
Citation: Rodriguez-Bazan, H.;

Sidorov, G.; Escamilla-Ambrosio, P.J.

Android Malware Classification

Based on Fuzzy Hashing

Visualization. Mach. Learn. Knowl.

Extr. 2023, 5, 1826–1847. https://

doi.org/10.3390/make5040088

Academic Editors: Antonio

Fernandez-Caballero and

Byung-Gyu Kim

Received: 30 September 2023

Revised: 17 November 2023

Accepted: 20 November 2023

Published: 28 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

Android Malware Classification Based on Fuzzy
Hashing Visualization
Horacio Rodriguez-Bazan † , Grigori Sidorov † and Ponciano Jorge Escamilla-Ambrosio *,†

Centro de Investigación en Computación (CIC), Instituto Politécnico Nacional (IPN), Av. Juan de Dios Batiz, s/n,
Mexico City 07320, Mexico; hrodriguezb2019@cic.ipn.mx (H.R.-B.); sidorov@cic.ipn.mx (G.S.)
* Correspondence: pescamilla@cic.ipn.mx
† These authors contributed equally to this work.

Abstract: The proliferation of Android-based devices has brought about an unprecedented surge
in mobile application usage, making the Android ecosystem a prime target for cybercriminals. In
this paper, a new method for Android malware classification is proposed. The method implements
a convolutional neural network for malware classification using images. The research presents a
novel approach to transforming the Android Application Package (APK) into a grayscale image.
The image creation utilizes natural language processing techniques for text cleaning, extraction, and
fuzzy hashing to represent the decompiled code from the APK in a set of hashes after preprocessing,
where the image is composed of n fuzzy hashes that represent an APK. The method was tested on
an Android malware dataset with 15,493 samples of five malware types. The proposed method
showed an increase in accuracy compared to others in the literature, achieving up to 98.24% in the
classification task.

Keywords: android malware; convolutional neural network; deep learning; fuzzy hashing; malware
classification; natural language processing

1. Introduction

In the contemporary digital age, Android has become the most widely used mobile
operating system in the world, powering billions of smartphones and other connected de-
vices. The open and adaptable nature of the Android ecosystem [1] has not only facilitated
innovation and user empowerment but has also inadvertently opened the floodgates to
a relentless wave of cyber threats. Among these threats, Android malware is a pervasive
and evolving menace. According to Kaspersky Security Network [2], in Q3 2022, over
5.5 million mobile malware was blocked, which shows an exponential increase in mobile
malware lately.

Android malware encompasses malicious software designed to exploit vulnerabilities,
steal sensitive information, disrupt operations, and sometimes extort users. These malicious
programs, often cloaked in seemingly innocuous applications, pose a significant threat to
personal privacy, data security, and the integrity of the Android ecosystem.

In light of this looming threat, the necessity to detect and classify Android malware
has never been more critical. As the Android malware landscape continues to evolve
with increasing sophistication, more than traditional security measures are needed. Thus,
the development of robust malware detection and classification techniques is paramount.
By understanding the inner workings of malware and employing advanced analysis meth-
ods, we gain the capacity to mitigate the threats they pose, safeguard user data, and fortify
the resilience of the Android ecosystem.

Mach. Learn. Knowl. Extr. 2023, 5, 1826–1847. https://doi.org/10.3390/make5040088 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make5040088
https://doi.org/10.3390/make5040088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-7382-9202
https://orcid.org/0000-0003-3901-3522
https://orcid.org/0000-0003-3772-3651
https://doi.org/10.3390/make5040088
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make5040088?type=check_update&version=2

Mach. Learn. Knowl. Extr. 2023, 5 1827

Researchers have faced new opportunities and challenges in the landscape of Android
malware analysis. Traditional methods for detecting and classifying Android malware often
relied on features such as n-grams, API calls, and sandbox outputs, combined with machine
learning and deep learning algorithms. While these techniques have been somewhat
effective, they have limitations. As Android malware becomes increasingly sophisticated,
it is not only about the static analysis of code or the behavior of applications but also about
how they visually appear to the human eye.

A novel approach gaining attention involves transforming malware samples into
images and leveraging machine learning and deep learning algorithms to classify and
detect malware based on visual content. This innovative technique adds a new dimension
to malware analysis and presents new challenges. Converting APK files into images
introduces concerns about the loss of information, the potential for adversarial attacks,
and the need for preprocessing techniques.

The research community is exploring these image-based techniques as Android mal-
ware evolves with more complex and polymorphic characteristics. This shift opens to
deeper insights and improved detection but also emphasizes the significance of robust
preprocessing, comprehensive datasets, and resilient machine learning and deep learn-
ing models.

This work proposes a new method for Android malware classification, transforming
the APK sample into a grayscale image composed of the fuzzy hashing of decompiled and
preprocessed code. The main contributions of this work can be described as follows.

• A novel method is introduced for transforming Android applications into grayscale
images of fuzzy hashes. The decompiled code is initially subjected to preprocessing
using Natural Language Processing (NLP) techniques. Subsequently, a fuzzy hashing
technique is employed to compute hashes for each code block, significantly reducing
image size. The importance of image size is underscored due to the potential impact
on feature extraction, particularly in light of the variations in image dimensions.

• For the first time, it is introduced to the utilization of NLP techniques for text cleaning
and extraction in our cutting-edge research. These techniques prove invaluable in
preserving and standardizing data while eliminating extraneous information that
could introduce noise into the images, ultimately enhancing accuracy.

• An experimental evaluation of the proposed method on a public multiclass malware
dataset to demonstrate its feasibility compared to existing literature.

This paper is organized as follows. Section 2 describes concepts related to the investi-
gation. Section 3 shows an analysis of the state-of-the-art. Section 4 presents the proposed
method. Section 5 provides details of the experimental evaluation and results. Section 6
contains the limitations, future work, and conclusions.

2. Related Concepts

This section describes the concepts related to this investigation, such as fuzzy hashing
and NLP techniques used in the research.

2.1. Fuzzy Hashing

Fuzzy Hashing (FH), which is also called Context Triggered Piecewise Hashing
(CTPH), is a combination of Cryptographic Hashes (CH), Rolling Hashes (RH), and Piece-
wise Hashes (PH). It can be perceived as FH = CTPH = PH + RH. Unlike traditional
hashes, in which their hashes (checksum) can be seen more as right or wrong and as black
or white, CTPH is more like the gray hash type, as it can identify two files that may be near
copies of one another that generally may not be located using traditional hashing methods.
FH allows two arbitrary blobs of data to be compared for similarity based on common
strings of binary data using a score percentage between 0 and 100, where 0 is low similarity,
and 100 is high similarity [3].

Mach. Learn. Knowl. Extr. 2023, 5 1828

To determine if two files are the same, algorithms such as MD5, SHA1, and SHA256,
to name a few, are generally used. However, it is necessary to know how similar they are,
not only if they are the same or different. FH algorithms such as SSDEEP or SDHASH
can be used. The SSDEEP algorithm sequentially divides a file into equal groups of bytes,
and on each of these groups, it calculates a hash. Then, a new hash is calculated to represent
the entire file. The resulting hash can be used to compare the similarity with other files.

