course. Notably, when designing the prompt, we pre-numbered the concept list and
instructed LLMs to output the numbers corresponding to the concepts relevant to the
course, rather than the concepts themselves to prevent hallucination. This approach was
adopted because, during testing, LLMs were asked to output concepts from the candidate
list directly occasionally hallucinated and generated concepts not present in the provided
list. By pre-numbering the concepts and having LLMs output the corresponding numbers,
we ensured that the generated concepts strictly belonged to the original candidate list. The
prompt design can be found in the lower section of Figure 2. The prompt for the concept
extraction task consists of four components: a precise task description clearly instructing
the selection from a given candidate list, strictly prohibiting concept generation; a detailed
format indicator specifying output only as numerical identifiers corresponding to candidate
concepts, effectively preventing LLMs’ hallucinations; an explicit information injection,
similar in form to that in concept generation, but differing substantially in its role—it serves
as contextual reference to guide accurate selection rather than inspiration for new concept
creation; and the carefully constructed candidate concept list, pre-numbered to align with the
numerical output format required by LLMs.

In parallel with the generation task, we designed six analogous prompts for extraction,
systematically varying informational granularity: Zero-Shot (P1), One-Shot (P2), Concept (P3),
Desc (P4), Concept+Desc (P5), and Subtitle (P6), to provide LLMs with different levels of
contextual information. Each incorporating different combinations of course information
are detailed in Table 1. After designing prompts for extracting course knowledge concepts
using LLMs, we successfully extracted concepts for 100 courses. These complementary
concept-level tasks offer a comprehensive methodological framework to critically evaluate
LLMs’ performance, particularly their generative creativity and constrained reasoning
skills, in educational content scenarios.

3.2. Relation-Level Task Design

Relation identification involves identifying and extracting semantic relations between
concepts from curriculum content, descriptive texts, or knowledge structures. The goal is to
elucidate associations among course concepts such as prerequisite relations, similarity relations,
and containment relations to facilitate the construction of knowledge graphs, improve course
recommendations, and optimize student learning paths in educational contexts. Aligned
with previous studies, we focus on identifying prerequisite relations [5,22]. The overall
workflow, as illustrated in Figure 1c, we fed a pair of concepts (Concept A, Concept B) into
LLMs with specifically designed prompts containing varying levels of information about
the concepts. LLMs output a numerical score in the range of —1 to 1, representing the likeli-
hood of a prerequisite relationship between Concept A and Concept B in the pair. We adopt
the [—1, 1] range following the design of Reference Distance (RefD) [20], which encodes
prerequisite directionality on a symmetric interval. In this formulation, a positive score
indicates that Concept A is likely a prerequisite of Concept B, a negative score indicates
the reverse direction, and values near zero denote the absence of a prerequisite relation.
Concretely, the LLM is prompted to provide two directional plausibility scores, r4_,p and
rB— A, each in [0, 1] under a mutual-exclusion constraint. We then compute a signed score
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s(A,B) =rap —rg—a € [—1,1], which compactly encodes both directionality and confi-
dence. To obtain discrete labels for evaluation, we apply a thresholding step with margin 6:
if s(A, B) > 6, we assign +1 (A is a prerequisite of B); if s(A4, B) < —6, we assign —1 (Bis a
prerequisite of A); otherwise, we assign 0 (no relation). This threshold-based discretization
ensures that uncertain cases are conservatively mapped to “no relation”. Unlike cosine
similarity, which measures vector closeness, our signed scale explicitly enforces asymmetry
and supports graded confidence while producing categorical judgments for downstream
analysis. The prompt design is illustrated in Figure 3, which comprises four key compo-
nents: task description, prior knowledge, format indicator, and information injection. The task
description instructs LLMs to output likelihood scores for two scenarios: Concept A as a
prerequisite for Concept B, and vice versa. We designed the prompt based on [20], which
defines prerequisite relationships by stating that if Concept A is a prerequisite for Concept
B, the reverse cannot be true. We incorporated this as prior knowledge, ensuring that the
likelihood scores of reversed relationships ideally approach zero. To enforce this asymmetry,
the format indicator includes a retry mechanism to ensure compliance and specifies that
output scores range from —1 to 1, where 1 indicates Concept A is a prerequisite for Concept
B, and —1 suggests the opposite. This design effectively mitigates the LLMs” hallucination
issue, ensuring more reliable outputs. The information injection component provides LLMs
with relevant details about the concept pairs, including their names, contextualized concept
snippets as explanations, course names, course descriptions containing the concepts, and
relevant examples.

Zero Shot (P1):
One Shot (P2):
Exp (P3):
RC (Pa:
Exp + RC wio Desc (P5): (b G0 I D
Y] Concopt Names LExample { Gourse Name { Course Description]

Below are two concepts along with their related course information. Your task is to evaluate whether there is a prerequisite-
dependency relationship between these two concepts based on the provided information and your knowledge. Assign a score (-1
to 1) for each direction:

- A — B: Determine if Concept A is a prerequisite for Concept B.

- B — A: Determine if Concept B is a prerequisite for Concept A.

Definition of Prerequisite Relationship: A prerequisite concept must be mastered before understanding or applying the dependent
concept. The relationship has the following characteristics: 1. Logical Dependency: The prerequisite serves as foundational
knowledge. 2. Knowledge Progression: The learning path typically progresses from simpler to more complex concepts. 3.
Application Foundation: The dependent concept relies on applying the prerequisite knowledge. 4. Asymmetry: If A — B, then B
— A must score the inverse (-x). 5. Non-reflexivity: A concept cannot be its prerequisite (score = 0).

Output Format: 1. If Concept A is a prerequisite for Concept B, return a score between 0 and 1 (closer to 1 indicates a stronger }

Task Decsription

Prior Knowledge

relationship). 2. If Concept B is a prerequisite for Concept A, return a score between -1 and 0 (closer to -1 indicates a stronger
relationship). 3. If no significant relationship exists, return scores close to 0. 4. A single line containing the two scores, separated
by a space. The scores should sum to approximately 1.

Below is an example:

Concept A: Linear Algebra. Explanation for Concept A: Linear algebra basics include vectors, matrices, and determinants.
Concept B: Matrix Decomposition. Explanation for Concept B: Matrix decomposition simplifies matrices into more fundamental
components. Courses related to Concept A: {"name": "Basic Mathematics", "description": "This course introduces foundational
math, including core linear algebra topics."}... Courses related to Concept B: {"'name": "Advanced Algebra”, "description":
"This course covers matrix decomposition, eigenvalues, and eigenvectors."}... Output: 0.85 -0.8

This score indicates Concept A is a strong prerequisite for Concept B.

Concept A: {concept_a} Explanation for Concept A: Courses related to Concept A: {courses_name}
{courses_description}

Concept B: {concept_b} Explanation for Concept B: Courses related to Concept B: {courses_name}
{courses_description}

Assistant: Response of ChatGPT-generated scores of pair concepts

Format Indicator

Example

Information Injection

Figure 3. Examples of relation identification task prompts [37].

Specially, we designed six prompts with varying levels of information by ablating the
information injection component: Zero-Shot (P1), One-Shot (P2), Explanation (P3), Related
Course (P4), Explanation+Related Course w/o Desc (P5), and Explanation+Related Course (P6).
The Zero-Shot (P1) and One-Shot (P2) prompts follow the same structure as in previous
tasks, with the Zero-Shot prompt providing only the concept pair names, while One-Shot
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adding an example to illustrate the concept relationship. Explanation (P3) builds on P2 by
incorporating contextualized snippets that explain each concept separately. Related Course
(P4) includes course names and descriptions associated with the given concepts based on
P2. Explanation+Related Course (P6) integrates both contextualized concept snippets and
course information, whereas Explanation+Related Course w/o Desc (P5) is similar to P6 but
excludes course descriptions. Each prompt incorporating different concept information is
detailed in Table 2. The rationale behind our prompt design is to explore different levels
of information granularity. Specifically, P1 and P2 serve as baselines without additional
information. P3 introduces contextual explanations of individual concepts, reflecting a
concept-level augmentation, while P4 introduces related course information, representing
a course-level augmentation. Finally, P5 and P6 combine both concept-level and course-
level information to examine their joint impact on prerequisite prediction. Utilizing these
carefully designed prompts, we successfully evaluated 100 pairs of concepts to determine
their prerequisite relationships and generated corresponding scores. Our prompt design
effectively mitigates the LLMs” hallucination issue, ensuring more reliable outputs.

Table 2. Information injection components across prompts (P1-P6) in the relation identification task.

