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Abstract: The objective of this study was to investigate the liquefaction resistance of chemically
improved sandy soils in a straightforward and accurate manner. Using only the existing experimental
databases and artificial intelligence, the goal was to predict the experimental results as supporting
information before performing the physical experiments. Emphasis was placed on the significance
of data from 20 loading cycles of cyclic undrained triaxial tests to determine the liquefaction re-
sistance and the contribution of each explanatory variable. Different combinations of explanatory
variables were considered. Regarding the predictive model, it was observed that a case with the
liquefaction resistance ratio as the dependent variable and other parameters as explanatory variables
yielded favorable results. In terms of exploring combinations of explanatory variables, it was found
advantageous to include all the variables, as doing so consistently resulted in a high coefficient
of determination. The inclusion of the liquefaction resistance ratio in the training data was found
to improve the predictive accuracy. In addition, the results obtained when using a linear model
for the prediction suggested the potential to accurately predict the liquefaction resistance using
historical data.

Keywords: artificial intelligence; chemical injection; cyclic undrained triaxial test; liquefaction;
machine learning; sandy soil

1. Introduction

The significant structural damage often caused by the settlement or tilting of structures,
due to the liquefaction of saturated sandy soils during large earthquakes, has long been
a major concern in the field of geotechnical engineering, as shown in Figure 1. This
phenomenon, which can have serious consequences, was particularly documented in
seminal studies [1–4]. The sudden instability of the ground during such events can lead
to the catastrophic destruction of buildings and infrastructures, resulting in significant
economic losses as well as the tragic loss of human life. This critical issue was further
highlighted in [5,6]. These concerns have led to a significant increase in the study and
development of activities aimed at improving liquefaction resistance and developing other
mitigation methods. This focus was particularly highlighted by the groundbreaking work
of [7,8], which contributed to a better understanding of these challenges.

In response to these critical challenges, the chemical injection method has emerged as a
prominent and innovative solution for mitigating subsurface liquefaction risks [9–13]. This
technique involves injecting chemical agents into sandy soils to increase their stability and
cohesion. However, the effective implementation of this method and the accurate execution
of designs depend heavily on the availability of precise and reliable data on the liquefaction
resistance of the targeted chemically treated sandy soils [14–18]. Traditionally, liquefaction
resistance has been assessed using cyclic undrained triaxial tests, which are fundamental to
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building comprehensive databases reflecting a variety of test conditions and results [19–24].
Despite their critical importance in understanding soil behavior, these tests are often time-
consuming, expensive, and labor-intensive. In addition, they are limited by the diverse
nature of the properties of sandy soils found in different geographic regions, requiring a
large number of experiments for a thorough and comprehensive data collection [25–27].
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Figure 1. General principle of liquefaction phenomenon.

To address these challenges and limitations, the present study introduces a novel
and state-of-the-art approach that employs machine learning and ensemble learning tech-
niques [28–30]. The authors of this study propose a predictive model for evaluating the
liquefaction resistance of sandy soils treated with solution-type chemical agents. This
model is a synergistic combination of existing experimental data and advanced algorithms
with artificial intelligence (AI) [31–34]. This innovative approach makes it possible to
predict the liquefaction resistance of sandy soils prior to testing and to develop efficient
strategies. The method is not only efficient, but also cost-effective, providing significant
advances in the formulation of liquefaction mitigation strategies and enhancing risk as-
sessment capabilities in geotechnical engineering [35,36]. The methodology of this study
begins with the meticulous collection and analysis of data from cyclic undrained triaxial
tests. The data form the basis of the machine learning database used in the study. Em-
ploying ensemble learning techniques, the authors successfully integrate the results of
different prediction models to produce more accurate and reliable predictions. The primary
goal of this study is to comprehensively assess the risk of sandy soil liquefaction and to
provide reliable guidance for the design and implementation of chemical injection meth-
ods. It is expected that the development of this innovative non-experimental prediction
method will contribute significantly to the sustainable development and advancement of
geotechnical engineering practices. This approach not only minimizes the environmental
impact, but also significantly reduces the time and costs associated with traditional soil
testing methods. By introducing AI as a tool to assist in the execution of experiments
traditionally used to predict liquefaction resistance in geotechnical engineering [37,38], this
research aims to revolutionize the field and improve the safety and stability of sandy soils
in earthquake-prone areas.