The SDHASH (similarity digest hash) method finds common and rare features in a file
and matches the rare features in another file to determine the similarity between the two
files [4]. Generally, a feature is a 64-byte string found using an entropy calculation [5]. It
employs the cryptographic hash function SHA-1 and Bloom filters to calculate the SDHASH
fuzzy hash value [6].

SDHASH is a robust algorithm for FH. This algorithm provides high accuracy com-
pared to the predecessor SSDEEP. The algorithm can compute SDHASH with some options
that generate different SDHASH lengths, and the results can be compared. Two or more
SDHASH can be compared even if the length is different.

Bloom filters have predictable probabilistic properties, which allow for two filters to be
directly compared using a Hamming distance-based measure D(.). The result estimates the
fraction of features the two filters have in common that are not due to chance. The maximum
match among the second filters is found to compare two digests for each of the filters in the
first digest. The resulting matches are then averaged [5].

Formally, the similarity distance SD(F, G) for digests F = f1 f2 . . . fn and G = g1g2 . . . gm,
n < m, is defined as:

SD(F, G) =
1
N

n

∑
i=1

max
j=1...m

D(fi, gi), (1)

An important point to consider is that directly estimating the empirical probability of
encountering a 64-byte feature is not feasible, nor is it practical to store and retrieve such
observations. SDHASH calculates a normalized Shannon entropy measure and assigns
features to 1000 equivalence classes to address this. The statistics are gathered using this
approximation method.

The similarity between two files has a threshold from 0 to 100, with 100 being the
highest similarity detected.

The significance in the range is a confidence value that the two data objects have non-
trivial amounts of commonality. Strong (range: 21–100) these are reliable results with very
few false positives. Marginal (range: 11–20), the significance of resemblance comparisons in
this range depends substantially on the underlying data. Weak (range: 1–10) are generally
weak results; typically, most would be false positives. Negative (range: 0), the correlation
between the targets is statistically comparable to that of two blobs of random data. Unknown
(range: −1) is a rare occurrence for files above 4 KB unless they contain large regions of
low-entropy data. However, in all the cases, the significance depends on the amount of
data and the type of data [7].

The difference between SSDEEP and SDHASH is that the hash length is always the
same; in SDHASH, the length depends on the input (amount of data). As mentioned,
SDHASH is more robust, which yields the options that can be used at the compute time.
For instance, the segment size by default is 128 MB, but the developer preferences define
this setting.

2.2. APK File Structure

An Android Application Package (APK) file is a compiled application for the Android
operating system. The package contains all the files needed for a single application and is
organized in a particular structure. Figure 1 shows the APK file structure and a list of the
most prominent files and directories:

• META-INF/: Directory with the APK metadata, such as its signature.

Mach. Learn. Knowl. Extr. 2023, 5 1829

• lib/: Directory with compiled native libraries used by the app. The folder contains
multiple directories, one for each supported CPU architecture (armeabi-v7a, x86, etc.).

• res/: Directory with the resources not compiled into resources.arsc. This directory
contains all resources except the files in res/values. The resource files are in a binary
XML format, and all image files are optimized (crunched) to save space and improve
run-time performance when inflating these files.

• assets/: The directory with application assets can be retrieved by AssetManager.
• AndroidManifest.xml: Application manifest in the binary XML file format. It contains

application metadata, for example, app name, version, permissions, minimum SDK
version, etc.

• classes.dex: The classes are compiled in Java language that will be executed on the
device by the virtual machine.

• resources.arsc: It contains all the metadata information about the resources. An ARSC
file is an Android Resource table file that contains the list of the application resources
in a table format.

Figure 1. Android Application Package structure before and after the decompiling process. The dia-
gram was generated based on the input and output generated by APKTool [8].

There are multiple tools to decompile an APK. An APKTool [8] was used in this
research. In the decompiling process, multiple types of files are generated. All the APKs
have Java code compiled into classes.dex file. On the other hand, the application properties
are declared in AndroidManifest.xml, both compiled in binary format. Additional resources
are included in the APK structure, such as images, app signature, and Cascading Style
Sheets (CSS). Furthermore, the most essential part of the APK is the source code and the
properties. Therefore, this investigation chose those essential files to analyze the application.

This investigation focuses on two types of files: smali files, which are generated after
decompiling classes.dex, and AndroidManifest.xml which contains the properties of the
application in XML format.

2.3. Natural Language Processing Techniques

In NLP, many techniques can be used for text cleaning or extraction that are beneficial
during machine learning training [9]. The following section will describe some techniques
used in this investigation.

• Punctuation: In NLP, punctuation refers to using marks or symbols in text analysis to
help identify and structure sentences, paragraphs, and other text units. Punctuation

Mach. Learn. Knowl. Extr. 2023, 5 1830

can be used as a feature in various NLP tasks, such as part-of-speech tagging, sentence
boundary detection, and sentiment analysis. For example, in part-of-speech tagging,
punctuation marks can be used as context clues to help determine the correct part
of speech for a word. In sentence boundary detection, punctuation marks such as
periods, question marks, and exclamation points can be used to identify the boundaries
between sentences. In sentiment analysis, punctuation can be used as a feature to help
identify the tone and emotion of a text.

• Tokenization: It is the process of breaking down a text document or string of text into
smaller units called “tokens”. In NLP, these tokens usually correspond to words but can
also be phrases, symbols, or individual characters. Tokenization is essential in many
NLP tasks, such as text classification, sentiment analysis, and language translation.

• Lemmatization: In NLP, lemmatization refers to the process of reducing a word to
its base or dictionary form, known as the “lemma”. In other words, it is converting
words to their canonical form. For example, the lemma of the word “running” is
“run”, the lemma of “went” is “go”, and the lemma of “better” is “good”. The main
goal of lemmatization is to reduce inflectional forms and sometimes derivationally
related forms of a word to a common base form. Lemmatization is often used in NLP
and text analysis tasks such as language translation, information retrieval, and senti-
ment analysis.

• Stemming: It is the process of reducing a word to its root or stem form by removing
any suffixes or prefixes. The resulting stem may not necessarily be a valid word in the
language, but it still captures the essential meaning of the original word. For example,
the stem of the word “jumping” is “jump”, the stem of “cats” is “cat”, and the stem of
“happiness” is “happi”. In this example, “happi” is not a valid English word, but it
still captures the essential meaning of “happiness”. Stemming is a simpler and faster
approach to normalizing words compared to lemmatization, and it is often used in
information retrieval.

• Keyword Extraction: Term Frequency (TF) is a metric used in NLP and information
retrieval to quantify the importance or frequency of a term within a document or a
corpus. It measures how frequently a specific term appears in a document or text. TF
is calculated by dividing the number of times a term occurs in a document by the total
number of terms in that document. It is often normalized to prevent bias towards
longer documents. One common normalization approach is to divide the raw term
frequency by the maximum term frequency in the document, which results in a value
between 0 and 1.