Information P1 P2 P3 P4 P5 P6
Concept Names v v v v v v
Example v v v v v
Concept Explanation v v v
Course Name v v v
Course Description v v

4. Experimental Setup

For LLM-based experiments, we used the OpenAl API with a maximum output length
of 3000 tokens, a temperature of 0.7, and top_p of 0.9. Since the API does not rely on
random seeds, reproducibility is controlled through these fixed parameter settings.

4.1. Dataset

We utilized the MOOCCube dataset [36], a large-scale MOOC dataset collected from
the XuetangX platform, to conduct our experiments. Before conducting our experiments,
we performed additional preprocessing to ensure data quality and consistency. Specifically,
we removed courses containing fewer than 10 associated concepts, as such courses provide
insufficient information for reliable evaluation. We also excluded certain courses whose
content, such as final year projects or graduation theses from specific universities, could
cause semantic ambiguity or misinterpretation. After preprocessing the dataset, it included
683 courses and 25,161 distinct course concepts. Each course in the dataset is associated
with a course description and related knowledge concepts. Since each course is presented
in video format, the dataset also includes subtitle text corresponding to each course video.
An illustrative example of course information in the dataset is shown in Table 3. The
concepts provided in the dataset were initially generated using a deep learning model [3]
trained to identify key terms from the subtitle text of each course. The model extracted
candidate concepts based solely on the textual content of the subtitles. Subsequently,
human annotators manually reviewed and refined these outputs to ensure quality and
relevance. Additionally, the dataset includes 1027 prerequisite relationships between certain
concepts. We used these concepts and relationships as the ground truth for evaluating
LLM-generated outputs.
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Table 3. An example of course information in the MOOCCube dataset.

Course Name

Manual Concept Course Description

Database technology is a core
component of various information
systems such as business processing
systems, e-commerce systems,
management information systems,
office automation systems, and big
data application systems. It is also a
crucial technical means for efficiently
managing and utilizing data
resources in an information society;,
supporting business processing, data

Principles and Development of Minimum Spanning Tree; Database analysis, information services,

Database Systems

Technology; Shortest Path scientific research, and
decision-making management. The
educational objectives of this course
are to help learners grasp the
principles and development
techniques of database systems, and
cultivate students’ engineering
abilities in database design,
programming, and innovative
applications, thereby establishing
their competencies in database
application system development.

4.2. Baselines

We compared large language models (LLMs) with traditional NLP methods for course
concept generation and extraction tasks. For LLMs, we evaluated three LLM variants:
GPT-3.5, GPT-40-mini, and GPT-40, chosen for their affordability and widespread adoption.
As traditional NLP baselines, we selected three categories of methods for comparison: word
frequency-based methods, deep learning-based methods, and graph-based methods. For
each category, we selected representative baselines:

e PMI [39]: Pointwise Mutual Information measures the statistical association between
word pairs based on their co-occurrence, often used to identify strongly related terms.

e  TF-IDF [40]: TF-IDF assigns weights to terms based on their frequency in a document
and rarity across documents, highlighting course-specific keywords.

¢  TextRank [41]: TextRank is a graph-based ranking algorithm that scores terms based
on co-occurrence, widely used for unsupervised keyword extraction.

¢ Word2Vec [42]: Word2Vec learns dense word embeddings by modeling context, en-
abling the identification of semantically similar terms in course texts.

¢  BERTScore [43]: BERTScore evaluates term similarity using contextual embeddings
from pre-trained BERT models, capturing deep semantic alignment.

e  TPR [44]: TPR combines topic decomposition and graph propagation to extract and
rank keyphrases, effectively capturing topic-representative concepts.

Among these baselines, PMI, TF-IDF, and TextRank are word frequency-based meth-
ods; Word2Vec and BERTScore are deep learning-based methods; and TPR is a graph-based
method, following the classification shown in Table 4. For traditional NLP baselines such as
PMI, TF-IDF, TextRank, Word2Vec, BERTScore, and TPR, no explicit training—testing split
was performed. Each method was applied independently to the subtitles of 100 courses to
extract candidate concepts, which were then compared against ground-truth annotations.
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Since these approaches operate in an unsupervised manner, the reported results directly
reflect their ability to extract relevant terms from course transcripts without additional
model training.

Table 4. Performance comparison (%) on MOOCCube dataset [37].

Category Method Precision Recall F1 Score Accuracy
PMI 2.90 0.90 1.26 0.63
Word Frequency TF-IDF 16.33 2.61 4.35 2.25
TextRank 14.78 2.07 3.60 1.85
D L . W2v 12.17 1.56 2.75 1.43
¢ep LeariNg  BERTScore 10.17 1.64 2.70 1.38
Graph-based TPR 13.50 1.99 3.43 1.76
GPT-3.5 67.48 39.32 46.38 34.03
LLMs GPT40-mini 13.97 19.41 15.29 9.08
GPT4o0 17.90 21.37 18.55 12.27

4.3. Evaluation Metrics

We employed four widely adopted evaluation metrics: Precision, Recall, F1 Score,
and Accuracy to quantitatively assess the performance of LLM-generated concepts, fol-
lowing prior studies in concept extraction and educational NLP [22,24]. These metrics are
commonly used to evaluate the alignment between predicted outputs and ground-truth
annotations, providing a comprehensive view of model performance. Higher metric values
indicate better alignment and overall effectiveness.

Precision measures the proportion of predicted concepts that are relevant, which can
be defined as:

’Cpred N Ctrue

Precision =

7

Cprecl

where Cpred denotes the set of predicted concepts, and Cirye denotes the set of ground-truth
concepts. Precision evaluates the correctness of the predicted concepts.

Recall quantifies the proportion of relevant concepts that are successfully predicted,
which can be calculated as:

Cpred n Ctrue

Recall = ————,
|Ctrue |

where Cpre

question of how completely the relevant concepts are retrieved.

d is the predicted concept set, and Cirye is the reference set. Recall answers the

F1 Score evaluates the overall agreement between the predicted and ground-truth
concept sets, which can be obtained as:

Fl — 2 x Precision x Recall
"~ Precision + Recall

Accuracy measures the overall agreement between the predicted and ground-truth
concept sets, and is defined as:

‘Cpred N Ctrue
Accuracy = ——m

7

’ Cpred U Ctrue
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where Cpreq U Cirue represents the union of predicted and true concept sets. It reflects both
precision and recall from a set similarity perspective. In addition to automated evaluation,
we also conducted human assessments to complement these quantitative metrics, following
previous studies on concept quality evaluation [5,9].

5. Results

5.1. Performance on Concept Generation
5.1.1. Performance Comparison with Baselines

We compare our approach with a set of representative baseline methods from the NLP
domain, spanning statistical, graph-based, and embedding-based techniques. All methods
were provided with the same input, subtitle transcripts of course videos, corresponding to
our prompt configuration Subtitle (P6). For consistency, we selected 100 courses from the
MOOCCube dataset and generated at least 30 concepts per course using both LLMs and
the baselines. Table 4 summarizes the performance results across four evaluation metrics.

Among traditional methods, TF-IDF, TextRank, and TPR demonstrate relatively better
performance compared to PMI and embedding-based approaches. However, their overall
F1 scores remain below 5%, indicating limited ability to capture the full semantic scope
of the course content. These methods are inherently constrained by surface-level lexical
patterns and term frequencies. For example, TF-IDF favors frequent but potentially generic
terms, while TextRank and TPR rely on co-occurrence graphs that may fail to prioritize
pedagogically meaningful concepts. Embedding-based approaches such as Word2Vec and
BERTScore slightly improve precision but still fall short in recall and overall alignment
with ground-truth concepts.