The application of AI in this context is particularly noteworthy, as it represents a
paradigm shift in how geotechnical engineering challenges are addressed. By harnessing
the power of machine learning, the study bypasses the limitations of traditional experi-
mental methods. The AI-driven model is able to synthesize large amounts of experimental
data, learn from different soil conditions, and adapt to different chemical treatments. This
leads to a more holistic understanding of soil behavior under seismic activity, providing
engineers with a powerful tool for predicting soil response in real-world scenarios. Of
particular importance in this study is the use of ensemble learning techniques. Ensemble
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learning involves combining multiple machine learning models to improve prediction
accuracy [39], thereby reducing the likelihood of erroneous predictions that could lead
to unsafe engineering practices. This approach ensures that the predictive model is not
based on a single dataset or algorithm, but is a robust composite of multiple predictive
insights, resulting in a more reliable and trustworthy predictive model. In addition, the
study’s approach to integrating AI with traditional geotechnical engineering practices is an
exemplary model of interdisciplinary innovation. By bridging the gap between advanced
computational techniques and practical engineering applications, the study sets a precedent
for future studies in the field. It demonstrates the potential of AI to improve the accuracy
and efficiency of engineering solutions, thereby contributing to the development of safer
and more resilient infrastructures. The study not only addresses the immediate challenge
of predicting and mitigating the liquefaction of sandy soils, but also opens new avenues
for study and innovation in geotechnical engineering. By harnessing the power of AI and
machine learning, it presents a forward-looking approach that could revolutionize the field,
leading to more sustainable, efficient, and safer engineering practices [40]. This study not
only contributes to the academic body of knowledge, but also has practical implications
for the construction industry, urban planning, and disaster risk management, especially in
earthquake-prone regions.

2. General Evaluation and Countermeasures to Liquefaction of Sandy Soils
2.1. Chemical Injection Method

The liquefaction of sandy soils during seismic events is a major challenge in geotech-
nical engineering [41,42]. It poses a risk to the stability and integrity of structures built
on such soils. In response, chemical injection has emerged as a promising technique for
mitigating liquefaction in sandy soils [9–13]. Liquefaction occurs when saturated sandy
soils lose their strength and stiffness in response to an applied stress, such as an earth-
quake, resulting in fluid-like behavior [43]. Chemical injection, also known as soil grouting,
involves injecting chemical solutions into soils to improve their physical and mechanical
properties, thereby increasing their resistance to liquefaction.

The chemical injection process typically involves the use of materials such as silicates,
polyurethanes, or acrylamides. When injected into the soil, these chemicals react with the
soil particles or with each other to form a solidified matrix that binds the soil particles
together, increasing their density and shear strength. One common approach is to use
sodium silicate, a water-soluble silicate that reacts with calcium chloride to form a gel-like
substance. This substance fills the voids between the soil grains, reducing porosity and
increasing soil cohesion. Another approach is to use organic polymers that solidify when
injected, creating a network of polymer chains that bind the soil particles together. Chemical
injection has several advantages. It is a relatively quick process compared to other soil
stabilization methods and can be applied to specific areas without the need for extensive
excavation or the disruption of existing structures. In addition, the method can be tailored
to different soil types and conditions [13].

Despite its advantages, the chemical injection method faces several challenges and
limitations. The use of chemicals raises environmental concerns. Some chemicals used in
the process can be harmful to the environment, especially if they leach into groundwater.
Selecting environmentally friendly chemicals that do not compromise soil stability is
critical. In addition, the long-term effectiveness of the treatment is uncertain. Over time, the
injected chemicals may degrade or the bond between soil particles may weaken, reducing
the effectiveness of the treatment. Achieving uniform distribution of the chemical solution
throughout the soil is challenging. Inhomogeneous treatment can result in uneven soil
properties that may not effectively mitigate liquefaction hazards. In addition, the process
can be costly, especially for large-scale applications. The cost of chemicals and the need
for specialized equipment and personnel can be significant. Finally, not all sandy soils
are suitable for chemical injection. The method is less effective in soils with high organic
content, or those that are too coarse or too fine. Effective monitoring and quality control
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are essential to ensure successful treatment. This includes monitoring the distribution of
chemicals, the reaction process, and the final soil properties.

