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Abstract: The literature on ECG delineation algorithms has seen significant growth in recent decades.
However, several challenges still need to be addressed. This work aims to propose a lightweight
R-peak-detection algorithm that does not require pre-setting and performs classification on a sample-
by-sample basis. The novelty of the proposed approach lies in the utilization of the typicality
eccentricity detection anomaly (TEDA) algorithm for R-peak detection. The proposed method for
R-peak detection consists of three phases. Firstly, the ECG signal is preprocessed by calculating the
signal’s slope and applying filtering techniques. Next, the preprocessed signal is inputted into the
TEDA algorithm for R-peak estimation. Finally, in the third and last step, the R-peak identification is
carried out. To evaluate the effectiveness of the proposed technique, experiments were conducted
on the MIT-BIH arrhythmia database (MIT-AD) for R-peak detection and validation. The results
of the study demonstrated that the proposed evolutive algorithm achieved a sensitivity (Se in %),
positive predictivity (+P in %), and accuracy (ACC in %) of 95.45%, 99.61%, and 95.09%, respectively,
with a tolerance (TOL) of 100 milliseconds. One key advantage of the proposed technique is its
low computational complexity, as it is based on a statistical framework calculated recursively. It
employs the concepts of typicity and eccentricity to determine whether a given sample is normal or
abnormal within the dataset. Unlike most traditional methods, it does not require signal buffering
or windowing. Furthermore, the proposed technique employs simple decision rules rather than
heuristic approaches, further contributing to its computational efficiency.

Keywords: typicality eccentricity detection anomaly; TEDA; R peak; ECG classification; streaming

1. Introduction

Cardiovascular diseases (CVDs) are among the greatest concerns for public health
and humanity. The World Health Organization (WHO) reported that 17.9 million people
died due to CVDs in 2019, meaning 32% of all global deaths [1]. Electrocardiogram (ECG)
analysis is a powerful method for analyzing cardiac health. It can be an ally to saving many
lives by rapid and accurate identification of CVDs, like arrhythmias, for example, [2].

The ECG signal is the electrical activity of different cardiac tissues obtained from a
patient’s skin, providing a graphic pattern that represents the heart muscle’s function [3].
Sequential waves represent the cardiac cycle. Each wave part is associated with one
physiological heart activity [4]. It is a powerful non-invasive method, and analyses of them
can determine cardiac health [5]. The signal amplitude and intervals, defined by fiducial
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points, supply the most helpful information [5,6]. The main feature of arrhythmia detection
is an accurate R-peak detection, which is critical for heart rate measurement. Different
ventricular arrhythmias can be classified by detecting and examining QRS complexes and
determining the R–R interval [7,8].

Different works in the literature have presented several automated algorithms for
QRS and R-peak detection techniques [9]. However, implementations of the proposed
algorithms are still challenging for ECG signal analysis in the real world [3,6]. Some
proposed ECG detectors have very high accuracy but use several complex steps under
specific conditions [3,10,11]. Undoubtedly, a computational technique to analyze the ECG
signal with higher accuracy in streaming applications is still required. Since data flows
continuously from data streams at high speed, traditional data management systems
do not support the continuous queries required by streaming applications [10]. Instead,
new techniques must be defined, or adapted methods should appear for ECG streaming
settings [12,13].

Applications of medical services in healthcare in the Internet of Medical Things (IOMT)
context will increase greatly in the coming years. Traditional methods cannot collect,
analyze, query and store data within a reasonable time frame [14] for processing real-time
data streams. In this new paradigm, a large amount of multimodal information comes
from multiple resources, sensors, or other biomedical acquisition systems. The IOMT
system needs low power consumption, low memory usage, and low CPU resource usage
to deal with the continuous data volume from all the other streaming frames to maintain
performance [15].

We can find in the literature a constant search for novel and more efficient ways to
reduce computing costs so that the technique can be implementable in practice [16]. Our
approach uses the typicality eccentricity detection anomaly (TEDA) algorithm recursively
to minimize storage and time consumption, so that agents with lower computational
complexity, such as portable and smart devices, could use it. TEDA is a recursive method
designed to detect industrial signal anomalies in streaming applications. The R-peak wave
portion is interpreted as an anomaly by TEDA because it is a very eccentric portion when
compared to the rest of the ECG wave. Because of this, we infer the position of the R peak.
In the literature, few algorithms are recursive in their analysis of the ECG signal.