In contrast, LLMs, particularly GPT-3.5, achieve significantly higher scores across
all metrics. GPT-3.5 reaches a precision of 67.48%, a recall of 39.32%, and an F1 score of
46.38%, vastly outperforming all baselines. This performance gap reflects the model’s
capacity to integrate contextual cues, infer latent concepts, and generalize beyond the
literal content of the subtitles. While GPT-40 and GPT-40-mini yield lower scores than
GPT-3.5 on metrics-based evaluation, this discrepancy does not imply inferior concept
quality. Upon closer examination, we find that many concepts generated by the GPT-40
variants are pedagogically meaningful, contextually appropriate, and accurately reflect the
course content, despite differing in lexical expression or abstraction level from the anno-
tated ground truth. These differences highlight the models’ ability to synthesize relevant
knowledge beyond surface-level matching. Although GPT-4o0 is generally regarded as a
more advanced model, GPT-3.5 achieved higher quantitative scores on our string-overlap
metrics, a seemingly counterintuitive result. Several factors may explain this discrepancy.
First, since the MOOCCube ground truth was constructed by model-based extraction fol-
lowed by human correction, the annotations may retain lexical patterns characteristic of an
extraction-style process. Such patterns emphasize explicit keywords or short phrases, which
GPT-3.5 tends to reproduce more directly, leading to higher surface-level overlap with
the reference set. Second, prompt-model alignment effects likely play a role: differences
in training data distribution, tokenization, and stylistic preferences mean that GPT-3.5’s
lexical choices align more closely with the annotated vocabulary, whereas GPT-40 tends
to generate more abstract or pedagogically framed expressions. Third, we also observe a
behavioral difference between the two models. GPT-3.5 often directly extracts or replicates
keywords from the subtitles, which naturally favors string-matching metrics. In contrast,
GPT-40 frequently summarizes and reformulates the content, producing concepts that
align more closely with human judgments of pedagogical relevance but diverge lexically
from the annotations. For example, GPT-40 often produced semantically adequate but
lexically divergent outputs such as Bayesian inference instead of the annotated Bayes theorem,
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which illustrates how string-overlap metrics systematically undervalued its strengths. This
combination of factors explains why GPT-3.5 achieves higher metric-based scores, while
GPT-40 performs better in human evaluation and produces concepts that are ultimately
more meaningful for educational applications.

Although the absolute values of accuracy (34.03%) and precision (67.48%) may appear
relatively low, this is expected given the open-ended nature of concept extraction. Unlike
conventional classification tasks, the ground truth in MOOCCube contains only a subset of
possible valid concepts, causing many semantically appropriate outputs to be penalized
by strict string-overlap metrics. As a result, traditional metrics-based evaluation may
undervalue semantically relevant but lexically divergent outputs. To address this limitation,
we further conduct a human evaluation (Section 5.2), which confirms that LLM-generated
concepts are pedagogically meaningful and often outperform ground-truth annotations in
relevance and instructional value.

Beyond metric-based superiority, LLMs also exhibit qualitative advantages. Tradi-
tional NLP methods are restricted to extracting terms that are explicitly mentioned in the
input text. If a relevant concept is rare or entirely absent from the subtitles, these models
are unlikely to recover it. LLMs, on the other hand, leverage pre-trained knowledge and
language modeling capabilities to infer semantically relevant but implicit concepts. For
example, in a machine learning course, traditional methods tend to extract surface terms
such as “gradient descent” or “neural networks,” which appear frequently in the subtitles.
LLMs, however, can generate higher-level or prerequisite concepts like “bias-variance trade-
off” or “Bayesian inference,” even if these are not explicitly stated in the course transcripts.
This capacity to synthesize domain-relevant knowledge beyond the observed data high-
lights LLMs’ potential for supporting educational applications where completeness and
pedagogical value are critical.

5.1.2. Ablation Study

To contextualize the following human evaluation, it is important to note that GPT-3.5’s
higher scores on automated metrics largely stem from its tendency to replicate lexical
patterns present in the ground truth, which itself may contain residual model-specific
phrasing. GPT-40, by contrast, often summarizes or reformulates the content, producing
semantically appropriate and pedagogically meaningful concepts that diverge lexically
from the annotations. As a result, GPT-40 is disadvantaged by surface-level string matching
but aligns more closely with human judgments of concept quality. To further investigate
how varying levels of contextual input and different LLMs affect concept generation per-
formance, we conducted an ablation study involving six prompt configurations (P1-P6)
and three LLM variants: GPT-3.5, GPT-40-mini, and GPT-40. Each prompt was designed
to introduce more course-related information incrementally, ranging from minimal inputs
(e.g., course title only) to comprehensive inputs, including course descriptions, existing
concepts, and subtitle transcripts. All generated concepts were compared against the
ground-truth annotations in the MOOCCube dataset, and the evaluation results are pre-
sented in Figure 4.

Our analysis reveals several important findings. First, increasing the richness of input
information consistently enhances performance across all LLM variants. Prompts with more
detailed content (P5 and P6) lead to higher precision, recall, and F1 scores, suggesting that
LLM:s effectively leverage contextual cues to identify relevant concepts. Another notable
observation is the difference in model behavior under sparse input conditions. GPT-40 and
GPT-40-mini demonstrate relatively stable performance across low-information prompts
(P1-P3), indicating robustness in handling minimal input. In contrast, GPT-3.5 exhibits
greater variability in these early prompts, suggesting a higher dependence on input com-
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pleteness for generating accurate outputs. These patterns may reflect differing sensitivities
to contextual cues and the ways in which each model processes incomplete information.
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Figure 4. Performance comparison of different LLMs and prompts on the concept generation task [37].
For consistency, the y-axis ranges across metrics were standardized to facilitate visual comparison.
The x-axis denotes different LLMs and prompt configurations (P1-P6), while the y-axis denotes the
evaluation metric scores (Precision, Recall, F1 Score, and Accuracy, ranging from 0 to 1).

To statistically validate the above trends, we conducted within-course non-parametric
tests along two complementary axes. (i) Cross-model, fixed prompt. For each prompt, we
compared GPT-3.5, GPT-40-mini, and GPT-40 using a Friedman test (Table 5). Minimal
context (P1) yields no significant cross-model differences, whereas modest added context
(P2-P4) produces highly significant gaps across metrics (all p < 0.01). Under richer
inputs (P5 and P6), Precision and F1 remain significantly different across models (P5:
p <0.01/p < 0.05; P6: p < 0.01/p < 0.05), while Recall differences diminish (often n.s.),
suggesting recall saturation once prompts become sufficiently informative. (ii) Within-
model, varying prompts. For each model, we first ran a Friedman test across P1-P6 and
found omnibus differences to be highly significant for Precision and Recall (all p < 0.01).
To avoid redundancy, we therefore report the post-hoc pairwise Wilcoxon signed-rank
tests with Holm correction (Tables 6-8). For GPT-3.5 (Table 6), enriched prompts (P3-P6)
significantly outperform minimal prompts (P1-P2) on both Precision and Recall (mostly
p <0.01), whereas Zero-Shot instructions without added content (P4) offer limited gains
over P1 (n.s.), indicating that GPT-3.5 benefits primarily from substantive context rather
than instruction alone. For GPT-40-mini and GPT-4o (Tables 7 and 8), nearly all transitions
from sparse (P1 and P2) to richer prompts (P3-P6) are significant (p < 0.01). Among the most
informative prompts, Precision gaps are often small or non-significant (e.g., OneShot vs.
ALL), while Recall continues to improve, consistent with a pattern of precision saturation
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and continued recall gains as more context is injected. Together, these tests confirm that
(a) prompt informativeness systematically shapes performance within each model, and
(b) cross-model differences emerge and persist once the prompt contains enough signal to
be exploited.

Table 5. Friedman test results comparing LLMs under the same prompt configuration. Values indicate
chi-square statistics (df = 2) and corresponding p-values. p < 0.05 denotes statistically significant
differences and p < 0.01 indicates highly significant differences.