Recent advances in chemical injection technology have focused on improving the
environmental sustainability of the process. Researchers are exploring the use of biodegrad-
able and non-toxic chemicals that minimize environmental impact while maintaining soil
stability [44–46]. In addition, new techniques are being developed to inject chemicals more
uniformly and efficiently using advanced monitoring systems and precision application
equipment [47]. These systems allow for real-time adjustments during the injection pro-
cess, improving the consistency and effectiveness of the treatment. Studies are also being
conducted to determine the long-term performance of chemically stabilized soils under
various environmental conditions. This research is critical to understanding the durability
of chemical injections and developing maintenance strategies to ensure the continued
effectiveness of the treatment over time [48]. The economic aspects of chemical injection are
also being addressed, with cost–benefit analyses being conducted to compare the method
with alternative soil stabilization techniques [49]. These analyses consider not only the
direct costs of the chemicals and the application process, but also the potential savings
from reduced damage during seismic events. Chemical injection for liquefaction mitigation
in sandy soils offers a viable solution for improving soil stability in seismic areas [44].
However, it is imperative to address the environmental, technical, and economic challenges
associated with this method. Future studies should focus on developing environmentally
friendly chemicals, improving application techniques for uniform soil treatment, and eval-
uating the long-term performance of treated soils. With advances in technology and a
better understanding of soil behavior, chemical injection has the potential to become a more
effective and sustainable option for liquefaction mitigation in sandy soils.

2.2. Cyclic Undrained Triaxial Test

In the specialized field of geotechnical engineering, the cyclic undrained triaxial test
stands out as a fundamental technique for evaluating the ability of chemically treated sandy
soils to resist liquefaction, a phenomenon that can severely compromise the structural in-
tegrity of buildings and other infrastructure during an earthquake. This test meticulously
replicates the complex stress conditions that soils experience during seismic activity, mim-
icking the rapid loading and unloading patterns typical of such events. As a result, it
provides invaluable data on the dynamic behavior of soils under these extreme conditions.
Specifically, the cyclic undrained triaxial test measures soil strength and deformation char-
acteristics without allowing water to drain from the soil sample, which closely mimics the
rapid loading conditions during an earthquake. This aspect is critical to understanding
how chemically stabilized soils behave when subjected to seismic forces, providing insight
into their structural stability and the effectiveness of chemical treatments in enhancing their
resistance to liquefaction. The knowledge gained from this testing is critical in informing
engineers and researchers about the limitations and capabilities of treated soils to with-
stand seismic forces, thus playing an important role in the design and implementation of
safer, more resilient construction projects in earthquake-prone areas. The studies [19–24]
provide comprehensive insight into the procedure, application, and significance of the
cyclic undrained triaxial test in the broader context of improving soil stability and safety in
the face of natural disasters.

Liquefaction is the phenomenon in which saturated sandy soils significantly lose their
strength and stiffness in response to an applied load, such as seismic shaking, causing them
to behave like a liquid. The cyclic undrained triaxial test is a laboratory test designed to
evaluate the resistance of soils to liquefaction, which is particularly important for soils
that have been treated with chemical agents for stabilization. Figure 2 shows the typical
appearance of the cyclic undrained triaxial test. The test involves the cyclic loading of a
cylindrical soil sample in a triaxial chamber. The soil sample is first saturated and then
subjected to axial cyclic loading at a controlled frequency and amplitude. The test is
undrained, meaning that no water can enter or leave the soil sample during the test. This
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condition simulates the rapid loading that occurs during earthquakes. Parameters, such
as axial stress, axial strain, pore water pressure, and volume change, are recorded. The
number of cycles the soil can withstand before failure (defined by a certain level of strain
or pore pressure) is used to evaluate its resistance to liquefaction.
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Figure 2. Typical appearance of cyclic undrained triaxial test.

The cyclic undrained triaxial test is widely recognized for its ability to replicate the
stress conditions experienced by soils during earthquakes. It provides valuable data on the
behavior of chemically treated soils, including the stiffness, strength, and pore pressure
response, which are critical for evaluating the liquefaction potential [19–24].

Despite its advantages, the cyclic undrained triaxial test faces several challenges.
Obtaining and preparing undisturbed soil samples for testing is challenging. Sample
disturbance can significantly affect the test results, making it difficult to accurately represent
the in situ soil conditions. Each test is conducted on a small-scale soil sample, which may
not accurately represent the behavior of the soil mass in the field due to scale effects. For
chemically treated soils, it is difficult to ensure the uniform distribution of the chemical
agent throughout the sample. Inconsistent treatment can lead to variable results that do
not accurately reflect the true behavior of the treated soil. The test is complex and requires
sophisticated equipment and skilled personnel, making it expensive and time-consuming.
The accurate measurement of the pore water pressure during the test is critical, but can
be challenging, especially in sands with low permeability. It is difficult to ensure the
repeatability and reliability of the test results due to the inherent variability of the soil
properties and the sensitivity of the test to experimental conditions.