TF measures the frequency of a term within a document t f (term frequency). It
indicates how often a term appears in a document relative to its total number of words.
A higher TF value indicates a term is more significant within the document. Specifically, it
is denoted by t fij, i.e., how often the word i appears in the document j [10].

3. Related Work

There have historically been two primary avenues in malware analysis: static analysis
and dynamic analysis [11]. These two approaches diverge mainly in executing the malware
sample, as dynamic analysis involves running it within a controlled environment. Subse-
quently, the features extracted from this execution are harnessed to train Machine Learning
(ML) and Deep Learning (DL) algorithms, forming the foundation for constructing classifi-
cation and detection models. These models are widely used for multi-platform malware
analysis [12–14].

Image Visualization

This section reviews the works related to ML and DL for malware analysis using image
visualization. The reviewed works have the approach of converting samples into images no
matter the platform. Moreover, for comparison purposes, Android-related works are used.

Mach. Learn. Knowl. Extr. 2023, 5 1831

Geremias et al. [15] presented a method for Android malware analysis that first extracts
the features in feature vectors, and PCA was applied to generate a matrix of M × M size.
Then, generate three grayscale images using different data types (API calls, OPCodes,
and Dex). The final image is composed of the three images as layers to build a colored
image (multi-view), and finally, the resulting images are used to train a CNN model.
The method was evaluated using the CICMalDroid dataset, which contains 11,598 samples,
and achieved an accuracy of 98.70%.

Kural et al. [16] presented a framework called Apk2Img4AndMal. The tool transforms
the APK into a grayscale image without any preprocessing or reverse engineering process.
No feature extraction from the static or dynamic analysis is needed. The images are gener-
ated by reading the APK as binary and transformed into a grayscale image. The images are
analyzed using CNN, achieving an accuracy of up to 94.00%. The framework was tested
with 24,588 Android malware and 3000 benign applications.

Jaiteg et al. [17] proposed a method that combines features from the APK file de-
compiled, looking for the optimal combination (Android manifest (AM), certificate (CR),
classes.dex (CL), and resource (RS)), the handcrafted features were extracted from the image
sections using multiple algorithms such as Gray Level Co-occurrence Matrix-based (GLCM),
Global Image deScripTors (GIST), and Local Binary Pattern (LBP). The authors generated
15 sets of images using different combinations of files as input data for image generation.
The resulting images were used to feed a CNN. The method was evaluated using the
DREBIN dataset, which contains multiple classes. The method attained a high accuracy of
93.24% for malware image combination CR + AM using the Feature Fusion-SVM classifier.

Xu et al. [18] presented a method to analyze Android malware using DEX (bytecode)
files. The DEX files were transformed into grayscale images using an interpolation algo-
rithm to generate uniform-sized images. During the detection process, CNN was improved
to extract and normalize the features using the GIST algorithm (lightGBM + LR) used to ex-
tract texture features. This article selects 5000 Android application software, including 2500
benign and 2500 malicious applications. The research attained a high accuracy of 98.7%.

Xiang et al. [19] investigated an Android malware detection model based on deep
learning using autoencoders to detect malware. This paper aimed to study whether the
autoencoders can reconstruct malware images with low loss and detect malware by judging
the error value and reducing the risk of data confusion and redundant API injection (NOP
no-operation instruction). They proposed using a neural network model to exclusively
learn the features of malware instead of malware and benign features. Andro-dumpsys
dataset was used, which contains 906 malicious binaries from 13 different malware families
and 1776 benign files downloaded from the Google Play store. An accuracy of up to 93.00%
was achieved.

Naït-Abdesselam et al. [20,21] proposed transforming the APK into an RGB leveraging
the three channels to store different data on them (Green Channel: Conversion of Permis-
sions and app components from AndroidManifest.xml, Red Channel: Conversion of API
calls and unique opcode sequences from DEX file, Blue Channel: Conversion of protected
strings, suspected permissions, app components, and API calls) image to use it in a CNN
and ResNet for classification of malware. The method was evaluated using the AndroZoo
dataset, which increases the number of samples across time. The authors chose n samples
per time time-frame, and the method attained a detection accuracy of up to 99.37%.

Yong et al. [22] presented a new way to analyze Android malware based on DEX files.
They proposed converting DEX files into RGB images, then applied text and color features.
Also, from the DEX file, plain text was filtered to obtain text features, the GIST was used to
get texture features, and the color moments were used to feed multiple kernels as input
data for malware classification. The resulting images showed that samples from the same
family have similar colors and textures. The authors used a Support Vector Machine (SVM)
in the classification phase, applying multiple kernels for testing. AMD dataset contains
24,553 samples, categorized into 135 varieties among 71 malware families ranging from
2010 to 2016, with a classification accuracy of up to 96.00%.

Mach. Learn. Knowl. Extr. 2023, 5 1832

Peng et al. [23] showed a method for Android malware classification based on the
traffic generated (PCAP). The traffic was filtered by removing third-party traffic, and the
resulting flows (malicious traffic) were split into sessions. The first part of the session is used
to generate a grayscale image representing the traffic characteristics for each session. Finally,
the images were analyzed using a deep learning model (1.5D-CNN). CICAndMal2017
dataset, which contains over 1700 benign and 400 malware samples. The model proposed
achieved an accuracy of up to 98.5%.

Jianguo et al. [24] focused on Android malware analysis. The authors transformed
the APK data into nodes and edges combining features from static and dynamic analysis
(for instance: code region–invoke–sensitive API, sensitive API–invoked by–code region,
code region–belongs to–package, package–contains–code region, code region–included
in–signature MD5, signature md5–includes–code region). This transformation is called
a heterogeneous graph, and the graph is represented into a matrix to feed the HG-CNN
classifier. The dataset was collected from diverse sources using a known dataset like Drebin.
With 11,423 benign and 14,546 malware samples, the authors achieved an accuracy of
over 97%.

Yajamanam et al. [25] showed a method for Windows malware analysis, transforming
the sample into a grayscale image. The samples were classified based on their GIST
features. Unlike the previous related work, the researchers tested the robustness of the GIST
features by adding noise to the images. Based on the results, as expected, the accuracy of
classifying images with noise decreased compared to the images without noise. A couple of
datasets were used in this research: The Malimg dataset consists of more than 9000 malware
samples belonging to 25 families, and the Malicia dataset contains 11,363 malware samples,
primarily composed of 3 types of malware.

Huang et al. [26] presented work for robust hashing, treating the samples as two-
dimensional images. The authors performed multiple tests to compare SVM with robust
hashing techniques. They found that some classes are correctly classified by robust hashing,
and the results can be comparable with SVM. Malimg dataset was used in this investigation,
which consists of more than 9000 malware samples belonging to 25 families.