Prompt Precision (x2, p) Recall (x2, p) F1 (x>, p) Accuracy (x%, p)
P1 x*(2)=3.72,p =ns. x*(2)=2.31,p=ns. x*(2)=2.99,p =ns. X%(2) =299, p =ns.
P2 X*(2) =26.70, p < 0.01 X%(2) = 28.95, p < 0.01 X*(2) =27.98,p < 0.01 X%(2) =27.98, p < 0.01
P3 x%(2) =11.35,p < 0.01 x%(2) =11.35,p < 0.01 x%(2) =11.35,p < 0.01 x%(2) =11.35,p < 0.01
P4 X*(2) =22.05, p < 0.01 x%(2) = 61.93,p < 0.01 x*(2) =33.86, p < 0.01 x%(2) = 33.86, p < 0.01
P5 xX*(2) =10.17,p < 0.01 X%(2) =5.26,p =n.s. x*(2) =7.57,p <0.05 X%(2) =7.57,p <0.05
P6 xX*(2) =10.23, p < 0.01 X*(2) =5.62,p =n.s. X*(2) =8.54,p <0.05 X%(2) = 8.54,p < 0.05
Table 6. Pairwise Wilcoxon signed-rank tests (Holm-adjusted p-values) across prompts for GPT-3.5.
Each cell shows Precision/Recall. p < 0.05 denotes statistically significant differences, p < 0.01
indicates highly significant differences, while n.s. means not significant.
P1 P2 P3 P4 P5 P6
P1 - p<0.01/ns. p<0.01/p <0.01 n.s./n.s. p <0.01/p <0.01 p<0.01/p <0.01
P2 - p<0.01/p<0.01 p <0.01/ns. p<0.01/p<0.01 p<0.01/p<0.01
P3 - p<0.01/p <0.01 p<0.01/p <0.01 p<0.01/p <0.01
P4 - p<0.01/p<0.01 p<0.01/p <0.01
P5 - p<0.01/p <0.01
P6 -
Table 7. Pairwise Wilcoxon signed-rank tests (Holm-adjusted p-values) across prompts for GPT-
4omini. Each cell shows Precision/Recall. p < 0.05 denotes statistically significant differences, p < 0.01
indicates highly significant differences, while n.s. means not significant.
P1 P2 P3 P4 P5 Pe6
Pl - p<0.01/p <0.01 p<0.01/p <0.01 n.s./p <0.01 p<0.01/p<0.01 p <0.05/p <0.01
P2 - p<0.01/p <0.01 p <0.01/n.s. n.s./p<0.01 n.s./p <0.01
P3 - p<0.01/p <0.01 p<0.01/p <0.01 p<0.01/p <0.01
P4 - p<0.01/p <0.01 p<0.01/p <0.01
P5 - n.s./p<0.01
P6 -
Table 8. Pairwise Wilcoxon signed-rank tests (Holm-adjusted p-values) across prompts for GPT-4o.
Each cell shows Precision/Recall. p < 0.05 denotes statistically significant differences, p < 0.01
indicates highly significant differences, while n.s. means not significant.
P1 P2 P3 P4 P5 P6
P1 - p <0.01/n.s. p<0.01/p<0.01 p<0.01/p<0.01 p<0.05/p<0.01 p<0.01/p<0.01
P2 - p<0.01/p <0.01 p<0.01/p <0.01 n.s./p<0.01 n.s./p<0.01
P3 - p <0.01/p <0.01 p<0.01/p<0.01 p<0.01/p <0.01
P4 - p <0.01/p <0.05 p<0.01/p <0.01
P5 - n.s./p<0.01

P6
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Interestingly, GPT-3.5 consistently achieves the highest scores across all automated
evaluation metrics. However, a closer examination of the generated outputs reveals that
this advantage stems not from a universally higher quality of generation, but from a closer
lexical alignment with the ground-truth annotations. In contrast, the concepts produced by
GPT-40 and GPT-40-mini, while not achieving similarly high metric scores, often exhibit
strong pedagogical relevance and semantic validity. Upon manually reviewing samples
from all models, we found that many of the concepts generated by GPT-40 variants are
well-grounded in course content, but differ in expression or level of abstraction from
the annotated labels. For instance, GPT-40 may generate terms such as “unsupervised
pattern discovery” or “hyperplane optimization” instead of the exact ground-truth terms
“clustering” or “support vector machines.” These concepts are not incorrect or irrelevant—in
fact, they may even offer broader or more insightful representations—but their lexical
mismatch leads to lower automatic scores.

This inconsistency between evaluation metrics and actual concept quality underscores
a key limitation of string-overlap-based evaluation. As observed in prior studies [9,45],
large language models are capable of generating semantically meaningful content that
deviates from reference annotations without compromising quality. To account for this
discrepancy and more accurately assess generation outcomes, we conducted a follow-
up human evaluation (Section 5.2) in which domain experts evaluated the quality and
relevance of generated concepts beyond literal matching. This qualitative perspective
complements the quantitative analysis and provides a more reliable understanding of
model performance in open-ended educational settings.

In summary, our ablation study demonstrates that both the granularity of input
context and the choice of LLM variant significantly influence concept generation outcomes.
While GPT-3.5 excels under current evaluation metrics, GPT-40 produces outputs that
are often more abstract or semantically rich, yet undervalued by surface-based scoring.
These findings underscore the importance of integrating both quantitative and qualitative
evaluations when assessing large language models in educational applications.

5.2. Human Evaluation on Concept Generation
5.2.1. Quantitative Analysis

While metrics-based evaluation method offers a convenient way to compare model
outputs, they often fall short in capturing the true quality of generated content, particularly
when the generated concepts are semantically appropriate but differ lexically from the
annotated ground truth. As discussed in Sections 5.1.1 and 5.1.2, it is important to note that
the ground-truth concepts in the MOOCCube dataset were initially generated by a neural
model based on course subtitles and subsequently refined through manual annotation.
Although human annotators improved the quality and correctness of the extracted concepts,
the ground truth remains inherently constrained by the limitations of traditional text-based
extraction methods. Specifically, it tends to focus on concepts explicitly mentioned in the
text, making it difficult to capture broader, implicit, or abstract concepts that are essential
for fully understanding the course content. Consequently, evaluation metrics such as
Precision and F1 Score may penalize valid but lexically divergent outputs. To overcome
these limitations and obtain a more accurate assessment of concept quality, we conducted a
human evaluation involving domain experts.

We recruited four expert annotators, each with strong familiarity in their respective
subject areas, to assess the quality of LLM-generated course concepts. Three LLM variants
(GPT-3.5, GPT-40-mini, and GPT-40) were evaluated across six prompt configurations
(P1-Pé6). For each model-prompt combination, we randomly sampled 20 courses and
selected 10 generated concepts per course. In addition, the corresponding ground-truth
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concepts were included for reference comparison. Each concept was independently rated
on a 5-point Likert scale, with scores reflecting a holistic judgment based on both conceptual
correctness and course relevance:

* 1 point: Irrelevant or fundamentally incorrect concept

* 2 points: Marginally relevant or low-quality /incomplete expression

* 3 points: Generally valid, but ambiguous or weakly related to the specific course

* 4 points: High-quality concept that helps understanding of the course content

* 5 points: Core concept that clearly belongs to the course and significantly aids com-
prehension

Table 9 presents the average human evaluation scores for each model-prompt combi-
nation. Several key insights emerge from this evaluation: first, LLM-generated concepts
consistently outperform the ground-truth concepts from the MOOCCube dataset across all
prompts and models. While the ground truth maintained a fixed average score of 2.677,
LLM-generated outputs achieved notably higher scores, reaching up to 3.7. This confirms
the hypothesis raised in Sections 5.1.1 and 5.1.2—namely, that metric-based evaluations
systematically underestimate LLMs’ true performance due to their reliance on surface-level
string matching. In contrast, human evaluators were able to identify semantically appro-
priate and pedagogically valuable concepts, even when those differed lexically from the
reference set. The ground truth, generated through neural models trained on subtitles,
shares the same limitations as traditional NLP baselines: a dependence on local textual
patterns and limited abstraction. The human evaluation thus provides strong validation of
LLMs’ capacity to infer meaningful concepts beyond the literal text.

Table 9. Average scores of human evaluation for each prompt and model [37].

Model/Prompt P1 P2 P3 P4 P5 P6

Ground Truth ~ 2.677 2.677 2.677 2.677 2.677 2.677
GPT-3.5 3.613 3.454 3.630 3.346 3.083 3.205
GPT4o-mini 3.620 3.461 3.320 3.376 3.341 3.276
GPT4o 3.700 3.516 3.478 3.435 3.519 3.573

Second, GPT-40 achieved the highest overall scores, outperforming both GPT-40-mini
and GPT-3.5 across nearly all prompt configurations. Its particularly strong performance
under P1 (Zero-Shot), P2 (One-Shot), and P6 (Subtitle) highlights two complementary capabil-
ities: robustness in sparse input settings and the ability to effectively process rich contextual
data. This dual strength echoes the findings from Section 5.1.2, where GPT-40 demon-
strated stable improvements as more information was provided. By contrast, GPT-3.5
performed best under P3 but showed noticeable performance drops under denser prompts
like P5, suggesting that excess input complexity or noise may impair its generation quality.
These patterns suggest that prompt-model compatibility plays a key role in generation
effectiveness, particularly for smaller or less capable models.

Third, the relative performance across prompt types reveals that more context is not
always beneficial. Although prompts P5 and P6 contain the most detailed information,
including full subtitle transcripts, their scores do not uniformly exceed those of simpler
prompts. In fact, P1 and P2, where minimal information is given, often lead to higher scores,
especially for GPT-40. This may seem counterintuitive, but it reflects the fact that LLMs,
when given only the course name or brief description, tend to produce broad, high-level
concepts that align well with course concepts without introducing noise. In contrast, dense
inputs such as subtitles can include irrelevant or overly specific information that dilutes



Mach. Learn. Knowl. Extr. 2025, 7,103 19 of 34

output quality. This issue is particularly pronounced for GPT-40-mini and GPT-3.5, which
appear more susceptible to information overload.