TEDA can be an alternative to a statistical framework. New metrics are the TEDA’s
foundation, all based on the similarity/proximity of data in the data space, not on density
or entropy, as per traditional methods. TEDA is suitable for data streams because it is
lightweight and recursive, so signals can be analyzed as they are generated and it can
interpret large amounts of data, such as physiological data recorded continuously in an
ICU. ECG signals are streaming data, and detections are needed continuously to aid in
diagnosing heart disease, for example. An accurate streaming ECG analysis approach
requires continuous adaptation. However, streaming data can be infinite, so algorithms
that store the entire data for analysis are unsuitable. Instead, detectors should process data
in real time and constantly update the model directly from the input stream [10,17].

This work proposes a novel automated ECG feature extraction algorithm based on
the TEDA algorithm with a light preprocessing step, designed to detect R peaks by verify-
ing their eccentricity in relation to the other waveform points. Its simplicity and low
computational complexity make it a potential candidate for real-time and streaming
ECG applications.

The highlights of this study can be summarized as follows:

• The proposed method is much lighter in terms of computational complexity.
• For the first time, the approach uses the TEDA algorithm for physiological signals,

more specifically, for electrocardiogram signals.
• The method achieves a sensitivity (Se), positive predictivity (+P), and accuracy (ACC)

of 95.45%, 99.61%, and 95.09% for a 100 ms tolerance (TOL).
• The proposed technique can be performed online without pre-setting.
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• The method shows a reduced and efficient pipeline compared to other studies in
the literature.

2. Materials and Methods

The proposed method for R-peak detection is composed of three phases that are
executed sequentially. First, we preprocess the ECG signal, applying slope calculation of
the ECG raw signal and filtering. Next, we follow the preprocessed signal into the TEDA
algorithm for R-peak estimation and then, in the third and last step, we carry out the
R-peak identification. Figures 1 and 2 illustrate the method’s flow process and introduce
fundamental notation that will be used consistently throughout the paper.

TEDA 
algorithm OUTPUT:  

R-peak positionsR-wave

Non  
R-wave

R-peak Identification 
(window of N samples)

R-peak estimation

ECG pre-
processing

Clear ECG

Figure 1. Block chart of the proposed method overview.

Pre-processing

TEDA

R-peak estimation

INPUT: 
Raw ECG 

OUTPUT:  
R-peak positions

Figure 2. Flow chart of the proposed method overview.

2.1. Dataset

The Massachusetts Institute of Technology’s Beth Israel Hospital Arrhythmia Database
(MIT-AD) is a public database available at PhysioNet [18]. It provides us with a good
resource to test the effectiveness of the proposed method. MIT-BIH-AD is a popular
database that consists of 48 half-hour ECG recordings from two channels. The ECG signals
are from 47 subjects recorded at Boston’s Beth Israel Hospital between 1975 and 1979. Of
47 subjects, 25 subjects were men, aged 32 to 89, and 22 subjects were women, aged 23 to 89.
Of these recordings, 60% of the records are from inpatients, and 40% are from outpatients.
The sampling frequency is 360 samples per second [19].
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2.2. Preprocessing

By applying the raw ECG signal directly to the TEDA algorithm, we have already
achieved an accuracy of around 60% in R-peak detection when using the MIT-AD dataset.
To improve this result, considering that a big part of the detection problem was related to
the signal fluctuation in the baseline and noise [20], we made simple preprocessing steps to
achieve satisfactory accuracy when implementing the R-peak detection using the TEDA
algorithm. Accurate detection of R peaks in an electrocardiogram (ECG) is challenging
due to their duration and various sources of noise, such as powerline interference, motion
artifacts, and baseline, which can alter signal characteristics [3].

Figure 3 shows the preprocessing flowchart. An ECG is sampled at a fixed frequency
and stored as a vector, so that E[k] denotes the value of the k-th sample. First, we calculated
the signal’s slope (S[k]) to verify the signal’s abrupt modification caused at the moment of
the R-wave upward defection. The slope is the average absolute value of the amplitude
difference between the following sample Ek+1 and the actual Ek, and between the Ek and
the last sample Ek−1. Equation (1) presents the slope definition [6].

Slope
Calculation

Band-pass 
Filter

ECG pre-processing

Figure 3. Block chart overview of the preprocessing steps.