Yang et al. [27] presented an algorithm that transforms the APK into a grayscale image
based on Portable Executable (PE) file format. The images have APK data (CERT.RSA,
AndroidManifest.xml, resources.arsc, and classes.dex) converted directly without prepro-
cessing. In this investigation, the researchers used the Drebin corpus, which contains
5560 samples from 178 classes. The images were used in different machine-learning algo-
rithms for testing. Random Decision Forest (RDF) is the algorithm with the highest results,
reaching up to 95.51% in accuracy.

Tingting et al. [28] in their research proposed a binary malware detection by converting
opcode sequences into images in combination with PCA to extract the features, and then,
SVM was used for the malware classification applying multiple kernel functions to increase
the accuracy. The highest accuracy achieved was 97.62% using SVM and RBF kernel
function. The dataset used contains 9168 malware samples and 8640 benign programs.

Ajit et al. [29] showed a method without feature extraction, decompiling, preprocess-
ing, and static or dynamic analysis output. They converted the APK sample directly into
four image formats (grayscale, RGB, CMYK, HSL) to test which format worked better with
machine learning algorithms (Decision Tree, Random Forest, KNN) for the classification
task. They proved that using grayscale achieved the highest accuracy of 91.00% using
Random Forest.

On the other hand, other researchers have proposed Android malware analysis based
on static features such as permission [30]. Still, without transforming the features into
image format, the permissions were represented as a vector in a binary sequence, and the
analysis was based on a feature vector, training a machine learning model. The accuracy
was 96%.

The works listed presented malware detection and classification methods by trans-
forming the samples into images. The proposed method highlights transforming the sample

Mach. Learn. Knowl. Extr. 2023, 5 1833

into a grayscale image. Unlike the works reviewed, a new way to convert the sample into
an image was presented. The image is composed of the fuzzy hashes generated by the
decompiled code and preprocessed utilizing NLP techniques for text cleaning and extrac-
tion, which reduces the image size and the time-consuming of the CNN. A summary of the
related work is presented in Table 1.

Table 1. Summary of the related work.

Ref./Year Samples Type of CNN Other Other Accuracy
Images Algorithm Features

[15], 2022 APK RGB Yes PCA Multi-view image 98.70%
[16], 2021 APK Grayscale Yes - APK read as binary 94.00%—CNN
[17], 2021 APK Grayscale Yes GLCM, GIST LBP Feature fusion 93.24%—SVM
[18], 2021 APK Grayscale Yes GIST dex file read as binary 98.70%—GIST
[19], 2020 APK Grayscale Yes Auto-enconders Reconstruction error 93.00%
[20], 2020 APK RGB Yes ResNet Decompiled data to RGB 99.37%—ResNet
[24], 2020 APK RGB Yes SVM, KNN, RF, HS-resNet, Static and dynamic features 97.00%
[23], 2020 APK Grayscale Yes 1.5D-CNN Network traffic as image 98.50%
[22], 2020 APK RGB No SVM, GIST, Multiple Kernels dex as image and plain text 96.00%—SVM
[21], 2020 APK RGB Yes ResNet Decompiled data to RGB 99.37%—ResNet

4. Proposed Method

This paper aims to study the feasibility of utilizing a deep learning model based on a
CNN architecture for malware classification by converting a sample into a grayscale image
composed of fuzzy hashes derived from decompiled and preprocessed code. Therefore,
our malware classification method is divided into two stages: data preprocessing (APK
to a grayscale image) and malware classification (multiple families). Figure 2 shows the
proposal workflow at a high level, and the architecture is detailed in Figure 3.

Figure 2. Workflow for APKs analysis of the proposed method.

First, it performs a novel transformation of the APK file into a lightweight grayscale
image utilizing a fuzzy hashing of the decompiled smali code and manifest file. Secondly, it
trains a CNN model on the obtained images for malware family classification. Furthermore,
VirusTotal [31] is used to label the corpus, as described in Section 5.2.

Mach. Learn. Knowl. Extr. 2023, 5 1834

Figure 3. Proposed architecture: (A) APK to image conversion. This step transforms the APK into a
grayscale image. (B) Grayscale images are analyzed in CNN for Android malware classification.

4.1. Android Binary to Visual Representation

The scope of this phase is to transform Android binary into image data that the
classification model can handle, as shown in Figure 3.

The first step is decompiling the APK, as mentioned in Section 2.2; during this process,
multiple files are generated (An APK has n smali files and one AndroidManifest.xml).
At this point, only smali files and AndroidManifest.xml are selected. It is feasible to deter-
mine the malware family by analyzing the smali code and the application properties file.

The second step consists of preprocessing the smali files generated by each APK using
NLP techniques for text cleaning to remove useless information by the Equation (2)

TCsmali = [PR, TK, ST, LM], (2)

where Text Cleaning (TC) is a sequence of the Punctuation Removal (PR), Tokenization
(TK), Stemming (ST), and Lemmatization (LM) techniques applied to smali files.

The AndroidManifest.xml is also preprocessed in this stage. Furthermore, unlike the
smali file, from the manifest file, helpful information is extracted, such as components of
the app (which include all activities, services, broadcast receivers, and content providers),
permissions, and hardware and software features the app requires discarding XML tags [32],
by the Equation (3)

TEAndroidMani f est = [PR, TK, IR], (3)

where Text Extraction (TE) is a sequence of the Punctuation Removal (PR), Tokenization
(TK), and Information Retrieval (IR) techniques applied to the AndroidManifest.xml file.
For information retrieval, Term Frequency (TF) was applied.

In contrast to prior studies, the importance of incorporating NLP techniques in this
research stems from their capacity to preprocess decompiled data by eliminating useless
information and ensuring data standardization. This plays an essential role as the fuzzy
hashing technique measures similarity, and standardized data enhances these similarities.
Moreover, it prevents the incorporation of noise into the images and facilitates a reduction
in image size, ultimately proving advantageous during training.

As part of the second stage, fuzzy hashing is computed from the smali and Android-
Manifest.xml files, using the same amount of data to obtain the same hash length in the
output. The size of input data (grayscale) is a matrix of N × M, where N is the length of
SDHASH (fuzzy hash), which is 344 (344 pixels), and M, depends on the number of fuzzy
hashes plus AndriodManifest data. Defining a standard image size for every APK is impos-
sible because each is unique. The resize is performed into the CNN. The grayscale image
structure has AndroidManifest data at the top and all the fuzzy hashes after. Each malware
sample has n fuzzy hashes at this stage, as shown in Figure 4, a graphical description of
how a fuzzy hash is computed. The SDHASH is a string encoded in Base64; each byte
of the fuzzy hash is converted to a scale from 0 to 255, corresponding to one pixel in the

Mach. Learn. Knowl. Extr. 2023, 5 1835

grayscale image. Figure 5 shows three grayscale images generated by applying SDHASH
to different input data obtained from the same APK sample.

Figure 4. SDHASH fuzzy hashing description for the compute stage. Source: The image was
generated based on the research from Naik [33].