Fourth, GPT-40 shows relatively consistent performance across all prompts, with
small variation in average scores. This suggests a higher degree of generalization capa-
bility, allowing it to generate high-quality outputs even when inputs vary significantly
in structure and completeness. Its internal representation of educational content appears
strong enough to support coherent concept generation under both minimal and maximal
contexts. In comparison, GPT-3.5 displays a narrower operating range—it performs well
when given structured yet moderate input but struggles under either sparse or overly
detailed conditions.

Table 10 reports the inter-rater reliability of human evaluation using Fleiss’ x. The
overall agreement across all annotators was 0.09, which falls into the “slight” range ac-
cording to Landis and Koch [46]. Per-condition values ranged from —0.00 to 0.18, with
the ground-truth concepts achieving the highest agreement (x = 0.178). These results
indicate that, while experts occasionally diverged in their judgments, such variability is not
unexpected given the inherently subjective nature of evaluating concept quality. Several
factors contributed to these differences. One key factor is that the evaluated courses covered
a broad range of disciplines (e.g., computer science, engineering, humanities, and social
sciences), making it natural for experts to be more confident in domains closer to their
expertise while being more variable in unfamiliar areas. Another factor is that experts
held different preferences regarding concept granularity: some favored broader, integrative
notions that highlight thematic structures, while others emphasized fine-grained technical
terms, leading to discrepancies in scoring. In addition, individual evaluative habits and
interpretive styles also introduced variation, particularly when concepts were semantically
valid but expressed at different levels of abstraction. Nevertheless, despite this variability,
all experts consistently agreed that LLM-generated concepts were pedagogically superior
to the ground-truth concepts (as shown in Table 9), underscoring the robustness of our
overall findings.

Table 10. Inter-rater reliability of human evaluation: Fleiss’ « for each prompt-model combination
and overall agreement. Interpretations follow Landis and Koch [46].

Model/Prompt P1 P2 P3 P4 P5 P6
GPT-3.5 0.027 0.036 0.035 0.145 0.100 0.115
GPT40-mini 0.008 0.025 0.023 0.070 0.064 0.102
GPT4o0 —0.0003  0.157 0.036 0.076 0.066 0.047
Ground Truth 0.178

Overall (all conditions) 0.090 (Slight agreement)

Taken together, these results provide a more nuanced view of model performance
and prompt design. They suggest that the best-performing configuration is not necessarily
the most information-rich one, and that model scale and architectural differences interact
meaningfully with input complexity. These findings reinforce the importance of tailoring
prompts to model capacity in real-world educational applications and further demonstrate
that human evaluation is indispensable for uncovering generation quality that may be
hidden under surface-level metric assessments.

5.2.2. Case Study

To complement the quantitative findings, we conducted a small-scale case study to
qualitatively examine the characteristics of concepts generated by different approaches.
Specifically, we compared the outputs of (1) traditional NLP baselines such as TF-IDF
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and TextRank, (2) the ground-truth annotations in the MOOCCube dataset, and (3) LLM-
generated outputs. The goal of this comparison is to explore differences in conceptual
granularity, abstraction level, and alignment with instructional content, particularly the ex-
tent to which LLMs can go beyond surface extraction to produce pedagogically meaningful
and structurally coherent concepts.

As shown in Figure 5, we selected two representative courses to illustrate these con-
trasts in depth. Across both courses, LLM-generated concepts demonstrate a noticeable
improvement in instructional value compared to the other sources. Rather than producing
isolated terms, LLMs tend to generate concepts that are thematically cohesive and instruc-
tional in tone, often resembling course module titles or learning objectives. For example,
in the Advanced C++ Programming course, while traditional methods retrieve terms like
Function or Pointer, LLMs output higher-level and more pedagogically framed concepts
such as Object-oriented programming, Inheritance and polymorphism, and Lambda expressions.
These are not just code-level keywords but reflective of broader programming paradigms
that structure how the course content unfolds. Moreover, LLM-generated concepts span
different levels of abstraction, from overarching themes down to concrete implementation
details. This layering effect is particularly evident in both courses. In the Mental Health
Education for College Students course, for instance, terms like Mental health literacy and
Cognitive-behavioral techniques appear alongside Emotion regulation and Mindfulness training,
forming a blend of foundational knowledge, psychological models, and applicable coping
strategies. This balance is rarely found in concepts extracted by statistical methods or
annotated via surface-level heuristics.

Another key distinction lies in the coherence of concept groupings. LLM-generated
lists often exhibit internal logical structure, with adjacent terms complementing or expand-
ing upon each other. In contrast, ground-truth and baseline results tend to be either too
fragmented or too generic to support instructional scaffolding. While Stress or Belief are
relevant terms, they lack the precision and framing that would make them effective as
units of teaching or assessment. Perhaps most notably, some LLMs’ outputs go beyond
what is explicitly mentioned in the course subtitles. Concepts such as Smart pointers or
Cognitive-behavioral techniques do not always surface in raw textual data but are inferred
from broader context. This suggests that LLMs are capable of synthesizing knowledge in a
way that mirrors expert-level curriculum reasoning, rather than merely extracting patterns.
These examples reinforce the potential of LLM-based models to generate concepts that are
not only relevant but also pedagogically aligned, structurally organized, and instruction-
ally versatile. This capacity makes them strong candidates for supporting downstream
applications such as syllabus design, automated curriculum modeling, or personalized
learning path generation.

5.2.3. Expert Feedback

To enrich the human evaluation with qualitative insights, we conducted follow-up in-
terviews with all four expert annotators. While the Likert-scale scores provided a structured
assessment of concept correctness and relevance, the interviews aimed to elicit pedagog-
ical considerations and evaluative dimensions not easily captured through quantitative
measures. All experts were provided with course descriptions and a representative subset
of concepts in advance to ensure contextual familiarity. Each expert participated in a
semi-structured interview lasting approximately 10 min, during which we asked about
their overall impressions of LLM-generated concept quality, any instances where LLMs
generated unexpectedly high-quality concepts, and their preferences regarding the desired
granularity of concepts for instructional purposes. These interviews yielded deeper in-
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sights into expert perceptions and highlighted nuanced factors influencing the evaluation
of concept suitability and educational effectiveness.

Course: Advanced C++ Programming

Ground Truth Abstract data type, Dynamic memory alloca-
tion, Exception handling, Linked list, Interface

TF-IDF Function, Template, Inheritance, Pointer, Con-
structor

GPT4o0 Object-oriented programming, Inheritance and

polymorphism, Smart pointers, Exception han-
dling mechanisms, Lambda expressions

Expert Comment LLM-generated concepts span multiple levels
of abstraction, from high-level programming
paradigms to specific language features.

&

Course: Mental Health Education for College Students

Ground Truth Emotional regulation, Self-esteem, Anxiety,
Identity, Stress

TF-IDF Worry, Psychological counseling, Mental state,
Belief, Emotional response

GPT4o0 Mental health literacy, Emotion regulation,

Stress coping strategies, Cognitive-behavioral
techniques, Mindfulness training

Expert Comment LLM-generated concepts are thematically co-
hesive and pedagogically actionable, reflecting
both the conceptual scope and applied skills tar-
geted by mental health education.

N

Figure 5. Comparison of concepts generated by different methods for two case courses [37].

A recurring theme throughout the interviews was the role of concept granularity in
supporting learning. Experts noted that while technical precision is important, concepts
that are too fine-grained may overwhelm students, particularly those unfamiliar with the
subject matter. Instead, broader, thematically cohesive concepts were considered more
effective in introducing course topics and guiding learner attention. This viewpoint aligns
with the evaluation patterns observed in Table 9, where generalized concepts often received
higher scores than narrowly scoped or overly specialized ones. Beyond this pedagogical
observation, the experts expressed a high level of satisfaction with the quality of LLM-
generated concepts. Many described the outputs as “surprisingly relevant” and “reflective
of actual instructional intent”. Some even noted that LLM-generated concepts could serve
as valuable input for course syllabus design or formative assessments. Compared to
ground-truth concepts or NLP baselines, the LLMs’ outputs were frequently praised for
their semantic coherence and instructional usefulness.

An interesting disciplinary distinction also emerged from the interviews. According
to one expert, LLMs exhibited different tendencies when applied to different domains. In
science and engineering courses, the models often generated specific technical terms that
aligned with canonical topics. In contrast, for humanities and social science courses, the
outputs tended to be more abstract and integrative. This observation prompted a com-
parison of average human evaluation scores across disciplines. As shown on the left side
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of Figure 6, non-science courses received slightly higher scores than science courses. The
example concepts on the right side further illustrate this: in The Historical Career and Method-
ology, LLMs generated overarching ideas such as Development Trends in Historiography,
whereas in High-Frequency Electronic Circuits, it produced precise terms like LC Oscillator
and High-Frequency Oscillation. This difference suggests that LLMs’ generative strength in
abstraction may be particularly well-suited for concept modeling in non-technical domains.
These insights highlight the importance of combining expert judgment with quantitative
evaluation. They also suggest that LLM-generated concepts, when appropriately inter-
preted, can meaningfully support educational design across diverse subject areas.

