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Abstract: Digital breast tomosynthesis (DBT) is a 3D breast cancer screening technique that can
overcome the limitations of standard 2D digital mammography. However, DBT images often suffer
from artifacts stemming from acquisition conditions, a limited angular range, and low radiation
doses. These artifacts have the potential to degrade the performance of automated breast tumor
classification tools. Notably, most existing automated breast tumor classification methods do not
consider the effect of DBT image quality when designing the classification models. In contrast, this
paper introduces a novel deep learning-based framework for classifying breast tumors in DBT images.
This framework combines global image quality-aware features with tumor texture descriptors. The
proposed approach employs a two-branch model: in the top branch, a deep convolutional neural
network (CNN) model is trained to extract robust features from the region of interest that includes
the tumor. In the bottom branch, a deep learning model named TomoQA is trained to extract global
image quality-aware features from input DBT images. The quality-aware features and the tumor
descriptors are then combined and fed into a fully-connected layer to classify breast tumors as benign
or malignant. The unique advantage of this model is the combination of DBT image quality-aware
features with tumor texture descriptors, which helps accurately classify breast tumors as benign or
malignant. Experimental results on a publicly available DBT image dataset demonstrate that the
proposed framework achieves superior breast tumor classification results, outperforming all existing
deep learning-based methods.

Keywords: breast cancer classification; breast tomosynthesis; deep learning; image quality assessment

1. Introduction

Worldwide, breast cancer has emerged as a leading cause of mortality, posing a threat
to women every year [1]. Clinical studies have shown that the early detection and classifi-
cation of breast cancers markedly enhance patient treatment and therapy outcomes [2,3].
Medical imaging techniques, including mammography, computed tomography (CT), mag-
netic resonance imaging (MRI), and breast ultrasound (BUS), typically play a crucial role in
the assessment of breast cancer [4]. Mammography is the standard modality for detecting
breast cancer in its early stages [5]. However, mammography exhibits a high false positive
rate, wherein normal tissue is incorrectly identified as an abnormal. This is attributed to the
overlap of normal fibroglandular tissues in 2D imaging and the occurrence of cancer-like
abnormalities, leading to unnecessary additional biopsies [6].

Digital breast tomosynthesis (DBT) offers a solution to the limitations of mammog-
raphy [7]. DBT can be regarded as a subset of the mammography procedure, differing

Mach. Learn. Knowl. Extr. 2024, 6, 619–641. https://doi.org/10.3390/make6010029 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make6010029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0003-3877-8304
https://orcid.org/0000-0002-0562-4205
https://doi.org/10.3390/make6010029
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make6010029?type=check_update&version=1


Mach. Learn. Knowl. Extr. 2024, 6 620

in that the X-ray tube in breast tomosynthesis sweeps in an arc around the compressed
breast, capturing multiple images (slices) from various angles [8]. DBT plays a crucial role
in reducing the false positive rate by minimizing tissue overlap, which can conceal cancers
or complicate the differentiation between normal overlapping breast tissue and tumors [9].

The analysis of a large volume of DBT is labor-intensive and time-consuming for
radiologists. To overcome such challenges, numerous automated tools and computer-
aided diagnosis (CAD) systems have been proposed to assist radiologists in detecting and
diagnosing breast cancer in DBT images [10–13]. In recent years, several CAD systems
based on deep convolutional neural networks (CNNs), like [14–17], have been introduced
for the detection and classification of breast tumors in DBT images. Notably, the majority
of previous studies have been conducted on in-house DBT datasets, thus limiting the
reproducibility of the results. Therefore, it is imperative to utilize publicly available DBT
datasets when developing a reliable CAD system.

Despite the superior quality of DBT images compared with mammography and
breast ultrasound ones, various artifacts can significantly degrade the image quality of
DBT images. These artifacts arise from factors such as acquisition conditions, a limited
angular range, a low radiation dose, and reconstruction processes [18]. To elucidate these
artifacts, Figure 1 showcases four instances of DBT images, each highlighting distinct
artifacts impacting the quality of DBT. Notably, patient motion during the acquisition
process can cause blurring and ghosting in the image, altering the appearance of tumors
(indicated by the green arrow and box). Additionally, the influence of scatter radiation
is evident, contributing to diminished image contrast and clarity, a consequence of low
or high radiation doses (depicted by blue and red arrows and boxes). The final image
underscores the impact of missing information in image reconstruction, leading to noisy
DBT images that manifest as bright or dark pixels.

Blurring Low Dose High Dose Noisy

Figure 1. Examples of artifacts affecting DBT images. Blurring, low dose, high dose, and noise
manifested as bright or dark pixels are indicated by corresponding green, blue, red, and yellow
arrows and boxes, respectively.

Most existing CAD systems are constrained to the classification of breast tissue as
normal or abnormal, paying limited attention to distinguishing between benign and ma-
lignant breast tumors. Furthermore, most existing automated breast tumor classification
methods do not consider the effect of DBT image quality when designing the classification
models. In an effort to enhance breast tumor classification accuracy, this paper introduces
a new deep learning-based framework for classifying breast tumors in DBT images. This
framework integrates global image quality-aware features with tumor texture descriptors.
The proposed framework employs a two-branch model: in the top branch, a CNN model is
trained to extract robust features from the region of interest, which includes the tumor. Con-
currently, in the bottom branch, a deep learning model called TomoQA is trained to extract
global image quality-aware features from the input DBT images. Subsequently, the quality-
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aware features and tumor descriptors are combined and input into a fully-connected layer
to classify breast tumors as either benign or malignant.

The following enumerates the main novelties of this study:

1. Presenting a novel deep learning-based framework for breast tumor classification in
DBT images. The unique merit of this model is the combination of DBT image quality-
aware features with tumor texture descriptors, which helps accurately categorize the
breast tumor as benign or malignant.