The cyclic undrained triaxial test is an essential tool for evaluating the liquefaction
resistance of chemically treated sandy soils. However, overcoming the challenges asso-
ciated with sample preparation, scale effects, chemical interactions, test complexity, and
measurement accuracy is critical to obtaining reliable results. Future advances in test
procedures, equipment, and analytical methods are needed to overcome these challenges.
By improving the cyclic undrained triaxial test, it can continue to be a valuable method for
evaluating the effectiveness of chemical treatments for mitigating the liquefaction hazards
of sandy soils.

2.3. Liquefaction Resistance Ratio

The concept of the liquefaction resistance ratio, often derived from the cyclic undrained
triaxial test, is a critical parameter in geotechnical engineering, particularly in assessing
the stability of soils under seismic conditions. This ratio is a measure of a soil’s ability to
resist liquefaction, a phenomenon in which saturated soil loses much of its strength and
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stiffness in response to an applied stress, such as an earthquake, causing it to behave like a
fluid. In the context of the cyclic undrained triaxial test, the liquefaction resistance ratio is
defined as the ratio of the cyclic stress required to cause liquefaction in a soil sample to the
maximum cyclic stress experienced by the soil during an earthquake [14–18]. Liquefaction
in this test is typically identified by a specific criterion, such as reaching a predetermined
level of axial strain or a significant increase in pore water pressure, indicating a loss of soil
strength. The cyclic undrained triaxial test involves subjecting a cylindrical soil sample,
saturated and confined in a triaxial chamber, to controlled cyclic axial loading. The loading
simulates the stress conditions that the soil would experience during seismic events. The
cyclic stress required to induce liquefaction is determined by gradually increasing the
stress amplitude of the loading cycles until the soil sample reaches the failure criterion.
The liquefaction resistance ratio is an index that indicates the resistance of the sandy soil
to liquefaction. Specifically, it refers to the cyclic stress amplitude ratio when the axial
strain amplitude reaches 5% or the excess pore water pressure ratio reaches 95% and the
number of cyclic loads is 20 [13]. This index is calculated from the liquefaction intensity
curve [13,45] obtained as a result of the cyclic undrained triaxial test, as shown in Figure 3.
The cyclic undrained triaxial test simulates liquefaction phenomena under compacted
and undrained conditions in a testing machine. The collected undisturbed specimen is
compacted under the original effective confining pressure, subjected to cyclic shear stress
equivalent to the stress during an earthquake, and tested. During the test, experiments are
performed at multiple cyclic stress levels and the number of cyclic loads at which both axial
strain amplitudes reach 5% is determined. A liquefaction intensity curve is constructed
from these data.
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3. Machine Learning Predictive Analysis
3.1. Ensemble Learning

Ensemble learning methods use multiple machine learning algorithms to produce
weakly predictive results based on features extracted through a variety of projections on the
data and fuse the results with various voting mechanisms to achieve a better performance
than that obtained by any constituent algorithm alone [46]. Neural networks have attracted
attention in the field of machine learning due to their high expressiveness in modeling
non-linear data. On the other hand, gradient boosting decision trees excel in terms of
interpretability and accuracy. It is expected that the combination of these two methods will
improve the predictive accuracy of the model.

A neural network is an interconnected collection of simple processing elements, units
or nodes, whose functionality is loosely based on the animal neuron. The processing capa-
bility of the network is stored in the inter-unit connection strengths or weights, which are ob-
tained through a process of adaptation to, or learning from, a set of training patterns [47–50].
A model with many hidden layers is called deep learning. Multiple inputs and outputs are
possible, and neural networks enable prediction, judgment, and classification. As shown in
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Figure 4, data are input into the input layer, the features are input with indicators of the
data, and the final results are calculated by inputting neurons into the output layer.
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The gradient boosting decision tree is an algorithm that learns multiple decision trees
sequentially, using the residuals from the previous decision tree in the learning process of
the next decision tree. This method also uses a gradient descent to minimize the errors in
the predicted values [51–53].

The ensemble model proposed in this study combines two models: a neural network
and a gradient boosting decision tree. As shown in Figure 5, it determines the weighted
average of the predictions from these models to generate the final prediction. Both models
are known for their high predictive performance in terms of tabular training data, and it is
expected that the combination of these models, through ensemble modeling, will further
improve in accuracy.
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The decision to use both a gradient boosting decision tree as well as a neural network,
especially within an ensemble learning framework, was driven by several key factors,
including the following:

(1) Interpretability and transparency: Decision trees provide a clear and interpretable
structure, making it easy to understand how predictions are made. This is particularly
important in this study because it involves complex geotechnical data, where pro-
viding clear insight into how the model reaches its conclusions is critical to gaining
acceptance and trust from the engineering community.