3.80._Mean Score by Field Concept Generation Results

375 Field Course Concepts

3.70 . The Historical Career Historical Source Analysis
Non-Science

and Methodology
Development Trends in Historiography

; High-Frequency High-Frequency Oscillation
Electronic Circuits

LC Oscillator

Mean Score
w w
()] o
o [V,

w
n
a

w
u
o

Non-Science Science
Field

Figure 6. Human evaluation of the science and non-science courses, along with examples of concept
generation in both fields [37].

5.3. Performance on Concept Extraction

To further evaluate the reasoning capabilities of LLMs, we introduced a constrained
concept extraction task, which differs fundamentally from the open-ended nature of the
concept generation task. Instead of generating concepts freely, the model is required to
identify relevant concepts from a predefined candidate list. This setup reflects a more
structured decision-making process and enables us to assess the model’s ability to perform
fine-grained semantic discrimination under explicit constraints. In designing this task, we
adopted two strategies to construct the candidate concept list, each intended to probe differ-
ent levels of semantic interference. For each target course, the list was composed of (a) its
own concepts combined with those from a randomly sampled course in a different domain,
or (b) concepts from a course within the same domain. The former setting presents more
distinct conceptual boundaries, while the latter increases semantic overlap and therefore
the difficulty of discrimination. This setup allows us to assess not only whether LLMs can
recognize course-relevant concepts but also how they respond to near-domain distractors,
offering a more rigorous test of their reasoning ability. Across all settings, we evaluated
three LLM variants and six prompt configurations, the same as in the generation task. As
shown in Figure 7, several trends emerge across models and prompt designs: (1) GPT-40
consistently outperforms both GPT-3.5 and GPT-40-mini across all four evaluation metrics,
reinforcing its strength in constrained reasoning tasks. Performance generally improves
with the addition of contextual input, with mid- to high-information prompts (P3 to P6)
yielding higher accuracy and F1 scores than minimal prompts (P1 and P2). However, the
gains from additional context vary by model. For GPT-3.5 and GPT-40-mini, overly detailed
prompts can introduce irrelevant information or semantic noise, leading to marginal or
even negative effects on extraction accuracy. (2) We also observe that model performance is
sensitive to the composition of the candidate concept list. When the distractor concepts
come from a different domain, all models perform more confidently, benefiting from clearer
conceptual separability. In contrast, the same-domain setting poses a greater challenge
due to increased semantic similarity. Nonetheless, GPT-40 maintains strong performance
even under this more difficult condition, suggesting robust semantic understanding and
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generalization beyond simple keyword matching. (3) These results reveal a meaningful in-
teraction between model scale and prompt structure. While large-scale models like GPT-40
successfully leverage additional context to refine their predictions, smaller models struggle
to integrate dense information, often becoming susceptible to distraction. This suggests
that effective performance in extraction tasks is not merely a function of prompt length, but
depends on the model’s ability to prioritize relevant content within constrained formats.

Overall, our analysis of the concept generation and the concept extraction tasks sug-
gests that LLMs are highly capable of generating and extracting course-related information,
potentially reducing the time and effort required by educators.
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Figure 7. Performance comparison of different LLMs and prompt configurations on the concept
extraction task [37]. The y-axis ranges were unified across metrics to enable clearer comparison
between models. The x-axis denotes different LLMs and prompt configurations (P1-P6), while the
y-axis denotes the evaluation metric scores (Precision, Recall, F1 Score, and Accuracy, ranging from
0to1).

5.4. Performance on Relation Identification

Beyond recognizing individual concepts, understanding the prerequisite relationships
between them is critical for modeling knowledge structures and designing effective learn-
ing trajectories. In this task, we evaluate whether LLMs can infer such inter-conceptual
dependencies, which often involve implicit and context-dependent reasoning beyond
surface-level matching. Each model was presented with 100 concept pairs and tasked
with assigning a scalar score in the range of [—1,1], indicating the likelihood that one
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concept serves as a prerequisite for the other. To systematically assess the impact of input
information, we employed six prompt configurations varying in granularity, from minimal
descriptions to enriched definitions and course-level context. However, many prerequisite
relations are not explicitly stated in course materials, further increasing the task’s difficulty.
Note that our dataset is restricted to computer science and mathematics courses, and thus
does not contain interdisciplinary concept pairs. Consequently, we cannot directly evaluate
model robustness on cross-domain relations, although we acknowledge that such settings
may pose additional challenges.

As shown in Figure 8, GPT-40 consistently achieves the highest performance across
all four evaluation metrics, reflecting its superior ability to reason about inter-concept
dependencies. In general, richer prompts (e.g., P5 and P6) lead to improved results,
confirming the benefit of contextual input. However, this trend is not uniform across
models. For GPT-3.5 and GPT-40-mini, the performance gains from additional information
plateau or even regress, particularly in terms of recall. This suggests that while richer
context can aid inference, it may also introduce semantic noise that overwhelms smaller
models, reducing their confidence in making relational predictions. In contrast, GPT-40
appears more capable of leveraging complex input while maintaining prediction precision.

Interestingly, we observe that recall performance for GPT-4o slightly drops under the
most informative prompt, despite its strong precision. One plausible explanation is that
stronger models tend to adopt a more conservative inference style when faced with am-
biguous semantic patterns or insufficient causal cues. Rather than over-asserting relations,
they default to caution, leading to fewer false positives but also more false negatives.

The intrinsic difficulty of the task was further confirmed through a small-scale human
evaluation. Four domain experts were asked to manually annotate the same set of 100 con-
cept pairs, and all reported that determining prerequisite relationships was nontrivial,
especially for loosely defined or abstract concepts. To further contextualize model perfor-
mance, Figure 9 presents three representative cases that were particularly challenging. For
clarity, we interpret model predictions using discrete labels: 1 indicates Concept A is a
prerequisite of Concept B, —1 indicates the reverse, and 0 denotes no identifiable prerequi-
site relation. In all three cases, annotators expressed uncertainty or disagreement about
the directionality, yet LLMs produced predictions consistent with the ground truth. This
suggests the model’s ability to capture implicit semantic dependencies that are not always
made explicit in instructional materials. The first case, Multiplication — Function, involves
foundational mathematical concepts. Although multiplication often underpins the under-
standing of algebraic functions, the dependency is rarely made explicit in curricula. Experts
acknowledged this, and LLMs correctly identified the latent prerequisite relationship. The
second case, Parity — Integer (Reverse), is particularly subtle. While parity depends on the
concept of integers, the two are closely linked, and several annotators were unsure about
whether a directional prerequisite could be definitively assigned. LLMs’ reverse-direction
prediction matched the ground truth and reflected a reasonable conceptual interpretation.
The third case, Network Architecture — Dynamic Memory Allocation, exemplifies a failure
instance. Though the ground truth labels architecture as a prerequisite, the relationship
depends heavily on curricular framing. Experts were divided in their annotations, and
LLMs defaulted to predicting no dependency. While incorrect, the output reflects the
model’s cautious behavior under semantic uncertainty. These examples illustrate both the
reasoning potential of large language models and the inherent ambiguity of prerequisite
relation identification. They further support the view that LLMs’ performance in this task,
while imperfect, represents meaningful progress toward modeling instructional structures.
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Figure 8. Performance comparison of different LLMs and prompt configurations on inter-conceptual
relation identification task [37]. The y-axis ranges were unified across metrics to enable clearer
comparison between models. The x-axis denotes different LLMs and prompt configurations (P1-P6),
while the y-axis denotes the evaluation metric scores (Precision, Recall, F1 Score, and Accuracy,
ranging from 0 to 1).