S[k] =


|Ek+1 − Ek| k = 1,
(|Ek+1 − Ek|+ |Ek − Ek−1|)/2 1 < k < n,
|Ek − Ek−1| k = n.

(1)

We filtered this new signal to remove noise to surpass the non-peak detection caused
by powerline interference, motion artifacts, and baseline. As the maximum heartbeat is
at most 220 beats per minute (bpm), corresponding to a frequency of less than 4 Hz [3],
the filter chosen is a band-pass with 1 and 10 Hz cutoff frequencies. Figure 4 illustrates an
example of signal preprocessing (record 113). The curve at the top is the raw ECG signal,
the curve in the middle of the figure is the ECG slope, and the curve at the bottom is the
slope signal after being filtered.

2.3. TEDA Algorithm

After calculating and filtering the slope, the preprocessed signal, SF[k], is the input of
the TEDA algorithm. TEDA was presented by [21] as a statistical framework influenced by
recursive density estimation algorithms. It employs concepts of typicity and eccentricity
to infer whether a given sample is normal or abnormal to the dataset, instead of the data
density used in more traditional statistical algorithms [22]. The typicality of TEDA is the
similarity of a presented sample to the rest of the dataset. Eccentricity is the contrary,
showing the sample’s difference to other samples.

The R wave is the upward deflection with the largest amplitude in the peak in the
ECG wave. However, evaluating the signal regarding the slope is particularly important in
not considering the T peak as an R peak. The T-peak amplitude can sometimes be higher
than the R peak, but the T-wave slope is relatively slow compared to the R-peak slope [6].
Consequently, the eccentricity of the R wave’s slope is more significant than that of the
other samples, which would not necessarily occur if we only considered the amplitude.
Therefore, we can define the R-wave sequence as the samples with high eccentricity and
low typicality.
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(a)

(b)

(c)

Figure 4. An example of ECG preprocessing (record 113): (a) raw ECG signal, (b) ECG slope, and
(c) ECG slope signal after normalization and filtering.

TEDA employs the sum of the geometric distance between actual and past samples in
the set to calculate the eccentricity. Thus, the higher the value, the lower the typicality of
the sample. The eccentricity is a recursive calculation and was expressed by [23] as

ξk(SF) =
1
k
+

(µS
k − SF[k])T(µS

k − SF[k])
k[σ2]Sk

, [σ2]Sk > 0, (2)

where k is the discretization instant; SF[k] is the filtered slope in the k-th iteration; µS
k

is the average of SF[k] in the k-th iteration; and [σ2]Sk is the variance in SF[k] in the k-th
iteration. The calculation of µS

k and [σ2]Sk are also recursive calculations represented by
Equations (3) and (4), respectively.

µS
k =

(k− 1)
k

µS
k−1 +

1
k

SF[k], k ≥ 1, µS
0 = 0, (3)

[σ2]Sk =
(k− 1)

k
[σ2]Sk−1 +

1
k

∥∥∥SF[k]− µS
k

∥∥∥2
, k ≥ 1, [σ2]S0 = 0. (4)

Equation (5) illustrates the typicality of a sample, SF[k], at the k-th iteration. It is the
eccentricity complement. The normalized eccentricity can be seen in Equation (6).
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τk(SF) = 1− ξk(SF), (5)

ζk(SF) =
ξk(SF)

2
,

k

∑
i=1

ξk(SF) = 1, k ≥ 2. (6)

It is necessary to separate R-wave samples from non-R-wave samples, as shown in
Figure 1. For that, we define a comparison threshold, expressed as

ζk >
m2 + 1

2k
, m > 0, (7)

where m is a constant and k corresponds to the discretization instant [21].
Algorithm 1 presents an overview of all the TEDA steps based on the above-mentioned

equations. The input of Algorithm 1 is the preprocessed ECG data samples, SF[k], and a
comparison threshold constant, m. The output for each input, SF[k], indicates the sample’s
classification as an R-wave or non-R-wave sample. Figure 5 shows an example of the
eccentricity value and its comparison with the threshold (record 113). The top of Figure 5
illustrates the raw ECG signal, E[k], and the positions of the detected points corresponding
to the R wave. In the middle, just for comparison, we can see the signal after preprocessing,
SF[k]. At the bottom, we can see the eccentricity, the threshold and the R wave, which are
the points with eccentricity above the threshold.

Algorithm 1: TEDA.