(2) Handling of non-linear relationships: The nature of the dataset in this study, which
includes various soil parameters and their interactions, exhibits non-linear patterns.
Gradient boosting decision trees are adept at handling such non-linear relationships,
making them a suitable choice for predictive analysis in this study.

(3) Flexibility with different types of data: The dataset in this study includes a mix of
numeric and categorical variables (such as soil type, chemical composition, etc.).
Decision trees can handle this variety without extensive preprocessing, simplifying
the modeling process.

(4) Robustness against outliers and missing values: Decision trees are less sensitive to
outliers and can handle missing data efficiently, which is a significant advantage given
the variability and occasional gaps in geotechnical data.
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(5) Effective with ensemble methods: Ensemble learning techniques, which combine mul-
tiple machine learning models to improve prediction accuracy, were used. Decision
trees integrate well with such ensemble methods (e.g., gradient boosting decision tree)
and often result in models that are more accurate and robust than those based on a
single algorithm.

The gradient boosting decision tree approach is chosen for its transparency, robustness,
and effectiveness in dealing with the specific characteristics of dataset in this study. This
approach will allow this study to develop a predictive model that is not only accurate, but
also interpretable and reliable for assessing the liquefaction resistance of chemically treated
sandy soils.

Before constructing the ensemble model, a method is used to optimize the gener-
alization ability of each model. Specifically, the training data are divided into several
subsets, and a technique called random search is used for cross-validation to optimize the
hyperparameters.

3.2. Preparation of Dataset

Datasets play a crucial role in the implementation of machine learning. They are
divided into two main categories: training data and test data. Training data are used for
model training, which is the necessary basis for acquiring the generalization ability.

3.2.1. Details of Training Data

In this study, data from cyclic undrained triaxial tests on chemically improved sandy
soils, conducted to determine the liquefaction resistance, were used. These data include
specimen conditions, test conditions, and test results. Specifically, the variable elements
shown in Table 1 were extracted from previous test records to form the training data. A
total of 272 specimens from 68 cases of cyclic undrained triaxial tests were used. One case
corresponds to one site. In order to obtain the liquefaction resistance as shown in Figure 3,
at least four specimens must be used for the cyclic undrained trial tests conducted for each
case (each site). All 272 specimens were chemically improved sandy soils with 6%, 9%, and
12% silica concentrations, with four specimens being collected from each of the 68 sites.

Table 1. Variable elements related to cyclic undrained triaxial test employed in training data.

Category Variable Elements

Condition parameters for
specimens of chemically
improved sandy soils

Dry density (g/cm3)
Fine particle content (%)
Effective confining pressure (kN/m2)
Unconfined compressive strength (kN/m2)
Silica gel concentration of injected chemical solution (%)
Increase in silica content (mg/g)

Results obtained by cyclic
undrained triaxial test

Number of cycles to reach 5% strain in both amplitudes
Number of cycles to reach 95% excess pore pressure ratio
Cyclic stress amplitude ratio
Liquefaction resistance ratio *

*: Refers to the cyclic amplitude stress ratio when the axial strain amplitude reaches 5% or the excess pore water
pressure ratio reaches 95% and the number of cyclic loads is 20.

3.2.2. Details of Test Data

The test data in this study are based on the above training data. However, the test
data exclude the target variables of the training data and mainly consist of explanatory
variables from the training data.
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3.3. Distinguishing Explanatory and Target Variables

In this study, the training data are used to train an ensemble model and, after the
learning process, predictions are made by inputting test data. During this process, the
predicted values are compared with the target variables of the training data to validate
the predictive performance of the machine learning model. In this study, the distinction
between the explanatory variables and the target variables is made for four cases, namely
Case-1, Case-2, Case-3, and Case-4, as shown in Table 2. An example of the training data
used in this study, i.e., data for 2 of the 272 specimens, are presented in Table 3. The target
variable for Case-3 and Case-4 is the same. The difference is that Case-3 makes predictions
without liquefaction resistance, while Case-4 makes them with liquefaction resistance.

Table 2. Explanatory and target variables employed for each prediction case.

Case Explanatory Variables Target Variables

Case-1
Variable elements shown in Table 1
excluding the liquefaction resistance
ratio and the target variable

Number of cycles to reach 5% strain
in both amplitudes

Case-2
Variable elements shown in Table 1
excluding the liquefaction resistance
ratio and the target variable

Number of cycles to reach 95% excess
pore pressure ratio

Case-3
Variable elements shown in Table 1
excluding the liquefaction resistance
ratio and the target variable

Cyclic stress amplitude ratio

Case-4 Variable elements shown in Table 1
excluding the target variable Cyclic stress amplitude ratio

Table 3. Example of employed training data (data of 2 out of 272 specimens were extracted).