Figure 10 visualizes the distribution of discretized predictions (—1, 0, +1) across all
prompt-model configurations. Several systematic trends are evident. GPT-3.5 shows
the widest fluctuations: under some prompts (e.g., P6) it produces many reverse (—1)
predictions, while under others (e.g., P2-P3) the majority collapse into 0, highlighting
its sensitivity to prompt design and relatively unstable reasoning. GPT-40, in contrast,
concentrates strongly on 0 with a selective use of +1, rarely outputting —1. This pattern
suggests a cautious inference style: the model only asserts a prerequisite when it encounters
strong supporting cues, and otherwise defaults to “no relation.” Such conservativeness
explains GPT-40’s superior precision (Figure 8), as it avoids false positives at the expense
of lower recall. GPT-40-mini behaves differently—it produces more +1 predictions and
fewer Os across most prompts, indicating a more assertive inference style that favors recall
but risks misclassifying ambiguous pairs as prerequisites. Across all models, reverse
predictions (—1) remain sparse. This scarcity reflects an intrinsic asymmetry in the task:
even for humans, it is cognitively easier to recognize a forward prerequisite (“A is needed
for B”) or to judge the absence of a relation than to confidently assert the reverse direction
(“B is a prerequisite for A”), which requires more explicit curricular evidence. The fact
that LLMs rarely predict —1 therefore mirrors human difficulty and the data distribution
itself, where forward dependencies dominate. Taken together, the distributions confirm
that the outputs are not random but reveal distinct inference tendencies. GPT-4o prioritizes
reliability through cautious prediction, GPT-40-mini leans toward aggressive identification
of forward links, and GPT-3.5 oscillates between neutrality and over-assertion depending
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on prompt structure. These behavioral signatures not only validate the methodological
design (the models clearly differentiate between output classes) but also delineate the scope
of current LLMs: while capable of capturing forward dependencies, they remain challenged
by reverse relations and often hedge toward neutrality when explicit signals are lacking.

v

Concept A (Prerequisite): Multiplication

Concept B (Dependent): Function

Ground Truth: 1 LLM Prediction: 1
Relation Rationale: Understanding multiplication is fundamental to grasp-
ing algebraic functions.

Expert Comment: Experts reported uncertainty when judging this pair, as
the prerequisite relation is rarely explicit in course materials.

v

Concept A (Prerequisite): Parity
Concept B (Dependent): Integer

Ground Truth: —1 LLM Prediction: —1
Relation Rationale: The notion of parity assumes prior knowledge of inte-
gers.

Expert Comment: This pair elicited hesitation among experts, who noted
that the concepts are conceptually intertwined with no obvious directional de-
pendency.

X

Concept A (Prerequisite): Network Architecture

Concept B (Dependent): Dynamic Memory Allocation

Ground Truth: 1 LLM Prediction: 0
Relation Rationale: System-level design knowledge typically precedes mem-
ory management implementation.

Expert Comment: Experts were divided on this pair due to its abstraction
and curricular dependence. While GPT’s output did not match the ground
truth, its prediction still reflected a cautious and interpretable decision in a
context where even humans struggled.

Figure 9. Representative success and failure cases in the relation identification task [37].

While the output distributions highlight distinct behavioral tendencies across models,
a more fine-grained view can be obtained by analyzing how these predictions align with
ground truth. The quantitative breakdown in Table 11 reveals that the vast majority of er-
rors (80.2%) stem from failures to infer implicit relations. This pattern aligns with the intrinsic
challenge of prerequisite identification: many course materials do not state prerequisite
links explicitly, requiring models to rely on contextual inference and background knowl-
edge. When such cues are absent or ambiguous, models tend to default to predicting “no
relation”, resulting in high false negative rates. By contrast, only 19.8% of errors were due
to directionality confusions, where the model correctly identified a dependency but inverted
its direction. Although less frequent, these mistakes are still important because directional-
ity is critical for constructing valid learning paths; a reversed edge can mislead learners
about knowledge order. The dominance of implicit-relation failures also resonates with the
human evaluation results: even domain experts expressed uncertainty when judging many
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pairs, particularly those involving abstract or loosely defined concepts. In addition, the
concentration of our dataset in computer science and mathematics exacerbates this diffi-
culty. These fields contain numerous semantically related concepts (e.g., data structures vs.
algorithmic complexity) whose relationships depend heavily on curricular framing, thereby
increasing the likelihood of both false negatives and directional confusions. Taken together,
these findings suggest that improving prerequisite modeling will require not only stronger
language models but also richer instructional context and explicit curricular annotations.
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Figure 10. Distribution of LLMs’ discretized outputs (-1, 0, +1) across all prompt-model combi-
nations. The x-axis denotes different LLMs and prompt configurations (P1-P6), while the y-axis
indicates the number of predictions assigned to each discrete label (—1, 0, +1).

To further explore the upper bound of model performance on this task, we conducted a
preliminary test using GPT-ol-mini, a larger variant beyond our main model set. Although
we did not perform a full-scale evaluation due to computational constraints, ol-mini
achieved remarkable results on a small sample of 10 concept pairs, yielding perfect precision
(1.0), a recall of 0.8, and an F1 score of 0.89. While these results are only indicative,
they reinforce the trend that stronger models offer tangible benefits in complex relational
reasoning. We leave a more systematic evaluation of ol-mini for future work.

From an educational standpoint, the ability to automatically infer prerequisite relations
has significant implications. Such relations form the backbone of concept hierarchies and
course progression design. Accurate identification enables applications such as knowledge
graph construction, personalized learning path recommendations, and prerequisite-aware
curriculum generation. Our findings suggest that GPT-4o, in particular, is approaching a
level of relational reasoning that could support these pedagogical applications. Moreover,
the observation that prompt structure and model scale interact meaningfully implies
that both input design and model choice should be carefully calibrated when deploying
language models for fine-grained semantic tasks in educational domains.
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Table 11. Distribution of failure types in prerequisite identification task (aggregated over all
18 prompt-model settings; N = 3318 errors).

Failure Type Count Share (%)
(i) Directionality confusion 656 19.77
E.lell)aliia;;ire to infer implicit 2662 80.23
Total 3318 100.00

6. Discussion and Implication
6.1. Summary of Key Results

In summary, to comprehensively evaluate the effectiveness of LLMs in generating and
extracting course concepts as well as identifying their relationships, we conducted a series
of experiments across three tasks: concept generation, concept extraction, and relation
identification. Each task was designed to assess the distinct capabilities of LLM-based
models under varying levels of contextual input. The experiments were conducted using
three LLM variants, including GPT-3.5, GPT-40-mini, and GPT-40, and compared against
representative baselines spanning statistical, embedding-based, and graph-based methods.
The performance was quantitatively assessed using four standard metrics: Precision, Recall,
F1 Score, and Accuracy. In addition, human evaluations were incorporated to qualitatively
assess the relevance and educational value of the generated outputs. The results are
organized into three subsections corresponding to each task.

In the concept generation task (Sections 5.1 and 5.2), we examine whether LLMs can
produce course concepts that align with ground truth concepts in the MOOCCube dataset.
We compare LLM-generated outputs against six baseline methods, including spanning
statistical (PMI, TF-IDF, TextRank), graph-based (TPR), and embedding-based (Word2Vec,
BERTScore) approaches. These baselines receive the same subtitle inputs used for LLMs,
ensuring fair comparison under identical conditions. To further understand how different
levels of context influence performance, we design six prompt configurations (P1-P6) by
systematically varying the input information provided to LLMs. These range from minimal
context (e.g., course name only) to enriched inputs that include course descriptions, existing
concepts, and subtitle transcripts. This ablation study is conducted across all three LLM
variants to assess model robustness across scales. In addition to automated evaluation
using Precision, Recall, F1 Score, and Accuracy, we conduct a human evaluation with four
domain experts to assess the quality and relevance of the generated concepts, providing a
qualitative complement to the quantitative analysis.

In the concept extraction task (Section 5.3), we test LLMs’ ability to identify relevant
concepts from a predefined candidate list. Unlike generation, this task constrains LLMs
from making selections rather than producing new terms, allowing us to evaluate their
reasoning ability under stricter conditions. The candidate lists are constructed by combining
concepts from the target course with those from either a course in a different domain (to
test semantic separation) or a course in the same domain (to increase conceptual similarity
and difficulty). The experiment is conducted using the same three LLMs and six prompt
types as in the generation task, enabling direct comparison across tasks and conditions.

Finally, the relation identification task (Section 5.4) focuses on LLMs’ capacity to infer
prerequisite relationships between pairs of course concepts. We provide the models with
concept names, definitions, and related course information, using six different prompt
configurations that vary the granularity of injected information. LLMs are asked to assign
a directional score between —1 and 1, indicating the presence and strength of a prerequisite
relationship. This task allows us to explore whether LLMs can go beyond surface-level
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associations and capture asymmetric dependencies between concepts, which are essential
for constructing meaningful learning paths and knowledge graphs.