Input: SF [k]: k-th sample; m: threshold
Output: outlier: sample classification as abnormal or normal

1: begin
2: while receive SF [k] do
3: if k=1 then
4: µS

k ← SF [k];
5: [σ2]Sk ← 0;

6: else
7: update µS

k using Equation (3);
8: update [σ2]Sk using Equation (4);
9: update ξk(SF) using Equation (2);

10: update ζk(SF) using Equation (6);

11: if ζk(SF) >
m2+1

2k then
12: R-wave← true;

13: else
14: R-wave← f alse;

15: k← k + 1;

2.4. R-Peak Estimation

Once TEDA determines the samples with higher eccentricity, we need to find this
sequence’s highest absolute amplitude value to determine the R peak. Figure 6a illustrates
three R-wave sequences. We consider the point with the highest eccentricity, within a TOL
interval, as the sequence’s R peak, as illustrated in Figure 6b.
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(a)

(b)

(c)

Figure 5. R-wave sequence from TEDA algorithm calculated as the most eccentric points in the slope
signal (record 113): (a) raw ECG signal and R wave; (b) ECG preprocessed signal; (c) eccentricity,
threshold and R-wave interval.

(b)(a)

Figure 6. R-peak estimation (record 124): (a) R-wave sequence from TEDA algorithm calculated
as the most eccentric points in the preprocessed signal; (b) R peak is the sample with highest
absolute eccentricity.



Mach. Learn. Knowl. Extr. 2024, 6 743

3. Results

To demonstrate the effectiveness of the proposed method, we carried out a set of tests.
Table 1 presents the evaluation results for each ECG record in terms of sensitivity (Se in %),
positive predictivity (+P in %), and accuracy (ACC in %).

Table 1. Accuracy and precision evaluation for R-peak detection on MIT-AD.

Record TB TP FP FN Se (%) +P (%) F1 Score
(%) ACC (%)

100 2273 2273 0 0 100 100 100 100
101 1865 1862 5 3 99.84 99.73 99.79 99.57
102 2187 2163 1 24 98.90 99.95 99.43 98.86
103 2084 2080 2 4 99.81 99.90 99.86 99.71
104 2229 2212 41 17 99.24 98.18 98.71 97.44
105 2572 2548 26 24 99.07 98.99 99.03 98.08
106 2027 1549 2 478 76.42 99.87 86.58 76.34
107 2137 2108 0 29 98.64 100 99.32 98.64
108 1763 1528 49 235 86.67 96.89 91.50 84.33
109 2532 2486 0 46 98.18 100 99.08 98.18
111 2124 2120 2 4 99.81 99.91 99.86 99.72
112 2539 2539 2 0 100 99.92 99.96 99.92
113 1795 1795 1 0 100 99.94 99.97 99.94
114 1879 1876 8 3 99.84 99.58 99.71 99.42
115 1953 1951 1 2 99.90 99.95 99.92 99.85
116 2412 2314 2 98 95.94 99.91 97.88 95.86
117 1535 1535 1 0 100 99.93 99.97 99.93
118 2278 2275 2 3 99.87 99.91 99.89 99.78
119 1987 1598 2 389 80.42 99.88 89.10 80.34
121 1863 1859 6 4 99.79 99.68 99.73 99.46
122 2476 2476 0 0 100 100 100 100
123 1518 1515 0 3 99.80 100 99.90 99.80
124 1619 1591 3 28 98.27 99.81 99.04 98.09
200 2601 2572 16 29 98.89 99.38 99.13 98.28
201 1963 1861 1 102 94.80 99.95 97.31 94.76
202 2136 2111 1 25 98.83 99.95 99.39 98.78
203 2980 2486 65 494 83.42 97.46 89.89 81.64
205 2656 2595 1 61 97.70 99.96 98.82 97.67
207 1860 1687 95 173 90.70 94.67 92.64 86.29
208 2955 1969 10 986 66.63 99.49 79.81 66.41
209 3055 2987 1 18 99.40 99.97 99.68 99.37
210 2650 2432 9 218 91.77 99.63 95.54 91.46
212 2748 2738 2 10 99.64 99.93 99.78 99.56
213 3251 3003 0 248 92.37 100 96.03 92.37
214 2262 2245 1 17 99.25 99.96 99.60 99.20
215 3363 3328 3 35 98.96 99.91 99.43 98.87
217 2208 2179 2 29 98.69 99.91 99.29 98.60
219 2154 2117 2 37 98.28 99.91 99.09 98.19
220 2048 2047 0 1 99.95 100 99.98 99.95
221 2427 2030 1 397 83.64 99.95 91.07 83.61
222 2483 2263 1 220 91.14 99.96 95.34 91.10
223 2605 2243 1 362 86.10 99.96 92.51 86.07
228 2053 1990 37 63 96.93 98.17 97.55 95.22
230 2256 2255 0 1 99.96 100 99.98 99.96
231 1571 1567 1 4 99.75 99.94 99.84 99.68
232 1780 1776 7 4 99.78 99.61 99.69 99.38
233 3079 3036 0 43 98.60 100 99.30 98.60
234 2753 2741 1 12 99.56 99.96 99.76 99.53