Variable Variable Elements Data for 2 of 272 Specimens

Explanatory
variables

Dry density (g/cm3) 1.684 1.484
Effective confining pressure (kN/m2) 90 165
Fine particle content (%) 14.8 11.4
Unconfined compressive strength (kN/m2) 539 483
Silica gel concentration of injected chemical
solution (%) 12 12

Increase in silica content (mg/g) 11.62 7.79
Number of cycles to reach 5% strain in both
amplitudes 18 6.5

Number of cycles to reach 95% excess pore
pressure ratio 37 38.4

Target
variable Repetitive stress amplitude ratio

3.4. Evaluation of Prediction Accuracy

The coefficient of determination (R2) quantifies the proportion of variance explained
by a statistical model and is an important summary statistic of biological interest [54]. It
is also widely used in machine learning. This metric quantitatively indicates how well
the predicted values of the target variables, generated by a machine learning model using
test data, match the actual values of the target variables in the training data. When the
predictions of a machine learning model are perfectly accurate, R2 is equal to 1, while it
approaches 0 when the predictions are completely unrelated to the actual values.

The formula for the coefficient of determination (R2) is defined as Equation (1):
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R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1)

where n is the total amount of data, yi is the i-th actual value, ŷi is the i-th predicted value,
and y is the average of all the actual values.

The coefficient of determination (R2) provides a numerical measure of how well the
predictions from a machine learning model match the actual values in the training data,
ranging from 0 (no correlation) to 1 (perfect correlation).

The coefficient of determination (R2) is traditionally used to assess the correlation
between variables, particularly in linear regression models. However, this study choses R2

as the primary metric for several reasons specific to the context and objectives of this study:

(1) Interpretability in the context of geotechnical engineering: In geotechnical engineering,
particularly in studies involving practitioners and engineers, the interpretability of the
model output is critical. R2, as a widely recognized and understood metric, provides
a clear and direct measure of how well the model’s predictions match the actual
observed data.

(2) Quantifying the explanation of variance: The primary goal of this study was to de-
velop a model that could accurately predict liquefaction resistance based on various
input characteristics. R2 effectively quantifies the proportion of variance in the depen-
dent variable that can be predicted from the independent variables, which directly
aligns with the goal of this study.

(3) Model evaluation in machine learning: In the context of machine learning, particularly
ensemble methods, R2 is still a relevant metric for evaluating predictive models. It
provides a concise summary of model performance, especially when dealing with
continuous outcome variables, as in this study.

4. Results and Discussion
4.1. Selecting Target Variables

Looking closely at Case-1, shown in Figure 6a, the y-axis represents the actual values
of the target variable in the training data, while the x-axis represents the values predicted by
the ensemble model. In an ideal scenario, the yellow points would align closely along the
upward sloping red line, indicating a high degree of accuracy with minimal error between
the actual and predicted values. However, in Case-1, the coefficient of determination (R2)
is significantly low at −0.0790. This low accuracy is primarily due to the distribution
characteristics of the target variable, “number of cycles to reach 5% strain in both ampli-
tudes”, within the training data. Although the range in training data for this goal variable
is from 0 to 450, the occurrence of values above 200 is extremely rare. This disproportionate
distribution is likely to skew the model’s predictive ability, negatively affecting its accuracy.
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Figure 6. Degrees of deviation between predicted and measured values in (a) Case-1 and (b) Case-2.

In contrast, when examining Case-2, shown in Figure 6b, the alignment of many
yellow points is seen to be closer to the red line, implying an improved prediction accuracy
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compared to Case-1. However, the coefficient of determination (R2) remains relatively low
at 0.0296. This suggests that, similar to Case-1, the intrinsic characteristics of the target
variable (number of cycles to reach 95% excess pore pressure ratio) influence the prediction
results. It implies that, while the alignment of the data points may visually suggest accuracy,
the underlying distribution and nature of the target variable play more significant roles in
determining the actual predictive accuracy.

The target variable is changed to “repetitive stress amplitude ratio” in Case-3 and
Case-4. This change results in a remarkable agreement between the experimental results
and the predicted values. The results of Case-3 and Case-4 are provided in Figure 7,
showing a clear and consistent alignment of the yellow points along the red line, visually
confirming the high accuracy of the model.
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These observations underscore a crucial aspect: the predictive accuracy of the ensemble
model developed in this study is strongly influenced by the selection of both explanatory
and target variables. The distributional characteristics and inherent nature of these variables
are key determinants of the model’s effectiveness.