2. Proposing the TomoQA deep learning model to extract quality-aware features from
DBT images.

3. Conducting an extensive experimental analysis on a publicly available DBT dataset
and providing comparisons with existing methods to demonstrate the superiority of
the proposed method. The implementation code for our proposed method from this
study is publicly available on GitHub at https://github.com/loaysh2010/Classifying-
Breast-Tumors-in-DBT-Images-based-on-Image-Quality-Aware-Features, accessed
on 6 March 2024.

Section 2 discusses the related work of breast cancer classification in DBT images
and image quality assessment. Section 3 presents the proposed breast cancer malignancy
prediction approach. The implementation details of the proposed method are explained
in Section 4. In Section 5, we present the experimental results and discussion. Section 6
concludes the paper and highlights future work.

2. Related Work

Over the last decade, deep learning has been employed in the development of efficient
automated breast cancer classification methods in DBT images. For instance, the study
presented in [19] compared hand-crafted feature-based CAD systems against CNN-based
CAD systems for breast cancer classification in DBT images. The results obtained on
an in-house DBT dataset indicated that the accuracy of the CNN-based CAD system
outperformed the hand-crafted feature-based CAD system by 13%. In [20], a deep learning-
based framework named DBT-DCNN was proposed for classifying breast tissue in DBT
images as normal or abnormal. The DBT-DCNN network comprised 24 convolution layers,
two fully connected layers, and the final classification output layer. They conducted a
comparison of DBT-DCNN with the AlexNet and VGG architectures. DBT-DCNN was
evaluated on two in-house DBT image datasets, achieving accuracies of 90% and 89% for
the respective datasets.

Lee et al. [21] introduced a transformer-based deep neural network model designed to
integrate contextual information from neighboring image sections to classify breast cancer
on digital breast tomosynthesis (DBT) images. Through evaluation of an in-house DBT
dataset, encompassing a test set of 655 DBT images, their proposed transformer-based
model demonstrates a noteworthy enhancement over the baseline. Specifically, the model
achieves an Area Under the Curve (AUC) of 0.91, compared with the baseline’s 0.88. More-
over, sensitivity sees a commendable rise, reaching 87.7% as opposed to the baseline’s 81%.
In [22], Moghadam et al. developed a classical machine-learning framework for classify-
ing benign and malignant lesions in DBT images. The framework identified a four-step
methodology which includes preprocessing, segmentation, feature extraction/engineering,
and the classification of benign versus malignant tumors. On the publicly accessible DBTex
dataset [23], their proposed approach outperformed compared methods, achieving a mean
sensitivity of 77.12%.

Furthermore, Zhang et al. [24] presented a method for classifying breast tissue in DBT
images as normal or abnormal. It is based on a typical 2D deep CNN model on the whole
volume of 3D DBT images, regardless of the number of slices. Notably, for z-slices of the
DBT image, every three successive slices are stacked as a three-channel image input to
the feature extractor network. Then, they generated a feature map by pooling the features
extracted for the binary classification (normal or abnormal tissue). This method was
assessed on an in-house DBT dataset. It has been found that feature extraction using the

https://github.com/loaysh2010/Classifying-Breast-Tumors-in-DBT-Images-based-on-Image-Quality-Aware-Features
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AlexNet model and feature fusion using MaxPooling yielded the best classification result.
Additionally, Doganay et al. [25] presented an approach similar to that in [24], utilizing
a sub-volume of 11 slices as input to the VGG16 classification model. This method relies
on the most representative slice, manually defined by expert radiologists, as the starting
point to create the sub-volume inputs. They achieved an area under the receiver operating
characteristic curve (AUC under ROC) of 79% with an in-house DBT dataset. The primary
limitation of this method is its lack of full automation.

Indeed, very few works have been presented in the literature for classifying breast
tumors in DBT images as benign or malignant. For instance, a two-stage deep learning-
based classification framework was proposed in [26] for classifying breast tumors in DBT
images as malignant or benign. In the first stage of this method, a pretrained AlexNet
model, initially trained on the ImageNet dataset (non-medical images), is fine-tuned with
fewer than 3000 patch images extracted from mammograms. Subsequently, they fine-tuned
the resulting CNN model with 1500 patches extracted from DBT images. The experimental
results on an in-house DBT dataset demonstrated that this multi-stage transfer learning
approach improves classification accuracy by 6% over the single-stage approach, where the
model is trained on DBT only.

Like [26], in this study, we focus on the classification of breast tumors in DBT images
as benign or malignant and employ transfer learning with pretrained CNN models. How-
ever, Ref. [26] and other existing work do not consider the effect of DBT image quality
when developing the breast tumor classification models, resulting in limited performance.
To handle this issue, in this paper, we propose a novel deep learning-based framework for
classifying breast tumors in DBT images. The unique advantage of the proposed framework
is that it combines DBT image quality-aware features with tumor texture descriptors, which
helps to accurately classify the breast tumor as benign or malignant. To the best of the
authors’ knowledge, this is the first study that takes into account DBT image quality in the
context of breast tumor classification.

3. Proposed Breast Tumor Classification Method

The proposed deep learning-based framework for classifying breast tumors in DBT
images is shown in Figure 2. As depicted, the framework includes a two-branch model.
The upper branch includes the extraction of the region of interest (ROI) using the breast
tumor detection model proposed in [27] and a CNN model trained to extract robust features
from the ROI that includes the tumor. The bottom branch is a deep learning model called
TomoQA. Finally, the tumor descriptors (output of the upper branch) and the quality-
aware features (output of the bottom branch) are then concatenated and input into a
fully-connected layer to categorize breast tumors as benign or malignant. In the subsections
below, we explain each component of the proposed breast tumor classification framework
in detail.

ROI Extraction

Quality-Based  
Features

Tumor Descriptors

Combined
Feature

FC

Benign/Malignant

Tumor Patch

Tumor
 Descriptors Extraction

TomoQA 
Deep Learning-Based Quality Assessment Model

Flattened Features

Figure 2. Proposed framework for breast tumor classification in DBT images.
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3.1. Upper Branch: Extracting Tumor Texture Descriptors

As shown in Figure 2 (top), we employ a deep learning network to extract radiomics
from the tumor region. We employ various deep learning CNN architectures: AlexNet [28],
VGG16 [29], ResNet50 [30], DensNet121 [31], EfficientNet [32], DarkNet53 [33], Ghost-
Net [34], HRNet [35], CoAtNet [36], and ConvNext [37].