Total 109,494 104,511 414 4983 95.45 99.61 97.48 95.09
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Identifying a type of wave in an ECG sequence does not mean that the identified
points should appear at the exact annotation or particular time. Instead, the difference
in timing between the identified point and the annotation should be inferior to a TOL.
Table 1 presents results for a 100 ms TOL. Traditional values adopted for TOL are 150, 70,
or 40 ms [24].

Aside from the Se, +P, and ACC, we calculated the averaged timing difference µt
and the associated standard deviation σt of the correctly labeled points concerning the
annotation. Equations (8) and (9) illustrate the averaged timing difference µt and the
associated standard deviation σt, respectively.

µt =
1
N

,
N

∑
i=1

(n′i − ni). (8)

σt =

√√√√ 1
N

,
N

∑
i=1

(n′i − µi)2. (9)

where N is the number of samples labeled correctly as an R peak within the tolerance
TOL, and n′ and n are the time stamps of the detected peak inferred by this approach
and annotated by specialists, respectively. Table 2 presents the averaged timing difference
and the associated standard deviation or different TOLs. We also verify the proposal’s
effectiveness by presenting typical metrics used to validate classification performance, such
as positive prediction, sensitivity, F1 score, and accuracy.

Table 2. Accuracy and precision evaluation for R-peak detection on MIT-AD.

TOL (ms) µt ± σ (ms) Se (%) +P (%) F1 Score (%) ACC (%)

40 5.9± 3.2 95.12 98.77 96.91 94.00
70 6.0± 3.7 95.38 99.38 97.34 94.82

100 6.1± 4.0 95.45 99.61 97.48 95.09
150 6.2± 4.8 95.44 99.75 97.55 95.21

4. Discussion

The literature on ECG delineation algorithms has been increasing over the last decades.
R-peak detection applications use methods ranging from traditional processing methods to
machine learning and its subbranches, such as deep learning [2]. The conventionally used
methods often focus on the frequency aspect, using complex mathematical functions, trans-
forms, and optimization techniques that need substantial computational resources [12].

Among the different techniques developed for ECG analysis, time-domain analysis,
frequency-domain analysis, and wavelet transform are the predominant approaches. Many
ECG R-peak detection methods utilizing transforms [25] primarily use Hilbert (HT) [26–28],
Pan–Tompkins (PT) [29,30], and wavelet transforms [31–33]. Transform-based methods
often require buffering of multiple samples before detection. In contrast, streaming algo-
rithms like TEDA perform detection sample by sample. Transform-based techniques often
require multiple preprocessing steps and complex signal processing operations.

The work presented in [5] introduces a P, QRS, and T-peaks detector that utilizes
adaptive thresholding and a template waveform. In the initial stage, an adaptive threshold-
ing process is employed for QRS complex detection, followed by threshold initialization.
Additionally, false-positive QRS complexes are effectively removed using kurtosis coeffi-
cient computation. The method further includes the detection of Q and S points through
clustering and the identification of P and T peaks using min–max techniques. Detailed
explanations of the detection of Q, S, P, and T points are beyond the scope of our study.
Their proposed technique for R-peak detection offers reduced computational complexity
compared to conventional methods, as it relies on simple decision rules rather than heuristic
or optimization approaches. However, it involves a multi-step process flow. The method
involves preprocessing the ECG, employing adaptive thresholding to detect R peaks, and
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applying post-processing based on the kurtosis coefficient to eliminate false R peaks and
enhance accuracy. To initialize the threshold, baseline estimation and RMS value calcula-
tion of the ECG from a 3-second buffer are required. This is in contrast to our proposed
approach, where classification is performed sample by sample without pre-setting.