Figure 5. Android sample MD5 “0A0C881A01EA942DC052CA560198D82B” converted in a grayscale
image using three different input data after decompiled sample: (A) Image created after decompiling
process without any preprocessing, (B) Image created after preprocessing decompiled code using
NLP, (C) Image created using fuzzy hashing technique after preprocessing with NLP.

4.2. Convolutional Neural Network

An image itself has specific properties. CNN models are widely explored for image
analysis. In the architecture depicted in Figure 3, the APK is transformed into a grayscale
image at the first stage. CNN is suitable for image classification at the second stage.

The CNN model was built with three convolution layers, three pooling layers, a ReLU
activation function, an Adam optimizer, and varying the epoch values in the experimental
phase to increase accuracy at the learning stage Figure 6 describes the CNN model summary.

Figure 6. CNN model summary.

Mach. Learn. Knowl. Extr. 2023, 5 1836

This CNN model takes an input grayscale image, processes it through convolutional
and pooling layers to extract features, flattens these features, and then passes them through
fully connected layers for classification. The number of filters, filter size, activation func-
tions, and units in the dense layers were adjusted for this research.

• Rescaling: The layer scales the input pixel values to the range [0, 1].
• Conv2D: This is a 2D convolutional layer with 16 filters of size 3 × 3. It applies

convolution to the input image, preserving the input shape with a rectified linear unit
(ReLU) activation function. This layer extracts various features from the image.

• MaxPooling2D: After each convolution, a max-pooling layer downsamples the output.
It reduces the spatial dimensions, helping the model focus on the most important fea-
tures.

• Conv2D: This is a 2D convolutional layer with 32 filters of size 3 × 3. It applies
convolution to the input image, preserving the input shape with a rectified linear unit
(ReLU) activation function. This layer extracts various features from the image.

• MaxPooling2D: After each convolution, a max-pooling layer downsamples the output.
It reduces the spatial dimensions, helping the model focus on the most important fea-
tures.

• Conv2D: This is a 2D convolutional layer with 64 filters of size 3 × 3. It applies
convolution to the input image, preserving the input shape with a rectified linear unit
(ReLU) activation function. This layer extracts various features from the image.

• MaxPooling2D: After each convolution, a max-pooling layer downsamples the output.
It reduces the spatial dimensions, helping the model focus on the most important fea-
tures.

• Flatten: This layer flattens the output from the previous layers. It converts the 2D
feature maps into a 1D vector.

• Dense: A fully connected (dense) layer with 128 units and ReLU activation. This layer
learns complex relationships between the extracted features.

• Dense: The final dense layer with the number of units equal to the number of classes
in your classification problem. It provides the output of the model, which is used for
classification.

The CNN model splits the corpus using 80% of the data as the training set (K-fold
validation was used to split the training dataset. In this case, K = 10, 10-fold validation),
and 20% of the data was selected as the validation set. The corpus description is presented
in Section 5.2.

5. Experiments

This section aims to validate the proposed malware classification approach using a
CNN model. The experiments test the hypothesis that a deep learning model can effectively
classify malware samples into their respective families using grayscale images generated
through fuzzy hashing. This section covers the experimental setup, dataset description,
evaluation, and results.

5.1. Experimental Setup

As described, the method was tested on a ransomware [34] and CICAndMal2017 [35,36]
corpus (15,493 samples of multiple Android malware families). The algorithm was pro-
grammed in Python 3 (Jupyter Notebook), Shell-Scripting, and running Linux on DELL
XPS 15 9550 natively (Ubuntu 18.02, CPU Intel(R) Core(TM) i7-6700HQ CPU @ 2.60 GHz, 8
Core Processors, 32GB RAM, 500 GB SSD, and GPU NVIDIA GeForce GTX 960M).

5.2. Corpus Description

The corpus (dataset) contains 2288 Android ransomware samples shared by Wuhan
University for research purposes [34], and 13,205 samples of Adware, Banking, Riskware
and SMS from CICMalDroid 2020 [35,36]. Table 2 shows the corpus distribution.

Mach. Learn. Knowl. Extr. 2023, 5 1837

Table 2. Malware dataset distribution.

Malware Type Reference No. Samples Percentage No. Classes

Adware [35,36] 1515 9.78% 1
Banking [35,36] 2506 16.18% 1

Ransomware [34] 2288 14.77% 1
Riskware [35,36] 4362 28.15% 1

SMS [35,36] 4822 31.12% 1

The dataset was labeled with the usage of VirusTotal [31] considering the results from
the most popular antivirus. For instance, the sample with MD5 hash “1F6D3E6A3F3186D5
FD23E937B159B922” has multiple labels, per the VirusTotal report, as shown in Table 3.

Table 3. Sample MD5 “1F6D3E6A3F3186D5FD23E937B159B922”, partial results from VirusTotal.

AntiVirus Malware

AegisLab Trojan.AndroidOS.Generic.C!c
AhnLab-V3 Trojan/Android.WipeLocker.33939

Alibaba Trojan:Android/Soceng.408e621d
ESET-NOD32 A Variant Of Android/Wipelock.F

F-Secure Undetected
Kaspersky HEUR:Trojan.AndroidOS.Soceng.f
MaxSecure Undetected

McAfee-GW-Edition Artemis!Trojan
Symantec Mobile Insight Trojan:Habey

BitDefender Undetected

The reports were standardized for the remaining samples since each antivirus uses its
labels, some of which are similar, while others are quite distinct. Additionally, one antivirus
lacks labels for malware families. In essence, the number of samples matches the number
of families. Table 4 shows the top Android malware family distribution after standardized
per class.

Table 4. Malware dataset labels standardized from VirusTotal results (top twenty).

No. Class Class Name No. Samples Percentage (%)

1 Trojan_FakeInst 2991 19.39
2 Trojan_Opfake 1168 7.57
3 Trojan_ASMalwAD 1097 7.11
4 Ransomware_LockScreen 739 4.79
5 AdWare_SMSreg 711 4.61
6 Trojan_SmsSend 706 4.58
7 Ransomware_Locker 704 4.56
8 Trojan_Bankun 672 4.36
9 PUP_Wapsx 439 2.85
10 Trojan_Simplelock 437 2.83
11 TrojanDropper_SmsPay 414 2.68
12 PUP_Dowgin 372 2.41
13 Trojan_HiddenApp 353 2.29
14 Trojan_FakeApp 329 2.13
15 RiskWare_Dnotua 304 1.97
16 Trojan_Koler 263 1.70
17 Trojan_Spitmo 226 1.46
18 Trojan_Rootnik 205 1.33
19 Trojan_SMSstealer 199 1.29
20 Trojan_Marcher 187 1.21

Mach. Learn. Knowl. Extr. 2023, 5 1838

5.3. Classification Accuracy

The accuracy of the method was evaluated using F1-scores for each ransomware
family, whose formula requires true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) to measure the effectiveness of the proposed method (4)–(7).