The extracted radiomics, R(DBT), are combined with the quality-aware features,
Q(DBT), as follows:

F = Q(DBT) + R(DBT) (1)

where F stands for the combined feature vector, and Q(DBT) and R(DBT) stand for
the quality-aware features and deep learning-based tumor radiomics of the input DBT
image, respectively. Then, these combined features are fed into a classifier to be trained
to discriminate benign tumors from malignant ones. We modified the last fully connected
(FC) layer for all the employed CNN models to the set of classes to two classes: benign
and malignant.

3.2. Lower Branch: Extracting Image Quality-Aware Features

In this study, we developed TomoQA, a convolutional neural network (CNN)-based
model for DBT no-reference image quality assessment (NR-IQA). TomoQA is designed to
receive a DBT as an input and predicts the corresponding quality score. Figure 3 illustrates
the framework of TomoQA. The construction of TomoQA comprises two fundamental
steps: (1) the creation of a synthetic dataset for DBT image quality assessment, and (2) the
implementation of a deep learning-based NR-IQA model to predict the quality score of the
DBT images.

Unlabeled DBT 
 Images

Synthetic Data
Generation

Labeled DBT Distorted Images

0.97 0.900.85 0.89

Quality 
 Scores

TomoQA 
 

Figure 3. The framework of the proposed DBT image NR-IQA method.

In this study, we use ConvNext-Tiny architecture [37] to build the DBT quality es-
timation model. This choice is informed by its high performance, as evidenced by the
experiments detailed in Appendix A. Figure 4 shows the architecture of the proposed model.
The network comprises the patchify layer, the feature extractor backbone, and the regressor.
The patchify layer splits the input image into a sequence of patches. The patchify layer
consists of one convolution layer with a receptive size of 4 × 4 and stride of 4. The feature
extractor consists of four stages. Each stage has a number of blocks (3× and 9× mean that
there are 3 and 9 blocks, respectively).
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Figure 4. The architecture of ConvNext.
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Figure 5 presents the architecture of the ConvNext block. Each block has a 7 × 7
convolution layer followed by two 1 × 1 convolution layers. ConvNext uses the Gaussian
Error Linear Unit (GELU) activation function [38]. GELU can be regarded as a smoother
alternative to the ReLU function, and for an input x, it can be calculated using Equation (2).
As shown in Figure 5, the ConvNext block only uses a single GELU activation function in
each block between the two 1 × 1 convolution layers in the convNext blocks.

GELU(x) ≈ 0.5x
(

1 + tanh
[√

2/π
(

x + 0.044715x3
)])

(2)

LN

GELU

Conv, C 

Conv, C

Conv, C 

Figure 5. The architecture of the ConvNext block.

The ConvNext block employs layer normalization (LayerNorm) as it is simple, im-
proves convergence, and reduces overfitting, resulting in good performance across different
vision applications. The LayerNorm statistics are calculated for all hidden units in the same
layer as follows:

µl =
1
H

H

∑
i=1

al
i σl =

√√√√ 1
H

H

∑
i=1

(
al

i − µl
)2 (3)

where µl and σl refer to the mean and variance of the summed inputs inside each layer,
respectively. H stands for the number of hidden units in a layer.

As shown in Figure 4, the ConvNext feature extractor is followed by two fully
connected layers of the regressor with a flattening layer in-between. The first one has
768 neurons, and the last fully connected layer serves as the output layer and has only one
neuron to estimate the quality score of the input image.

4. Implementation Details of the Proposed Framework
4.1. Generating Synthetic DBT Image Quality Assessment Dataset

There is no DBT image quality assessment dataset with subjective quality scores.
Hence, a quality assessment DBT dataset must be constructed to train TomoQA. To do so,
we collected DBT images of 50 patients from the DBTex challenge dataset [23], which was
made publicly available in 2020. Each DBT scan typically consists of one of four anatomical
views (i.e., RCC, LCC, RMLO, or LMLO). We employed different image processing methods
to perform artificial degradation on the DBT images to generate images with different
quality levels to greatly mimic the distortion that can occur while acquiring the DBT
images. It should be noted that artifacts related to DBT include blurring, motion blur,
bright or dark pixels, truncation, loss of skin, and superficial tissue resolution [39]. On this
basis, blurring, random levels of speckle noise, and random levels of gamma correction to
simulate different dose levels are applied as follows:
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• To generate blurred DBT images, we use the mean filter technique that takes the
average of all the pixels under the kernel area to replace the central element. Each
image is blurred using a mean filter with a random kernel size ranging from 13 × 13
to 23 × 23 with a step of 2:

f (x, y) =
1

mn ∑
(a,b)∈Sxy

p(a, b) (4)

where m and n represent the kernel size, and p(a, b) represents the pixel value of our
DBT image at location (a, b) inside the kernel window.

• To generate a set of distorted DBT images that simulate different dose levels, we apply
gamma correction to adjust the overall brightness of an input DBT image Is:

Iγ = 255 × (
Is

255
)γ (5)

where Iγ is the output distorted DBT image. To simulate different dose levels,
10 random values ranging from 0.65 to 0.9 are used for γ.

• To simulate bright or dark pixel artifacts in DBT images, we generate a set of distorted
DBT images by adding speckle noise as follows:

In = ηm Is (6)

where ηm represents the speckle noise of unit mean. Is and In are the input DBT image
and the output distorted image. A total of 10 random values for ηm ranging from
0.1 to 0.2 are used to generate the distorted DBT images.