Furthermore, this analysis highlights the importance of considering skewness and
outliers in the training data. The presence of outliers or a skewed distribution can lead to
model overfitting or underperformance, as seen in Case-1 and Case-2. In addition, the study
highlights the potential limitations of relying solely on graphical representations to assess
accuracy. While the visual alignment of data points provides an intuitive understanding
of model performance, it does not always capture the nuances of the predictive accuracy,
especially in cases of non-uniform data distributions. In addition, the results suggest that
preprocessing techniques, such as the normalization or transformation of target variables,
could potentially improve model performance. These techniques could help mitigate the
problems posed by skewed distributions or outliers, thereby improving the model’s ability
to generalize and predict more accurately.

This detailed analysis confirms that the careful selection and preprocessing of explana-
tory and target variables are critical to improving the predictive accuracy of ensemble
models. This insight is invaluable for future studies and applications, emphasizing the
need for a thorough understanding of data characteristics and the application of appro-
priate statistical methods in predictive modeling. The findings from these cases provide a
foundation for developing more robust and accurate predictive models in various fields,
especially when data distributions are complex or skewed.

4.2. Selecting Explanatory Variables

As shown in Table 4, there are eight types of explanatory variables in Case-3 and
Case-4, each of which was predicted nine times. The first time, all eight explanatory
variables were used simultaneously, namely Case-3 and Case-4, and their results are shown
in Figure 7. The second time, the remaining explanatory variables were used, except
dry density, namely Case-3(a) and Case-4(a), and their results are shown in Figure 8a.
The third time, the remaining explanatory variables were used, except effective confining
pressure, namely Case-3(b) and Case-4(b), and their results are shown in Figure 8b. The
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fourth time, the remaining explanatory variables were used, except the fine particle content,
namely Case-3(c) and Case-4(c), and their results are shown in Figure 8c. The fifth time,
the remaining explanatory variables were used, except unconfined compressive strength,
namely Case-3(d) and Case-4(d), and their results are shown in Figure 8d. The sixth time,
the remaining explanatory variables were used, except the silica gel concentration of the
injected chemical solution, namely Case-3(e) and Case-4(e), and their results are shown
in Figure 8e. The seventh time, the remaining explanatory variables were used, except
the increase in silica content, namely Case-3(f) and Case-4(f), and their results are shown
in Figure 8f. The eighth time, the remaining explanatory variables were used, except the
number of cycles to reach 5% strain in both amplitudes, namely Case-3(g) and Case-4(g),
and their results are shown in Figure 8g. The ninth time, the remaining explanatory
variables were used, except the number of cycles to reach 95% excess pore pressure ratio,
namely Case-3(h) and Case-4(h), and their results are shown in Figure 8h. These approaches
were taken to assess the individual impact of each explanatory variable on the predictive
accuracy of the model.

To visualize these effects, Figure 9a presents a comprehensive comparison of the
coefficients of determination (R2) for Case-3 and Cases-3(a–h), highlighting the changes in
the coefficient of determination (R2) with the inclusion or exclusion of specific variables.
Similarly, Figure 9b illustrates these comparisons for Case-4 and Cases-4(a–h), providing a
clear visual representation of the differences between the two cases.

A notable observation from these figures is that Case-4 and Cases-4(a) to (h) consis-
tently showed higher coefficients of determination (R2) compared to Case-3 and Cases-3(a)
to (h). This improvement is primarily due to the increased number and variety of data
points used in Case-4 and Cases-4(a) to (h), which improves the model’s ability to general-
ize and accurately predict outcomes. Additionally, an interesting trend observed in both
cases is the increase in the coefficient of determination (R2) (greater than 0.8) when uniaxial
compressive strength is excluded from the training data. This finding suggests that the
training data, derived from tests on the same type of sandy soil, provided a consistent and
less variable dataset, especially in terms of uniaxial compressive strength.

Table 4. Explanatory variables employed in Case-3 and Case-4 (“x” indicates an explanatory variable
not employed).

Case-3 and Case-4

Explanatory Variables (a) (b) (c) (d) (e) (f) (g) (h)

Dry density (g/cm3) x
Effective confining pressure (kN/m2) x
Fine particle content (%) x
Unconfined compressive strength
(kN/m2) x

Silica gel concentration of injected
chemical solution (%) x

Increase in silica content (mg/g) x
Number of cycles to reach 5% strain
in both amplitudes x

Number of cycles to reach 95% excess
pore pressure ratio x
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Figure 8. Degrees of deviation between predicted and measured values in (a–h) Cases-3(a) to (h) and
(a–h) Cases-4(a) to (h).