The work presented in [6] employed hierarchical clustering and discrete wavelet
transform (DWT) for ECG analysis. They initially identified a template of the single ECG
beat and then detected all R peaks using hierarchical clustering. Subsequently, T-wave
boundaries were delineated based on template morphology. The T-wave peaks were
determined using modulus maxima analysis (MMA) of the DWT coefficients. Throughout
the analysis, a sliding window of 1.2 s was utilized at each step.

Our work shares similarities with this approach. We also perform preprocessing
and utilize similarity-based metrics to classify the R wave. In their work, the signals are
preprocessed through filtering and normalization. Next, hierarchical clustering with the
linkage algorithm and Euclidean distance is applied to determine R-clusters and non-R-
clusters. Once the R-wave clusters are identified, the corresponding R-wave ECG sample
sequences are extracted. In addition, a post-processing step is incorporated to remove false
R peaks. Although the subsequent stages of their method involve T-wave peak detection,
we will not discuss the methods employed for this step in our work.

It is relevant to note that the aforementioned approach involves signal windowing
and relies on prior knowledge of the signal. For instance, their proposed preprocessing step
of signal normalization requires prior knowledge of the signal, which implies a pre-setting
requirement. This limitation could restrict the applicability of their technique in streaming
applications. In contrast, our proposed approach performs classification sample by sample,
without any pre-setting requirements.

Overall, our approach aligns with certain aspects of the work presented in [6], but
it distinguishes itself by enabling sample-by-sample classification without the need for
pre-setting and avoiding signal windowing. These characteristics make our approach
particularly suitable for streaming applications.

The study presented in [24] proposes a refined post-processing ECG delineation
method that classifies each sample point in the ECG recording using 1D-UNet and deter-
mines the boundaries of the waveforms. The ECG signals are divided into segments of
a single heartbeat cycle before being inputted into 1D-UNet. These segments allow the
network to accurately extract the characteristics of different waveforms. A post-processing
algorithm, utilizing the morphological information, eliminates the influence of misclassified
data points. Tests conducted on public ECG databases demonstrate satisfactory delineation
performance with sensitivities of 99.88% and 99.48%, respectively. However, the 1D-UNet,
due to its 1D convolutional operations along the temporal axis, coupled with the post-
processing, is computationally complex and not suitable for online real-time performance.

Although some studies have achieved slightly higher accuracy, their complex nature
and computational demands limit their practical use. In comparison, our method offers
a simplified and efficient R-peak detection approach suitable for streaming applications.
It is important to note that the calculation of eccentricity in the TEDA algorithm involves
summing the geometric distances between current and past samples, enhancing the algo-
rithm’s ability to identify samples with high eccentricity and low typicality as R peaks.
This methodology efficiently separates R peaks from noise and other components of the
ECG waveform without requiring the complete dataset for analysis, allowing detectors to
process data directly from the input stream in real time. The adaptability and efficiency
of TEDA in handling noise significantly improve the accuracy and reliability of R-peak
detection, making it a robust solution for continuous ECG monitoring and analysis in
various clinical contexts.

5. Comparison with the State of the Art

The article presented in [34] introduces an advanced method for detecting QRS com-
plexes in ECG signals, aiming to improve the automatic diagnosis of cardiovascular diseases.
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The proposed technique is based on a sophisticated preprocessing process that includes
band-pass filtering, differentiation, squaring, and integration, followed by peak detection
and an adaptive threshold approach to identify QRS complexes accurately. This methodol-
ogy demonstrates an ACC of 99.41%, Se of 99.72%, and P+ of 99.69% on the MIT-AD. The
total complexity of the algorithm can be expressed by O(NM), where N is the number of
ECG signal samples and M is the dimension of the applied filters. The other steps add linear
complexity O(N), leading to a total approximate complexity of O(N(M + 3)). The method
involves multiple preprocessing steps, including band-pass filtering, differentiation, squar-
ing, and integration, each contributing to the total computational load. The implementation
of filters and the sequence of operations might be computationally intensive.