The determination of image quality scores for a large number of DBT images is time-
consuming and labor-intensive. To do so automatically, we adopted the labeling strategy
presented in [40,41] to compute the quality scores of the distorted DBT images based on
two full-reference image quality assessment (FR-IQA) metrics: the peak signal-to-noise
ratio (PSNR) metric [42] and structural similarity (SSIM) metric [43]. The quality score Qs
can be formulated as follows:

Qs = w1 · S(PSNR) + w2 · SSIM (7)

where w1 and w2 are weights to adjust the contribution of each FR-IQA metric. In this
work, we set w1 = w2 = 0.5 following [40,41], assuming noise and structural artifacts have
an equal impact on image quality. It is worth noting that a logistic regression function is
applied for the PSNR measure to map both measures into the same range as follows:

S(PSNR) =
1

1 + e−PSNR (8)

PSNR is the ratio between the maximum power of a signal and the power of the
background noise. It measures the extent of noise distribution in the DBT image. The PSNR
can be calculated as follows:

PSNR = 10 log10(
MAX2

I
MSE

) (9)

where MAXI is the maximum possible pixel value of the DBT image (I), and MSE is the
mean squared error.

SSIM measures the similarity between two images by considering three components:
luminance, contrast, and structure. It can be computed as follows:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (10)
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where µx, µy, σx, σy, σxy, c1, and c2 are the average of x, the average of y, the variance of x,
the variance of y, the covariance of x and y, and two variables to stabilize the division for a
weak denominator, respectively.

Figure 6 shows four examples of distorted DBT images. As we can see, they show the
presence of DBT image artifacts such as darkness and brightness (DBT1, DBT2) generated
by the gamma correction to mimic a potentially reduced radiation dose, speckle noise
(DBT3), and blurring (DBT4). In Figure 6, we can observe that the SSIM and PSNR values
respond differently for each noise type of the noisy DBT images.

DBT1 DBT2 DBT3 DBT4

PSNR = 0.96 
SSIM  = 0.94 
Quality-score = 0.95

PSNR = 0.98 
SSIM  = 0.99 
Quality-score = 0.98

PSNR = 0.91 
SSIM  = 0.85 
Quality-score = 0.88

PSNR = 0.94 
SSIM  = 0.91 
Quality-score = 0.92

Figure 6. Examples of distorted DBT images with the corresponding PSNR, SSIM, and corresponding
quality scores.

4.2. Implementation Details of the Proposed DBT IQA Model

To develop the DBT IQA model, we divided the synthetic DBT images into training
and testing sets. In the training phase, for each image of the training set, we randomly
crop 25 patches with a size of 224 × 244 to match the input size of the ConvNext network,
resulting in a total of 5000 training patches. Afterward, using the cropped patches of the
training set images, we train the deep learning ConvNext network for 50 epochs using
a mean square error loss function and Adam optimizer, with a learning rate of 1 × 10−4.
During the test stage, 25 patches with a size of 224 × 224 pixels from each test image are
randomly cropped, and their corresponding prediction scores are averaged to get the final
image quality score.

It should be mentioned that after training the DBT IQA model, the last regression
layer of the model is eliminated. The model outputs a feature vector representing the
quality-based features, which are combined with the radiomics features to predict breast
tumor malignancy.

4.3. Implementation Details of the Tumor Texture Descriptors Extraction Model

We initially split the annotated DBT dataset patient-wise into training and test datasets.
In the training phase, for each DBT image, we generate the quality-aware features by using
the DBT IQA model for the whole image. We crop the tumor patch from the input image
based on the ground truth annotation to train the deep learning-based radiomics extraction
model. Both generated features are combined as mentioned in Equation (1) to get a single
feature vector to train the classifier. In the test phase, for each DBT image, we follow the
same procedure for the quality-aware feature extraction and deep learning-based radiomics
extraction, then combine these features, which are fed into the trained classifier to predict
the malignancy score.

It should be noted that all models were trained for 50 epochs using a patch size of
8 to mitigate the risk of overfitting, considering the limited number of training images
available. We employed the cross-entropy loss function and utilized the Adam to optimize
the evaluated models with a learning rate of 1 × 10−4 to train the end-to-end deep learning
classifier. All models were implemented in the Python programming language. All the
experiments were performed using the PyTorch framework on a 64-bit Ubuntu operating
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system with a 3.6 GHz Intel Core i7 with 32 GB of RAM and an Nvidia RTX3080 with 10
GB of video RAM.

5. Experimental Results and Analysis
5.1. Dataset

In this study, we used the DBTex challenge dataset [23], which is the only publicly
available DBT image dataset. It contains 1000 breast tomosynthesis scans from 985 patients.
However, it is important to note that not all images are fully annotated. Specifically,
among 101 patients, only 208 DBT images have been annotated with 223 tumor class
annotations with location boundary boxes, which limits the availability of usable annotated
tumors. Furthermore, none of the images in the DBTex dataset have subjective quality score
annotations. This absence of quality score labels is a significant constraint of the dataset for
image quality assessment tasks.

For the DBT quality assessment, we generated distorted images with corresponding
objective quality scores following the synthetic data generation strategy discussed in
Section 4.1. The detailed distribution of the used DBT quality assessment dataset is shown
in Table 1. The DBT images of 50 patients were used to generate the synthetic image quality
dataset. We divided the DBT images patient-wise into training and testing sets. It should
be noted that we select a single DBT image from each patient randomly. For each image,
we generated a blurred image, two images with gamma correction, and a noisy speckle
image. Thus, the total number of distorted images is 250.

Table 1. Overview of the DBT dataset for quality assessment.

Train Test

No. of Patient 40 10
Blurred 40 10

Gamma Correction 80 20
Speckle Noise 40 10

Total Images 200 50

For breast tumor malignancy prediction, in terms of ROI selection, the tumors are
center-cropped and extracted from the annotated DBT image. The selected ROI are then all
resized into identical dimensions of 224× 224 to fit the input of various radiomics extraction
deep learning-based networks. Then, we divide the DBT images and the corresponding
patches patient-wise into training and testing sets.