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

Accuracy =
TN + TP

TP + FP + TN + FN
, (6)

F1 =
2 × precision × recall

precision + recall
. (7)

A confusion matrix (CM) is a graphical representation to draw the performance of a
classification model. The CM uses TP, FP, TN, and FN; hence, they can be used to calculate
precision, recall, and accuracy metrics per class as well as global metrics (4)–(7).

5.4. Experimental Results

This section describes the tests performed to demonstrate the feasibility of Android
malware classification using fuzzy hashing converted to a grayscale image in combination
with the CNN model.

The first stage of the proposal consists of transforming the APK into grayscale images.
In the image analysis field, there exists a problem that must be adequately addressed, which
is the image size. In this case, as the malware samples are different, they have different
sizes. Table 5 shows the distribution using three different input data after generating the
grayscale images. The image size was reduced using the fuzzy hashing approach compared
to the other two input data.

Table 5. Image size after converted in a grayscale format using three different input data: (a) SDBF—
Image generated using fuzzy hashing technique after preprocessing with NLP, (b) Src NLP—Image
created after preprocessing decompiled code using NLP, (c) All Src—Image generated after decompil-
ing process without preprocessing.

File Size (a)-SDBF (b)-Src NLP (c)-All Src

0 KB–20 KB 9041 4515 4593
20 KB–40 KB 1129 3389 3106
40 KB–60 KB 533 1180 1048
60 KB–80 KB 508 575 897
80 KB–100 KB 592 997 226
101 KB–500 KB 3158 2676 3395
500 KB–1 MB 304 999 1177
1 MB–2 MB 220 764 634
2 MB–3 MB 4 186 183
3 MB–4 MB 4 73 92
>4 MB 0 139 142

Total 15,493 15,493 15,493

Mach. Learn. Knowl. Extr. 2023, 5 1839

The CNN was evaluated using three types of images generated to prove that the fuzzy
hashing approach has an accuracy higher than the other types of images, reducing the
time-consuming. Section 4.2 described the CNN settings as part of the second stage. Table 6
summarizes the twelve scenarios tested. The parameters varied during the evaluation of
CNN to find the optimal values.

Table 6. Metrics summary of the tests performed using five and twenty classes, each experiment was
executed ten times, and the results represent the average for the two epochs with higher accuracy
during the training process.

No. Test Image Type Precision Recall F1-Score Accuracy No.
Classes Epochs Time

1 Fuzzy Hashing 0.84 0.84 0.84 84.67 5 100 10:43
2 Fuzzy Hashing 0.86 0.85 0.86 85.23 5 70 07:24
3 Source Code—NLP 0.82 0.82 0.83 83.24 5 100 14:12
4 Source Code—NLP 0.85 0.83 0.85 84.18 5 70 11:27
5 All Source Code 0.81 0.83 0.82 82.36 5 100 18:38
6 All Source Code 0.70 0.23 0.81 81.12 5 70 16:19
7 Fuzzy Hashing 0.97 0.98 0.98 97.62 20 100 11:47
8 Fuzzy Hashing 0.97 0.95 0.97 96.83 20 70 09:43
9 Source Code—NLP 0.96 0.96 0.96 96.15 20 100 16:41

10 Source Code—NLP 0.96 0.97 0.97 96.42 20 70 13:29
11 All Source Code 0.95 0.96 0.96 95.88 20 100 20:15
12 All Source Code 0.95 0.95 0.95 95.25 20 70 17:22

The experiments were performed in two ways: the first was using the five types of
malware (adware, banking, ransomware, riskware, and SMS) utilizing these labels, and the
other way was using the top classes of each type of malware after label standardization.
Based on the distribution shown in Table 4, the top twenty of the classes hold 81.12%
(12,516 samples) of the dataset (15,493). Meanwhile, the other 195 classes hold 18.88% (2778
samples) of the dataset.

The experimental results presented in Table 6 summarize the metrics of the CNN model
using the different types of images and CNN parameters. Each experiment was executed
ten times for each stage (training and validation), and the results represent the average.
For instance, using the whole data for five classes, the accuracy was 85.23%, and 97.62%
using the most representative twenty classes. There was an increase in the model accuracy
by leaving out non-significant classes from the dataset from the standardized labels. In both
cases, with the dataset of fuzzy hashing images.

Figure 7 describes training and validation curves for loss and accuracy for the best test
results shown in Table 6. The curves represent one execution using five and twenty classes.
The learning curves represent a compelling performance in classifying Android malware.

To assess the accuracy of the method, the actual and predicted labels were compared
using a confusion matrix (CM), a commonly utilized metric for evaluating the performance
of classification models. Figure 8 presents the confusion matrix for the test using only five
classes, showing poor accuracy of less than 90%. This suggests that the corpus was not
correctly labeled and can improve the accuracy of the model using appropriate family labels.

Figure 9 shows the evaluation results using the twenty classes. It is noted that the
twenty classes with the most samples achieved good accuracy after labeling utilizing
VirusTotal, which is expected as larger samples usually result in better accuracy. However,
the test using the classes without label validation impacted the accuracy of the model.
This indicates that the performance of the model is affected by the imbalanced classes and
incorrect labels.

Mach. Learn. Knowl. Extr. 2023, 5 1840

Figure 7. Experimental metrics using grayscale images based on fuzzy hashing, the graphs show the
accuracy and loss during training and evaluation. (a,b) CNN training and validation results using
five classes with 70 epochs, accuracy 85.51% (c,d) CNN training and validation results using the top
twenty classes in the dataset with 100 epochs, accuracy 98.24%. Source: It was obtained through
Python execution of the CNN model using the seabron library.

Figure 8. Confusion matrix for the five classes. Source: It was obtained through Python execution of
the CNN model using the seabron library.

Mach. Learn. Knowl. Extr. 2023, 5 1841

Figure 9. Confusion matrix for the twenty classes. Source: It was obtained through Python execution
of the CNN model using the seabron library.

The metrics per class are described in Tables 7 and 8 for the five and twenty classes,
respectively, for one of the ten executions that achieve the highest accuracy.

Table 7. Summary of metrics for the test performed with the five classes. The metrics represent the
highest accuracy achieved for one of the ten executions, with the five classes trained for 70 epochs.
Source: Output of the CNN model for validation data.

Class Precision Recall F1-Score Support

Adware 0.5683 0.5544 0.5613 285
Banking 0.7801 0.8063 0.7930 506

Ransomware 0.9287 0.9018 0.9151 448
Riskware 0.8535 0.8502 0.8518 781

SMS 0.9469 0.9528 0.9498 954
Accuracy 0.8551 2974

Macro avg 0.8551 0.8131 0.8142 2974
Weighted avg 0.8550 0.8551 0.8549 2974

Mach. Learn. Knowl. Extr. 2023, 5 1842

Table 8. Summary of metrics for the test performed with the twenty classes. The metrics represent
the highest accuracy for one of the ten executions, with the twenty classes trained for 100 epochs.
Source: Output of the CNN model for validation data.