The article in [5] is outlined in two main stages: initially, an FIR filter in the 5–20 Hz
band is used for preprocessing, followed by a cubing operation to enhance the R peaks
and adaptive thresholding for effective QRS complex detection. Subsequently, a clustering
process is employed to generate a template waveform of the ECG segment between the
S and Q wave points, followed by a conditional thresholding method based on the mor-
phology of the template to detect P and T peaks. This approach demonstrates precision in
detection, as validated on standard databases such as MIT-AD. Applied to the MIT-AD,
the final results were an Se of 99.81%, +P of 99.85%, and an ACC of 99.66%. The size of
the analysis windows mainly influences the complexity of the technique, the order of the
FIR filter, and the total number of samples processed, with O(N) being linear relative to
the number of samples for operations such as filtering, normalization, and thresholding.
However, despite the technique exhibiting linear complexity O(N), it requires multiple
processing steps, including FIR filtering, cubing, adaptive thresholding, and clustering pro-
cesses for template waveform generation. The complexity of clustering processes can range
significantly based on the algorithm chosen: from O(N log N) for optimized DBSCAN,
up to O(N2) or even O(N3) for hierarchical clustering or spectral clustering, respectively.
Hence, the computational burden of the clustering step could substantially impact the
method’s feasibility on devices with limited processing and storage capacities, particularly
without optimizations.

The article presented in [6] introduces a methodology for automatically detecting R
and T peaks in ECG signals, combining hierarchical clustering techniques and discrete
wavelet transform (DWT). The process begins with the ECG signal being filtered using
a fourth-order Butterworth filter to eliminate noise, followed by the normalization of
the data. The detection of R peaks is performed through hierarchical clustering, which
analyzes the similarity between samples based on Euclidean distance. In contrast, T peaks
are identified by analyzing the modulus maxima of the DWT coefficients. This method
achieved impressive results on the MIT-AD: an Se of 99.89%, a +P of 99.97%, and an ACC
of 99.83%. The complexity of hierarchical clustering varies with the specific approach used
but is generally considered high compared to other clustering methods. Agglomerative
hierarchical clustering, one of the most common methods, has a typical computational
complexity of O(N3) in the general case. This is due to repeatedly calculating distances
between all pairs of clusters, and then, combining the two closest clusters at each step.

The work presented in [35] proposes an advanced approach for detecting the QRS
complex in ECG signals. The method begins with preprocessing the ECG signal, including
band-pass filtering to remove noise, differentiation to highlight rapid changes indicative
of the QRS complex, and application of the Hilbert transform to form the signal envelope.
The crucial step is the application of a modified adaptive threshold, using two thresholds
(upper and lower) that are dynamically adjusted based on the statistical analysis of the
signal within each analysis window. This process allows for accurate detection of the QRS
complex, adapting to the variable characteristics of the ECG signal. The efficacy of the
method was validated on 48 recordings from the MIT-AD, achieving an Se of 99.62%, a +P
of 99.88%, and an ACC of 99.51% for QRS complex detection, highlighting the precision and
adaptability of the proposed approach for detecting QRS complexes under different signal
conditions. The complexity of this method can be estimated by considering the primary
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operations described in the article, where filtering with a sixth-order Butterworth filter and
differentiation have essentially linear complexities concerning the number of samples N,
implying an O(N) complexity for these stages. However, the application of the Hilbert
transform raises the overall complexity of the method to O(N log N) due to the use of FFT
and IFFT. The modified adaptive threshold step, though based on statistical analysis and
dynamic adjustments of thresholds, likely maintains a linear complexity O(N), given the
nature of its processing.

The method proposed in this work includes preprocessing with slope calculation
and FIR filtering, followed by the TEDA algorithm and the estimation of the R peak. The
computational complexity presents essential nuances. The preprocessing step with the FIR
filter has a complexity of O(NM), where N is the number of signal samples and M is the
order of the filter, indicating an operation that scales linearly with the size of the signal but
also depends on the chosen filter order. The slope calculation and the TEDA algorithm,
which analyzes each sample individually, contribute an additional linear complexity O(N).
Finally, determining the R peak among the samples selected by TEDA maintains linear
complexity O(M), where M is the number of R-peak candidates. Therefore, the total
complexity of the method is predominantly influenced by the FIR filtering stage and can be
characterized as O(NM), assuming that M is not significantly large relative to N. Table 3
summarizes the comparison between the techniques presented here.

Table 3. Comparison of R-peak detection techniques.