Table 2 summarizes the DBT dataset used in the breast tumor malignancy prediction
task. The dataset is split as follows: approximately 80% for training and 20% for testing
(patient-wise). Out of the 223 tumor patches utilized in our study, it was found that
138 cases were categorized as benign, whereas 85 cases were categorized as malignant.
This disparity in class distribution creates a significant bias toward the predominant class
(benign), resulting in a reduction in the predictive capability of the proposed method and
insufficient prediction for the minority class (malignant). It is clear that the number of
benign tumors in the training set is approximately twice that of the malignant tumors.
To address this challenge, the number of tumor patches in training data increases to
balance the dataset, utilizing multiple augmentation processes. We doubled the number of
malignant tumor images by jointly flipping all patches in the training set horizontally and
vertically. This eventually resulted in 114 benign patches and 126 malignant tumor patches,
with a total of 240 tumor patches in the training set. In addition, we used 46 tumor patches
for the test consisting of 23 benign patches and 23 malignant patches.
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Table 2. Overview of the DBT dataset for tumor malignancy prediction experiments.

No. of Patients No. of Tumor Patches Augmented Patches

Train Test Train Test Train Test

Benign 50 12 114 23 114 23
Malignant 27 12 63 23 126 23

Total 77 24 177 46 240 46

5.2. Evaluation Metrics

We evaluated the proposed breast tumor malignancy prediction method regarding
classification accuracy, precision, recall, and F1-score. Accuracy is the most popular metric
for evaluating breast cancer screening methods and can be expressed as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(11)

Precision is the fraction of true positive samples among all positive samples. The recall
is referred to as sensitivity and defined as the fraction of true positive instances among all
positive classified samples. The F1-score combines precision and recall. It is the harmonic
mean of precision and recall. These metrics are computed as follows:

precision =
TP

TP + FP

recall =
TP

TP + FN

F1-score = 2 × precision × recall
precision + recall

(12)

where true positive (TP) is the number of malignant tumors correctly classified as malignant.
True negative (TN) represents the number of correctly classified benign tumors. False
positive (FP) is the number of malignant tumors wrongly classified as benign. False
negative (FN) stands for the number of benign tumors wrongly classified as malignant.

We evaluate the proposed NR-IQA model–TomoQA in terms of the Pearson linear correla-
tion coefficient (PLCC) [44] and the Spearman rank order correlation coefficient (SROCC) [45].
The comprehensive details of the evaluation process and analysis for the TomoQA model are
provided in Appendix A.

5.3. Performance Evaluation of the Proposed Malignancy Prediction Approach

Indeed, the empirical evidence from studies [20,24,26], specifically within the context
of tumor feature extraction from DBT images, underscores the commendable performance
of AlexNet as a feature extractor. Demonstrating its ability to deliver remarkable results
and achieve high classification performance, AlexNet emerges as a promising choice as the
baseline model for our task.

To demonstrate the effectiveness of the proposed method, Table 3 presents results that
compare the baseline model, which does not incorporate DBT image quality-aware features,
with the proposed quality-aware model. The focus lies on the classification of breast tumors
utilizing tumor descriptor features and integrating quality-based features. This comparison
serves to highlight the added value and performance enhancements achieved through the
incorporation of quality-aware features in our model.
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Table 3. Evaluating the proposed malignancy prediction approach compared with the baseline.
The best results are highlighted in bold.

Backbone Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Baseline AlexNet 69.57 65.52 82.61 73.08
Proposed AlexNet + TomoQA 78.26 88.24 65.22 75.00

By comparing the baseline model with our proposed quality-aware model, it becomes
evident that our novel approach significantly enhances the classification performance
across metrics, including accuracy, precision, and F1-score. Notably, our proposed method
achieves an impressive accuracy of 78.26%, marking an 8% improvement over the baseline.
Moreover, the precision reaches 88.24%, showcasing a remarkable 23% increase compared
with the baseline. This substantial gain in precision underscores our model’s proficiency
in accurately identifying positive instances. While the baseline achieves a higher true
positive rate, our proposed method excels in terms of the F1-score, indicating superior
overall performance.

Alternative experiments have been carried out to obtain a more reliable estimate of
the model’s performance compared with a single train-test split. We turn to employing the
k-fold cross-validation technique. This approach involves randomly dividing the dataset’s
images into k groups, or folds, of approximately equal size. The first fold is treated as a
validation set, and the model is trained on the remaining k − 1 folds. It is a resampling
procedure that assesses the performance of a predictive model and helps to evaluate how
well a model generalizes to unseen data.

Figure 7 presents boxplots visualizing the distribution of evaluation metrics across
the k-fold cross-validation with k = 5 for both the baseline and proposed methods. Each
boxplot summarizes the data using a five-number summary: minimum, maximum, first
quartile (Q1), median, and third quartile (Q3). The red horizontal line within each box
represents the median value, offering a quick comparison of central tendencies between
the two methods for each metric.
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Figure 7. Boxplots of the k-fold cross-validation results with k = 5 for (a) baseline and (b) pro-
posed method.

Notably, it becomes evident that the proposed model surpasses the baseline in terms
of accuracy, precision and F1-score across various folds’ validation. As depicted in Figure 7,
the minimum, maximum, and median values associated with the proposed model consistently
outperform those of the baseline. This is indicative of the proposed model’s superior predictive
capacity, as it not only achieves higher accuracy on average but also demonstrates better
performance across the validation folds, from the lowest to the highest observed values.
Regarding the recall values, while the baseline exhibits a broader distribution, indicating a
wider range of performance outcomes, the proposed model demonstrates a more concentrated
distribution. Despite the baseline’s higher maximum, the proposed model notably boasts
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median recall values. This suggests that although the baseline model may exhibit variability
in its recall performance, the proposed model consistently achieves superior recall rates.

In Figure 8, we present a visual representation of malignancy scores for four DBT
images, comprising two benign and two malignant cases. The malignancy score ranges from
0 to 1 and serves as an indicator of tumor carcinogenicity. Benign tumors are characterized
by low malignancy scores, closely approaching 0, while the probability of malignant tumors
grows as the malignancy score reaches 1.
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Figure 8. Examples of malignancy score prediction using the proposed method.