However, it is important to note that uniaxial compressive strength is a critical param-
eter that reflects the strength characteristics of the local sandy soil. Given its importance,
its exclusion raises questions about the potential impact on the predictive accuracy when
applied to test results from other sites with different soil characteristics. Therefore, while
the current study suggests its lesser significance in the context of the dataset used, further
investigation is needed to validate this finding across different soil types and conditions.
In addition, when all the explanatory variables were used in the prediction model, Case-4
showed a coefficient of determination (R2) of 0.85. This high value indicates a remarkable
level of accuracy and reliability in the predictions. It suggests that integrating ensemble
learning methods into the analysis can significantly improve the model’s ability to predict
the liquefaction resistance in cyclic undrained triaxial tests with high accuracy.

The analysis in Case-4 underscores the importance of selecting appropriate explanatory
variables and the potential impact of each on the accuracy of the predictive model. It also
highlights the value of ensemble learning methods in improving predictive capabilities,
especially in complex geotechnical scenarios such as liquefaction resistance prediction. The
results of this study provide a solid foundation for future studies and practical applications
in the field of geotechnical engineering.
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5. Conclusions

In this study, the primary objective was to evaluate the liquefaction resistance of
solution-type chemical sandy soil amendments using a novel approach. By utilizing existing
experimental databases and artificial intelligence (AI), we sought to achieve accurate
predictions without the need to conduct physical experiments. This methodology focused
on analyzing data from 20 loading cycles of cyclic undrained triaxial tests and evaluating
the impact of various explanatory variables, leading to an investigation of the optimal
combinations of these variables for making predictions.

The results of this study are summarized as follows:

(1) For the development of a predictive model, it is highly recommended to designate
the liquefaction resistance ratio as a dependent variable and the other parameters as
explanatory variables. This approach allows for a more focused analysis and provides
more reliable predictions of the soil behavior under liquefaction conditions.

(2) The exploration of combinations of explanatory variables revealed that using all
available variables tends to produce a more stable coefficient of determination (R2).
This stability is critical to the reliability of the model, especially in applications where
precision is paramount.

(3) Including the liquefaction resistance ratio in the training dataset significantly increases
the predictive accuracy of the model. This finding underscores the importance of
this particular variable in understanding and predicting the behavior of chemically
enhanced sandy soils under stress.

(4) The results of using AI for making predictions highlight the potential of accurately
predicting liquefaction resistance using historical data. This approach not only saves
time and resources, but also opens new avenues for studies in soil mechanics and
geotechnical engineering.

(5) In addition, this study aimed to validate the effectiveness of the solution-type chemical
improvement of sandy soils against liquefaction through an AI-based analysis of
existing data from cyclic undrained triaxial tests. The results of this study confirmed
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that high-precision predictions are achievable using the explanatory variables listed
in Table 1. In particular, excluding uniaxial compressive strength as an explanatory
variable resulted in the highest accuracy, followed closely by scenarios using all
explanatory variables. This suggests a nuanced relationship between the variables
and their predictive power that warrants further investigation.

Looking ahead, several challenges and opportunities emerge. A key area for future
study is to expand the training dataset to include test results from multiple sites. This would
improve the generalizability and accuracy of the model and provide a more comprehensive
understanding of soil behavior under different geological conditions. In addition, the role
of uniaxial compressive strength as an explanatory variable merits further investigation. Its
inclusion or exclusion from the model has significant implications for predictive accuracy,
suggesting a complex interplay with other variables.

Another future direction is to explore more advanced AI techniques and algorithms.
The potential of machine learning and deep learning for improving the predictive models
for soil liquefaction resistance is vast and largely untapped. These advanced methods could
uncover deeper insights into soil behavior and provide more robust predictive tools for
geotechnical engineers. However, the authors believe that even the predictions of advanced
AI techniques and algorithms will only serve to interpolate the predictions based on actual
experimental works.

In conclusion, this study represents a significant step forward in the application of
AI for predicting soil liquefaction resistance. It not only demonstrates the feasibility of
using AI for such predictions, but also sets the stage for more sophisticated analyses
and applications in the field of geotechnical engineering. The integration of AI with
traditional soil mechanics offers a promising avenue for future studies, with the potential
to revolutionize the way in which soil improvement and liquefaction resistance analyses
are approached.
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