Class Precision Recall F1-Score Support

Adware_SMSreg 1.0000 0.9779 0.9888 136
PUP_Dowgin 0.9649 0.9483 0.9565 58

PUP_Wapsx 0.9634 0.9634 0.9634 82
Ransomware_Koler 0.9649 0.9483 0.9565 58

Ransomware_Locker 0.9783 0.9783 0.9783 138
Ransomware_LockScreen 0.9935 0.9871 0.9903 155
Ransomware_Simplelock 0.9894 0.9789 0.9841 95

Riskware_Dnotua 0.9545 0.9333 0.9438 45
Trojan_ASMalwAD 0.9821 0.9821 0.9821 168

Trojan_Bankun 0.9739 0.9739 0.9739 115
Trojan_FakeApp 0.9322 0.9649 0.9483 57
Trojan_FakeInst 0.9966 1.0000 0.9983 589

Trojan_HiddenApp 0.9792 1.0000 0.9895 47
Trojan_Marcher 0.9697 1.0000 0.9846 32
Trojan_Opfake 0.9883 0.9883 0.9883 257

Trojan_Rootnik 0.9583 0.9787 0.9684 47
Trojan_SmsSend 0.9928 0.9648 0.9786 142

Trojan_SMSstealer 0.9231 1.0000 0.9600 24
Trojan_Spitmo 0.9302 1.0000 0.9639 40

TrojanDropper_SmsPay 0.9700 0.9700 0.9700 100
accuracy 0.9824 2385

macro avg 0.9703 0.9769 0.9734 2385
weighted avg 0.9826 0.9824 0.9824 2385

There is a misclassification issue based on the results shown in the confusion matrix.
Resuming the scope of this research, the proposed model uses images composed of fuzzy
hashing, which allows us to measure the similarities. The misclassification is related to
wrong labeling, as it was noticed in the experiments using the five types of malware com-
pared with the top twenty classes labeled utilizing VirusTotal. The samples misclassified
share more similarities with other classes than the ones assigned by the antivirus.

The tests showed that the images of fuzzy hashes achieved a good performance based
on the extracted features; one reason is that the image size was reduced by applying NLP
and fuzzy hashing techniques, eliminating useless data. Consequently, CNN classified the
images faster than those containing more data. The preprocessing applied was beneficial
for increasing the accuracy and reducing the time-consuming of the CNN.

6. Discussion

In their comprehensive review of the state-of-the-art Android malware classification,
the researchers employed a range of algorithms. Notably, Support Vector Machines (SVM),
k-Nearest Neighbors (KNN), and Random Forest (RF) stand out as some of the prevalent
algorithms frequently employed in image classification tasks.

Deep learning and machine learning algorithms were tested in our evaluation stage
using different data types. The tests were designed using images and the decompiled data
(smali and AndroidManifest code) for a reasonable comparison.

For image-based classification, a deep learning model based on CNN was trained.
As discussed in the document, the primary approach of this research is image-based
malware classification using CNN. The CNN model achieved up to 98.24% in accuracy
metric and an average of 97.62% (10 executions), such as it is expected that a CNN works
well with images. Additional neural network models were evaluated using the images
generated in those tests ResNet50 and VGG16, achieving 96.67% and 95.88% during the
validation executed ten times, respectively. The three CNN models achieved almost the
same accuracy during the evaluation phase.

Mach. Learn. Knowl. Extr. 2023, 5 1843

On the other hand, an additional machine learning model was trained with the same
images, and the Support Vector Machine (SVM) achieved an average of 94.91%. The k-NN
classification scheme was tested. However, no explicit training phase is required, as the
classification is computed based solely on the nearest neighbor in the training set [25].
K-nearest neighbor (k-NN) algorithm, with k = 1 using the images generated, achieved an
accuracy of 78.19%. The comparison shows an increase in the accuracy metric of CNN over
SVM and k-NN using the same input data (grayscale images).

Other tests were performed using the decompiled data (smali and AndroidManifest)
in machine learning models such as k-NN, Random Forest (RF), Multilayer Perceptron
(MLP), and SVM. In NLP, a text is a document that can be used for text classification.
The documents were used in the classifiers mentioned to classify the malware. The ac-
curacy attained using k-NN, RF, MLP, and SVM was 93.3%, 92.18%, 93.68%, and 95.42%,
respectively.

In Section 3, Table 1. shows related studies for Android malware analysis considered
for comparison purposes. Therefore, Table 9 shows the results obtained with the ML and DL
algorithms tested using the data generated in the research versus the works documented in
the state-of-the-art.

Table 9. Comparison: proposal vs. state-of-the-art. It includes the tests performed using ML and DL
algorithms with images and text.

Algorithm Data Training (%) Validation (%) SD (σ)

Our CNN Images 97.96 97.62 0.51
ResNet50 Images 97.09 96.67 2.67
VGG16 Images 95.86 95.88 1.29
KNN Images 78.19 - -
SVM Images 95.17 94.91 2.17
KNN Code/Text 93.30 - -
RF Code/Tex 92.18 88.45 5.03
MLP Code/Tex 93.68 92.40 4.01
SVM Code/Tex 93.87 95.42 1.28
CNN [16] Images 94.00 - -
SVM [17] Images 93.24 - -
SVM [24] Images 97.00 - -
SVM [22] Images 96.00 - -

For the comparative tests, models requiring training and validation steps (CNN,
SVM, RF, MLP) were executed ten times, while k-NN was run once. The additional
tests reaffirmed the efficacy of the CNN model with images, achieving a remarkable
accuracy of up to 98.08% and an average of 97.84%. This superior performance surpasses
other classifiers and underscores the accuracy of the fuzzy hash-based image generation
method employed.

In contrast, k-NN yielded an accuracy of less than 80%, while SVM achieved over 90%
using the same images despite not being optimized for image classification. Furthermore,
the algorithms designed for text classification exhibited improved accuracy compared
to SVM and k-NN when applied to images, albeit falling short of the results attained
with CNN.

The comparison reveals an increase in the accuracy metric of CNN compared to SVM
and KNN using the same input data. Regarding the related works, the results indicate an
improvement in the classification task using the fuzzy hashing approach by converting
fuzzy hashing into grayscale images.

Once the CNN is trained, it takes to classify a new sample is an average of 40 s.
The decompiling process is major time-consuming, which takes 50% (20 s); text cleaning
and text extraction take 10% (4 s). Data to grayscale image 10% (4 s). And CNN for
classification 30% (12 s).

Mach. Learn. Knowl. Extr. 2023, 5 1844

7. Conclusions

This research has introduced a novel mechanism for Android malware classification,
transforming malware files into image representation and utilizing Convolutional Neural
Network (CNN) to distinguish between various types of malware.