As we can see from Figure 8, in the context of benign tumors, both the baseline and
our proposed model demonstrated accurate classification for the upper image. However,
the proposed method achieved a lower malignancy score of 0.039 compared with the baseline.
Turning attention to the lower image, which shares a shape similarity with malignant tumors,
the proposed model obtained a score of 0.44 < 0.5, correctly classifying the tumor. In contrast,
the baseline model made an incorrect classification, assigning a score of 0.53 > 0.5. Similar
results can be observed when examining the results of malignant tumor images. We see that
the proposed method was able to obtain a high malignancy score for both images, with a score
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of 0.81 and 0.77, superior to the basic model. Also, the basic model obtained incorrect results for
the lower image, which is similar in appearance to benign tumors. This analysis underscores
the improved classification capability of our proposed model, particularly in scenarios with
borderline malignancy scores, enhancing its precision in distinguishing between benign and
malignant tumor patterns.

Table 4 compares the proposed malignancy prediction method with existing breast
tumor classification methods for DBT images. To conduct a fair comparative study, we
trained and tested all methods using the same training and testing DBT datasets.

Table 4. Comparing the performance of the proposed method with existing breast tumor classification
methods. The best results are highlighted in bold.

Method Backbone Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Yeh et al. [19] LeNet 59.11 87.50 66.67 75.00
Ricciardi et al. [20] DBT-DCNN 64.54 73.90 65.42 69.39
Doganay et al. [25] Vgg16 65.57 73.08 82.60 77.56
Samala et al. [26] AlexNet 74.66 78.95 78.95 79.00

Moghadam et al. [22] ML approach 80.67 75.11 77.12 76.10

Proposed AlexNet + TomoQA 78.26 88.24 65.22 75.00

Table 4 demonstrates that the performance of the proposed method outperforms all
other compared methods in terms of accuracy and precision. Thanks to the proposed
dual-branch approach, quality-aware features help the classifier focus its attention on the
most relevant regions of the image and provide complementary information to the tumor
descriptor branch that discerns meaningful patterns associated with the tumor, improving
classification accuracy.

As we can see, the proposed method outperforms the method presented in [26] which
achieved a competitive performance over the other deep learning-based methods, with an
accuracy of 75% and an F1-score of 79%. Following [26], we used the INbreast mammogram
dataset [46] to fine-tune the AlexNet model in the first stage of the method, and then we
used the DBTex train set to further fine-tune the model. A potential drawback of [26] is the
requirement for a mammography dataset, which may not always be accessible for training
in the initial stage of the method. Additionally, the methodology proposed in the study [22]
demonstrated commendable performance, achieving competitiveness with an accuracy
of 80.67% and specificity of 77.12%. However, it is crucial to mention a significant aspect
of the classic machine learning technique of Moghadam et al. [22]—it relies heavily on
hand-crafted features tailored to a specific dataset. Although they stated in their study
that the use of 15 selected features represented the optimum point via trial and error,
they did not specify what these features are and how they extracted them, which raises
a reproducibility limitation, along with the inherent limitations, as the effectiveness of
selected features cannot be guaranteed to achieve the same level of performance when
applied to diverse digital DBT datasets. Furthermore, it does not operate as an end-to-end
system. Instead, this method involves a series of seven intricate sequential steps, unlike
deep learning methods.

5.4. Ablation Study

To demonstrate the efficacy of our proposed method, we conducted a comprehensive
evaluation by applying the quality-aware framework to various CNN-based classification
networks, including VGG16, ResNet50, DensNet121, EfficientNet, DarkNet53, GhostNet,
HRNet, CoAtNet, and ConvNext. The performance of each model, when employed
with our quality-aware approach, was compared against its respective baseline in terms
of accuracy.

The outcomes illustrated in Figure 9 reveal notable improvements across all evaluated
classification models. Specifically, the proposed method enhances the classification accuracy
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of ResNet50, EfficientNet, and ConvNext by 6%, 9%, and 9%, respectively, underscoring
the broad applicability and consistent performance gains achieved by our quality-aware
approach across diverse CNN architectures.
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Figure 9. Evaluating different variations of the proposed malignancy prediction approach.

Statistical analysis: As shown above, the performance attained by the proposed method
surpasses those of the baseline models (VGG16, ResNet50, DensNet121, EfficientNet, Dark-
Net53, GhostNet, HRNet, CoAtNet, and ConvNext), underscoring its efficacy in enhancing
the classification outcomes across all evaluated models. In this study, we employed McNe-
mar’s statistical test to ascertain the statistical significance of the performance disparities
concerning accuracy between the proposed method and different baseline models. Mc-
Nemar’s test is specifically designed for comparing paired nominal data, which makes it
suitable for comparing the performance of two classifiers in a binary classification setting.
In particular, we employed the continuity-corrected version of McNemar’s test, which is
the more commonly used variant. A continuity-corrected version of McNemar’s test is
governed by the following equation:

χ2 =
(|B − C| − 1)2

(B + C)
(13)

where B denotes the count of instances correctly predicted by the baseline but incorrectly by
the proposed method. C signifies the count of instances correctly predicted by the proposed
method but incorrectly by the baseline. The (−1) in the numerator is included to adjust for
the continuity correction. Once we have calculated McNemar’s statistic, we can compare
it with the chi-squared distribution with 1 degree of freedom to obtain the p-value. This
p-value indicates the probability of observing the discrepancy between the two models by
chance alone.

Table 5 shows the statistical analysis of the accuracy values of the proposed model and
each baseline model. In this table, a p-value lower than 0.05 indicates statistical significance.
As can be seen in Table 5, for each baseline model, the results of the proposed method are
more statistically significant than the ones of the baseline model.
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Table 5. Comparison between the proposed method and baseline in terms of the accuracy (statistically
significant differences are shown in bold).