Among the evaluated models, GPT-40 exhibited the most stable and accurate behavior,
highlighting the benefits of larger model capacity in tasks involving both open-ended
generation and fine-grained reasoning. A closer analysis of each task reveals unique
strengths and implications. In the concept generation task, LLMs were able to produce
high-quality, structured, and pedagogically aligned concepts that extended beyond the
original textual input. These outputs often reflected course-level themes, technical depth,
and teaching objectives, which traditional extraction methods failed to capture. In the
concept extraction task, LLMs effectively selected course-relevant concepts from noisy
candidate lists, indicating strong contextual understanding and semantic discrimination.
Notably, GPT-40 demonstrated resilience even when distractor concepts came from the
same domain, suggesting that its reasoning extended beyond superficial keyword cues.
For relation identification, which involved identifying prerequisite links between concept
pairs, all models faced greater difficulty due to the subtle and implicit nature of such
relationships. Nevertheless, GPT-40 again led in performance, and qualitative feedback
from expert annotators confirmed that even human evaluators found many pairs nontrivial,
underscoring the meaningfulness of the task.

Together, these experiments provide a multifaceted view of LLMs’ capabilities in
educational NLP tasks. By integrating comparisons with baseline methods, model ablation
studies, prompt design analysis, and both automatic and human evaluations, we aim
to offer a comprehensive understanding of both the strengths and challenges of using
LLMs for educational content analysis. These insights serve as the foundation for practical
applications and implications, which we discuss in the following section.

6.2. Educational Applications and Insights

These results offer several important implications for real-world educational applica-
tions. First, from the perspective of students, the ability of LLMs to generate high-quality,
pedagogically aligned course concepts can significantly enhance learning transparency.
LLM-generated concepts can serve as concise summaries of course content, assisting stu-
dents in quickly grasping key knowledge points and making more informed enrollment
decisions. Additionally, in personalized learning systems, LLM-based concept extraction
can be employed to trace students’ understanding by aligning their responses with un-
derlying knowledge components, thereby supporting targeted feedback, misconception
detection, and adaptive learning path adjustment. Second, for instructors and curriculum
designers, LLMs provide a scalable tool to enrich course metadata, generate concept lists,
and construct knowledge graphs without the intensive manual effort traditionally required.
Instructors can leverage LLMs’ outputs to design diagnostic assessments, organize course
modules around conceptual dependencies, and develop more coherent syllabi. Particularly,
the relation identification capabilities demonstrated by LLMs enable the automated model-
ing of prerequisite structures, which are essential for sequencing instructional materials and
scaffolding learning activities effectively. Third, from the perspective of MOOC platform
operators and educational administrators, the integration of LLM-generated concepts and
relations can address critical issues such as data sparsity and metadata incompleteness,
especially for new or underdeveloped courses. By automatically enriching course profiles
with concept-level representations and prerequisite mappings, LLMs can facilitate more
accurate course recommendations, improve curriculum discoverability, and support the
construction of dynamic learning pathways. This is especially valuable in large-scale online
environments where manual curation is infeasible. Moreover, LLMs offer valuable oppor-
tunities for educational technology developers and assessment designers. For learning
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management system (LMS) developers, integrating LLM-driven concept generation and
relation identification can enable the creation of intelligent content recommendation en-
gines and dynamic curriculum sequencing tools. For assessment specialists, LLMs’ ability
to extract and organize concepts supports the automated construction of diagnostic tests,
adaptive quizzes, and competency-based evaluations.

Furthermore, the three core tasks, which are concept generation, concept extraction,
and relation identification, each align naturally with practical instructional scenarios. Con-
cept generation supports course and textbook development by helping educators enumer-
ate and organize key learning objectives and thematic modules. Concept extraction mirrors
classroom and assessment contexts such as multiple-choice questions, open-ended response
analysis, and concept mapping exercises, where learners must identify and distinguish
relevant knowledge elements under varying degrees of ambiguity. Relation identifica-
tion directly informs the design of coherent curricula and personalized learning paths by
uncovering prerequisite relationships that guide the logical progression of content deliv-
ery. In particular, LLMs’ robust performance in the concept extraction task, even under
challenging same-domain distractor settings, highlights its potential to support formative
assessment and automated grading systems. Similarly, the ability to generate semantically
rich concepts beyond the literal course descriptions demonstrates its value in enhancing
content modeling and syllabus design. The capacity to infer implicit prerequisite relations
opens opportunities for automated curriculum scaffolding and adaptive course recommen-
dation systems that dynamically adjust to individual learners” prior knowledge. Beyond
independent evaluation, concept generation and concept extraction can be combined into
a complementary workflow. Concept generation allows LLMs to propose a broad set of
candidate concepts, but this set often requires refinement. Concept extraction can serve as a
corrective step, identifying the most relevant and accurate items from within the generated
range, thereby improving reliability. This interplay reflects realistic use cases. For instance,
students may first rely on extraction to identify the main concepts explicitly present in
course materials, and then use generation to explore supplementary or prerequisite con-
cepts that enrich their understanding. Conversely, in automated systems, generation may
provide a wide coverage of potential knowledge elements, while extraction mechanisms
filter and validate these outputs to support robust course modeling and recommendation.

Finally, these findings inform instructional design and prompt engineering practices.
Our results indicate that simply increasing the amount of input information does not always
lead to better model performance. Moderately informative prompts often outperformed
highly detailed ones, suggesting that structuring input with clarity and intentional focus
is crucial. This insight is applicable not only to Al-driven educational tools but also
to classroom pedagogy, where excessive content can overwhelm learners and obscure
critical learning objectives. In summary, LLM-based models, by automating the generation,
extraction, and structuring of educational concepts and relationships, offer a practical and
effective means to enhance course content modeling, personalize learning experiences,
optimize assessment design, and support scalable educational innovations across diverse
stakeholders in the modern learning ecosystem.

While promising overall, our study also surfaced several methodological limitations
related to the use of LLM-based models. First, although LLMs, particularly GPT-4o,
exhibited strong performance, their outputs still require human refinement to ensure
pedagogical alignment, conceptual completeness, and contextual appropriateness. Fully
automated deployment without expert review remains risky, especially for high-stakes
educational applications. Second, model performance was found to be sensitive to prompt
complexity and design. While GPT-40 benefited from moderately enriched inputs, smaller
models often exhibited degradation when provided with overly detailed or noisy prompts,
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indicating that careful and task-specific prompt engineering is essential for optimal results.
Third, despite showing reasonable accuracy in relation identification tasks, LLMs tended
toward conservative inference strategies, yielding high precision but somewhat lower recall.
This suggests that current models are cautious in asserting prerequisite relationships, which
may limit their completeness when constructing curriculum knowledge graphs. Finally,
differences across disciplines, such as finer granularity and stricter hierarchical structures
in scientific domains, indicate that domain-adaptive prompting strategies may further
enhance performance.

7. Conclusions

This study presents a comprehensive evaluation of LLM-based models in the tasks
of concept generation, concept extraction, and relation identification within educational
contexts. Across extensive experiments, including baseline comparisons, ablation stud-
ies, and human evaluations, we found that LLMSs, particularly GPT-40, exhibit strong
capabilities in generating pedagogically relevant course concepts and accurately iden-
tifying inter-conceptual relationships. Unlike traditional methods that are constrained
by surface-level features or textual frequency, LLMs are capable of generating semanti-
cally meaningful and instructional concepts that are not explicitly mentioned in the input,
thereby addressing longstanding gaps in existing methods. Moreover, LLMs demonstrated
the ability to reason under constraints, as shown in the concept extraction task, and to infer
subtle prerequisite relationships between concept pairs—tasks that even human experts
found challenging. These findings affirm the potential of large language models to support
automated curriculum modeling, instructional scaffolding, and content recommendation.

While our experiments provide strong evidence for the feasibility of using LLM-based
models in educational concept modeling and relation identification, several limitations
remain. First, our evaluation was based on expert assessments, which, while authoritative,
may not fully reflect students’ perspectives or learning challenges. Future work should
incorporate user-centered evaluations involving real learners to better assess the practical
educational value of LLM-generated outputs. Second, our experiments were limited to
courses from the MOOCCube dataset. Although the dataset covers diverse topics, it may
not fully represent interdisciplinary or non-traditional course structures. Broader evalua-
tions across varied educational domains and levels are needed to validate generalizability.
Third, we primarily evaluated three LLM variants (GPT-3.5, GPT-40-mini, and GPT-40).
Expanding comparisons to a wider range of large language models, including open-source
and multimodal systems, would help benchmark broader capabilities. Finally, while this
study focused on pairwise concept and relation modeling, future research should explore
more complex structures such as soft prerequisites, cyclical dependencies, and hierarchical
knowledge graphs to better align with real-world curricular demands.
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