Reference Se P+ ACC Estimated Complexity

[34] 99.72% 99.69% 99.41% O(N(M + 3))
[5] 99.81% 99.85% 99.66% O(N log N), O(N2) or O(N3)
[6] 99.89% 99.97% 99.83% O(N3)

[35] 99.62% 99.88% 99.51% O(N log N)
Our work 95.45% 99.61% 97.48% O(NM)

The comparison between different R-peak detection techniques in ECG signals reveals
that, although the Se and ACC of our proposal are slightly lower than those of other
methods, the P+ is significantly higher. This factor is crucial in clinical practice because it
indicates a low rate of false positives, ensuring that almost all detected R peaks are accurate.
This characteristic is precious in continuous monitoring applications, where reliability
in identifying actual cardiac events is a priority. Even though slightly lower sensitivity
and accuracy might suggest a more conservative detection of R peaks, the high predictive
positivity ensures the clinical relevance of the detections, minimizing interruptions or false
alarms in monitoring systems.

Our proposal also stands out for its reduced computational complexity, estimated
at O(NM), making it particularly attractive for implementation in embedded systems
and wearable devices. In contexts where the conservation of computational and energy
resources is essential, the algorithm’s efficiency becomes critical. The lower complexity
translates into lower energy consumption and processing capacity, facilitating integration
into portable cardiac monitoring devices that operate continuously and autonomously. This
feature allows our technique to be implemented more viably and sustainably in terms of
resources compared to more complex methods, paving the way for broader applications in
mobile health and remote patient monitoring.

Finally, using the TEDA algorithm in our approach offers a distinctive advantage,
allowing for adaptive and intelligent analysis of ECG signals. By focusing on the eccentricity
and typicality of the samples, TEDA effectively identifies QRS complexes, even under
challenging signal conditions, such as in the presence of noise or pathological variations.
This adaptability ensures that our proposal is technically feasible for a wide range of
applications, including wearable devices and embedded systems, and robust in different
clinical contexts. Thus, by balancing efficiency, precision, and adaptability, our technique
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represents a promising advancement in R-peak detection, promoting more reliable and
accessible cardiac monitoring.

6. Conclusions

The proposed technique was performed in three steps. In the first step, the ECG
signals were preprocessed, which involved slope calculation and filtering. The second
step involved the application of the TEDA algorithm, where eccentricity was recursively
calculated. Finally, the R-peak estimation was determined as the point with the highest
eccentricity. To evaluate the effectiveness of the technique we used the traditional MIT-AD.
The results demonstrated that the technique achieved an Se, +P, and ACC of 95.45%, 99.61%,
and 95.09%, respectively, with a TOL of 100 ms. One significant advantage of the proposed
technique is its low computational complexity. Unlike complex traditional approaches that
involve signal transformation, buffering, windowing, or complex mathematical functions,
the proposed technique relies on an evolutive recursive algorithm. In conclusion, the
proposed technique presents a novel approach to R-peak detection in ECG signals. The
combination of preprocessing, the TEDA algorithm, and R-peak estimation results in a
robust performance. Furthermore, the technique’s low computational complexity makes
it well suited for real-time and streaming applications. Future research could explore the
application of this technique to the analysis of other physiological signals or investigate
potential enhancements to further improve its performance.

This research showed that the proposed technique exhibited an Se and ACC around
95% on the MIT-AD, with specific experiments demonstrating values below 99% for these
metrics. This observation is not exclusive to this study; as noted in the literature, other
works also report variable performances, with individual experiments showing an Se and
ACC below the 99% threshold. This highlights the inherent complexity in processing ECG
signals and detecting QRS complexes, especially considering the diversity of arrhythmias
and signal variations among subjects. The necessity for ongoing enhancement of the
approach is recognized, and future work will involve a more detailed investigation into
cases where the current technique underperformed. The focus will be on fine-tuning and
adding refinement steps for specific scenarios, a prevalent strategy in existing proposals
in the literature. Such endeavors aim to increase the robustness and adaptability of the
method, ensuring high rates of Se and ACC generally and enhancing effectiveness in
challenging conditions. This approach will contribute to further developing automatic
tools for diagnosing cardiovascular diseases.

Finally, TEDA also exhibits the potential for adaptation to detecting other waves in
ECG signals, such as T and P waves. Given the algorithm’s flexibility in distinguishing
signal characteristics based on eccentricity and typicality, there is significant promise for
exploring its application beyond R peaks in future work by adjusting its parameters to
capture the nuances of these specific waves.
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