Proposec vs. Baseline Best Accuracy Achieved (%)
by the Proposed Method

Best Accuracy Achieved (%)
by the Baseline p-Value

AlexNet 78.26 69.57 <0.003
VGG16 69.57 65.22 <0.05

ResNet50 73.91 67.39 <0.05
DenseNet121 71.74 67.39 <0.02
EfficientNet 76.08 67.39 <0.007
DarkNet53 65.22 63.04 <0.05
GhostNet 71.74 69.57 <0.009
HRNet18 69.57 65.22 <0.05
CoAtNet 71.74 67.39 <0.02

ConvNext 71.74 63.04 <0.03

Figure 10 shows the skill score (SS) of different variants of the proposed approach.
SS measures the accuracy improvement of a model regarding the accuracy of a reference
model. SS can be expressed as follows:

SS = 1 −
MRe f

MEv
(14)

where MRe f and MEv stand for the accuracy of the reference and evaluated models, re-
spectively. As the baseline AlexNet model obtained the highest classification accuracy, we
used it as a reference model. As shown, the proposed method based on the AlexNet model
achieves the highest skill score.
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Figure 10. Skill scores of the malignancy prediction models.

5.5. Analyzing the Computational Efficiency of the Proposed Method

Furthermore, to address concerns regarding computational efficiency, we present an
additional analysis in Figure 11 which highlights the accuracy improvement ratio (AIR),
i.e., how the proposed method increased the accuracy of all models over the models’ base-
line compared with the number of trainable parameters that indicate the computational
complexity for each evaluated model. As shown, there is a noticeable variation in complex-
ity between the evaluated models. We can see that EfficientNet, GhostNet, and CoAtNet
have a few numbers of trainable parameters ranging from 2 to 9 million parameters with
an accuracy improvement rate of 11%, 3%, and 7%, at a variance from DenseNet121 and
ConvNext which contained up to 90 million parameters with an accuracy improvement
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rate of 6% and 12%. VGG16 and HRNet have an acceptable number of trainable parameters
(<40 million) and obtained significant accuracy improvement with a rate of 18%. However,
considering that the obtained accuracy of AlexNet (78%) and the high accuracy improve-
ment ratio (11%) with a high computational efficiency resulting from the ability to train a
small number of parameters (<10 million) leads to lower resource requirements and faster
inference, we can infer that using AlexNet for extracting tumor descriptors in the proposed
method is an excellent choice.
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Figure 11. Accuracy improvement versus the number of trainable parameters of each evalu-
ated model.

5.6. Enhancing Classification Accuracy through Ensemble Models

Aggregating multiple deep learning models can significantly enhance classification
accuracy by leveraging the diversity and complementary strengths of individual models.
This ensemble approach aims to mitigate the weaknesses of individual models and capital-
ize on their collective predictive power. By combining the predictions of diverse models,
the ensemble can capture a broader range of patterns and features in the data, leading to a
more robust and accurate classification performance.

Based on results shown in Sections 5.3 and 5.4, we select the top-performing breast
tumor malignancy prediction models in terms of accuracy, precision, and F1-score (AlexNet,
ResNet50, EfficientNet, GhostNet, CoAtNet, and DensNet121). To construct the ensemble
classification approach, we aggregate the malignancy scores of the top-performing models
using the average and median aggregation functions.

As presented in Table 6, the average aggregation for ensembled models achieves an
accuracy of 84.78%, better than the individual proposed AlexNet-based quality-aware
method with a 6% enhancement. Although the mean aggregation function yields an accept-
able performance, the median aggregation leads to slightly better results. For ensembled
models, we obtain an accuracy of 86.96%, 90.48% precision, and an F1-score of 86.36%.
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Table 6. Evaluating different aggregation-based ensemble models. The best results are highlighted
in bold.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Average Aggregation 84.78 90.11 82.61 82.61
Median Aggregation 86.96 90.48 82.61 86.36

Figure 12 shows the false positive rate (FPR) for the proposed method and the best-
proposed ensemble method (ensemble models, based on the median aggregation function).
Here, we can see that both methods efficiently classify the benign tumors of the DBT image
with an accuracy of 91.3%. In the case of malignant tumors, ensemble models with the
median aggregation function achieved a higher classification accuracy of 82.60%, which is
17% better than the AlexNet-based classification method.
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Figure 12. False positive rate for proposed method and proposed ensemble.

Based on the analysis presented here and in Sections 5.3–5.6, it is clear that the use of
the quality-aware features can significantly enhance breast tumor classification on DBT
images, and the proposed ensemble approach can achieve accurate malignancy prediction
while outperforming the state-of-the-art methods.

5.7. Evaluating the Proposed Method on the Breast Mammography Modality

To further validate the effectiveness of our proposed quality-aware tumor classification
approach and ensure its generalizability across different datasets, we conducted evaluations
using an alternative breast imaging modality, namely breast mammography. Since there
are no other publicly available DBT datasets, our assessment focused on the performance
of the proposed method using the INbreast dataset [46]. Comprising 410 images from
115 women, INbreast serves as a valuable resource for research in mammogram-based
breast cancer diagnosis. It has been used in several studies in the development and
evaluation of methodologies for breast tumor classification.

By following the implementation of our proposed pipeline, we split the dataset as
follows: about 80% for training and 20% for testing (randomly). It is worth noting that we
did not retrain the TomoQA model using mammogram images. Instead, we leveraged the
same model previously trained on DBT images due to the similarities between mammogram
images and 2D DBT slices.
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Table 7 highlights the clear advantage of our quality-aware model compared with the
baseline model lacking image quality-aware features. By comparing their performance
across all metrics, we see a significant enhancement in classification achieved by our
method. We can see that the proposed method improves the accuracy by 8% over the
baseline with an enhancement of approximability of 3% for each of the precision, recall,
and F1-score metrics.

Table 7. Evaluating the proposed malignancy prediction approach compared with the baseline for
Inbreast Dataset. The best results are highlighted in bold.

Backbone Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Baseline AlexNet 77.1 81.8 87.9 84.7
Proposed AlexNet + TomoQA 85.0 84.1 90.0 86.9

6. Conclusions

In this paper, we have proposed a deep learning-based quality-aware approach for
breast tumor malignancy prediction in digital breast tomosynthesis images. The proposed
approach has two main components: an NR-IQA model we called TomoQA for extracting
DBT image quality-based features and a deep learning network for extracting tumor
descriptors from the tumor region. Both tumor descriptors and quality-based features
are integrated to classify breast tumors as benign or malignant. Experimental results
demonstrated that the proposed method surpassed the baseline models (classification
without employing quality-based features) by 9% in terms of accuracy. This indicates that
the proposed approach could extract discriminative tumor descriptors from digital breast
tomosynthesis images that improve malignancy prediction accuracy. Moreover, combining
the high-performance evaluated models led to a classification accuracy of 86.96%.

In future work, we aim to delve deeper into refining our methodology. Specifically, our
focus will shift toward exploring different pooling techniques to effectively fuse features
extracted from various DBT slices to further improve the classification accuracy. Addi-
tionally, we will investigate the integration of multimodal data (e.g., DBT, mammography,
MRI, and clinical data) for improved analysis. Moreover, we will explore the utilization of
advanced machine learning techniques, such as transfer learning and federated learning,
to develop a robust breast tumor classification model in DBT images.
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Appendix A

Appendix A.1. Evaluation Metrics for IQA Models

To assess TomoQA, we employ the Pearson linear correlation coefficient (PLCC) [44]
and the Spearman rank order correlation coefficient (SROCC) [45] to evaluate the models.
The PLCC coefficient represents the consistency between the model prediction score and
the objective quality score, i.e., it measures the prediction accuracy between the predicted
quality scores Y and the objective quality scores X. The PLCC can be computed as follows:

PLCC(X, Y) =
∑n

i=1(Xi − µx)∑n
j=1

(
Yi − µy

)
√

∑n
i=1(Xi − µx)

√
∑n

i=1
(
Yi − µy

) (A1)

where µx and µy are the means for X and Y, respectively. n is the number of the quality
score dataset.

The SROCC coefficient represents the predicted monotonicity between the model’s
predicted quality scores Y and the actual quality scores X. Hence, the model prediction
score should increase or decrease with the increase and decrease of the actual quality score.
The SROCC can be expressed as follows:

SROCC(X, Y) = 1 −
6 ∑n

i=1 d2
i

n(n2 − 1)
(A2)

where di is the difference between the two ranks of each observation in X and Y. Both
correlation metrics range from 0 to 1, and a value close to 1 (higher value) indicates the
high performance of a specific quality measure.

Appendix A.2. Performance Evaluation of the Proposed DBT NR-IQA Method

Table A1 summarizes the PLCC, SROCC, and RMSE of the proposed NR-IQA method.
As one can see, the proposed method obtains superior performance with a PLCC score of
0.903, an SROCC score of 0.889, and an RMSE of 0.014. Additionally, we analyze different
variations of the proposed NR-IQA method by replacing the ConvNext-Tiny network
with different CNN-based deep learning architectures: (1) a simple QA-ConvNet—a CNN
architecture inspired by [47], as it is a fairly simple architecture with many layers that
obtained outstanding results in natural image quality assessment tasks—(2) a standard
convolution kernel-based ResNet-50 architecture [30], and (3) a self-adaptive hyper network
(HyperNet) proposed in [48] to assess image quality in the wild blindly.

Table A1. Overall performance evaluation for the proposed NR-IQA method compared with existing
methods. The best results are highlighted in bold.

PLCC ↑ SROCC ↑ RMSE ↓
Proposed 0.9029 0.8885 0.0141

QA-ConvNet [47] 0.8608 0.8092 0.0517
ResNet50 [30] 0.8742 0.8692 0.0157
HyperNet [48] 0.8856 0.8673 0.0263

As shown in Table A1, the proposed ConvNext-based method outperforms all the
compared methods. Specifically, the ConvNext-based network obtained the lowest RMSE.
It achieves PLCC and SROCC scores higher than HyperNet. Also, the performance of
ConvNext is better than ConvNet and ResNet50 networks in terms of both PLCC and
SROCC evaluation metrics.

Figure A1 illustrates the scatter plot of the quality scores obtained with the various
NR-IQA models and the corresponding objective quality scores. As one can see, the DBT
images can easily be classified into high-quality images (i.e., a quality score ≥ 0.90) and
bad-quality images (i.e., a quality score ≤ 0.85). Also, it is evident from the scatter plot
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that most of the objective scores predicted by the ConvNext-based NR-IQA method are
distributed along the scatter plot’s diagonal. It indicates that the predicted results are
highly consistent with the ground truth. The ConvNet network, differently, has a simple
architecture whose effect can be observed as the predicted scores are noticeably distributed
far away from the diagonal of the scatter plot.
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Figure A1. Scatter plot of the DBT image quality scores of test images of all NR-IQA models.

Figure A2 shows the square error between the predicted quality scores obtained with
the evaluated NR-IQA models and the true objective quality scores for each image in
the test set. The ConvNext-based NR-IQA model and HyperNet obtain the lowest error
values among all networks, with mean square errors (MSEs) of 0.41 and 0.47, respectively.
The ConvNet-based NR-IQA model obtains the worst MSE of 0.83.
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Figure A2. Square error plot of the DBT image quality scores of test images of all NR-IQA models.

Figure A3 shows the quality scores of the proposed ConvNext-based NR-IQA model
with four DBT images. DBT images in Figure A3, DBT1 and DBT4 images suffer from
blurring noise and thus obtained the similar quality scores of 0.952 and 0.960, respectively.
The DBT image of DBT2 obtained a high image quality score of 0.970. DBT3 image
obtained a low image quality score of 0.810 because bright and dark pixels are diffused
over the image.

Quality-score = 0.952 Quality-score = 0.970 Quality-score = 0.810 Quality-score = 0.960

DBT1 DBT2 DBT3 DBT4

Figure A3. Quality scores of ConvNext-based NR-IQA model with different DBT images showing
different artifacts such as blurring, diminished contrast, and noise manifesting as bright or dark pixels.
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