The proposed method in the first stage transforms the APK into a grayscale image
composed of hashes and innovatively leverages the sdhash fuzzy hashing technique to
represent an APK in similarity hashes. In the preprocessing phase, NLP techniques for
text cleaning and extraction, such as Punctuation Removal, Tokenization, Stemming, Lemma-
tization, and Information Retrieval, were used to standardize the data, reducing the image
size. The second stage of the method analyzes Android malware analysis based on the
images generated; the preprocessing was beneficial because it reduced the time-consuming
and, most importantly, increased the accuracy, demonstrating efficacy in classifying multi-
class malware.

This study investigated the feasibility of identifying Android malware families by
focusing on features extracted from visual representations. Experimental assessments were
conducted across various Android malware families, illustrating the utility and reliability
of the proposed methodology. Notably, when tested against diverse malware families,
the algorithm exhibited an average classification accuracy of up to 98.24% across twenty
representative classes.

In conclusion, this research contributes to the malware classification approach, show-
casing its potential to advance the field of cybersecurity. The method demonstrated a good
performance, particularly in distinguishing diverse malware families, underscoring its
practicality and effectiveness in real-world applications.

7.1. Limitations and Future Work
7.1.1. Available Datasets

The model was tested on a single dataset due to the limited availability of open datasets
containing APKs. In future work, we intend to apply the model to more complex datasets.

7.1.2. Labeling Dataset

The availability of open datasets sometimes presents challenges related to labeling
accuracy, which can adversely affect classification performance. In such cases, the features
may become mixed with other classes, leading to confusion for the algorithm. Future work
aims to enhance classification by incorporating similarity comparisons to define classes
without relying on VirusTotal intervention.

7.1.3. Broken Samples

The method is functional with decompiled data as long as the samples contain at least
classes.dex and AndroidManifest.xml. If these essential files are missing, the method may
not function correctly. Conversely, it’s important to note that the method has limitations; it
cannot process corrupted or broken samples.

7.1.4. Imbalanced Classes

In the real world, there is not the same amount of malware samples as benign ones.
Therefore, it is challenging to have a balanced dataset with the same number of members
per family. Imbalanced classes impact the CNN performance, reducing the accuracy as
future work performs hunting to get more samples to balance the classes.

7.1.5. Multiplatform

The model proposed demonstrated a high accuracy for Android malware classification.
As future work, the model can be extended for multiplatform malware analysis, which
involves Microsoft, IoT, Mobile, and Linux malware.

Mach. Learn. Knowl. Extr. 2023, 5 1845

Author Contributions: Conceptualization, H.R.-B. and P.J.E.-A.; methodology, G.S.; software, H.R.-B.;
validation, H.R.-B., G.S. and P.J.E.-A.; formal analysis, H.R.-B.; investigation, H.R.-B.; resources, G.S;
data curation, H.R.-B.; writing—original draft preparation, H.R.-B.; writing—review and editing,
G.S. and P.J.E.-A.; visualization, H.R.-B.; supervision, G.S.; project administration, P.J.E.-A.; funding
acquisition, P.J.E.-A. All authors have read and agreed to the published version of the manuscript.

Funding: The work was done with partial support from the Mexican Government through the grant
A1-S-47854 of CONAHCYT, Mexico, grants SIP-20230990, and SIP-20232782 of the Secretaría de
Investigación y Posgrado of the Instituto Politécnico Nacional, Mexico.

Data Availability Statement: In the research we have used public dataset that can be download
from: https://www.unb.ca/cic/datasets/maldroid-2020.html, accessed on 9 September 2023. From
the ransomware we have request access to a research the collected this dataset: Chen, J.; Wang, C.;
Zhao, Z.; Chen, K.; Du, R.; Ahn, G.-J. Uncovering the Face of Android Ransomware: Characterization
and Real-Time Detection. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1286–1300. These references were
included in the “Corpus Description” section.

Acknowledgments: We thank Wuhan University for sharing with us the ransomware dataset used
for research purposes. We thank Lorenzo Cavallaro and Feargus Pendlebury (Systems Security
Research Lab, King’s College London) for generously analyzing a large number of Android APKs in
CopperDroid.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

APK Android Application Package
CNN Recursive Convolutional Neural Network
DT Decision Tree
GIST Global Image Descriptors
GLCM Gray Level Co-occurrence Matrix-based
KNN k-Nearest Neighbors
LBP Local Binary Pattern
NLP Natural Language Processing
PCA Principal Component Analysis
RF Random Forest
SFC Space-Filling Curves
SVM Support Vector Machine
SDHASH Similarity Digest Hash
SDBF Similarity Digest Bloom Filters

References
1. Google. Secure an Android Device|Android Open Source Project. Available online: https://source.android.com/docs/security/

overview (accessed on 9 September 2023).
2. It Threat Evolution in q3 2022. Mobile Statistics|Securelist. Available online: https://securelist.com/it-threat-evolution-in-q3-2

022-mobile-statistics/107978/ (accessed on 9 September 2023).
3. Sarantinos, N.; Benzaïd, C.; Arabiat, O.; Al-Nemrat, A. Forensic Malware Analysis: The Value of Fuzzy Hashing Algo-

rithms in Identifying Similarities. In Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August
2016; pp. 1782–1787. [CrossRef]

4. Roussev, V. Data Fingerprinting with Similarity Digests. In IFIP Advances in Information and Communication Technology; Advances in
Digital Forensics VI. DigitalForensics 2010; Chow, K.P., Shenoi, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 337.
[CrossRef]

5. Roussev, V. An evaluation of forensic similarity hashes. Digit. Investig. 2011, 8, S34–S41. Available online: https://www.
sciencedirect.com/science/article/pii/S1742287611000296 (accessed on 27 October 2022). [CrossRef]

6. Naik, N.; Jenkins, P.; Savage, N.; Yang, L.; Boongoen, T.; Iam-On, N. Fuzzy-Import Hashing: A Malware Analysis Approach. In
Proceedings of the 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, 19–24 July 2020; pp. 1–8.
[CrossRef]

7. Roussev, V.; Quates, C. The Sdhash Tutorial—The Sdhash Tutorial. New Orleans, Louisiana. 2013. Available online: http:
//roussev.net/sdhash/tutorial/sdhash-tutorial.html (accessed on 9 September 2023).

https://www.unb.ca/cic/datasets/maldroid-2020.html
https://source.android.com/docs/security/overview
https://source.android.com/docs/security/overview
https://securelist.com/it-threat-evolution-in-q3-2022-mobile-statistics/107978/
https://securelist.com/it-threat-evolution-in-q3-2022-mobile-statistics/107978/
http://doi.org/10.1109/TrustCom.2016.0274
http://dx.doi.org/10.1007/978-3-642-15506-2_15
https://www.sciencedirect.com/science/article/pii/S1742287611000296
https://www.sciencedirect.com/science/article/pii/S1742287611000296
http://dx.doi.org/10.1016/j.diin.2011.05.005
http://dx.doi.org/10.1109/FUZZ48607.2020.9177636
http://roussev.net/sdhash/tutorial/sdhash-tutorial.html
http://roussev.net/sdhash/tutorial/sdhash-tutorial.html

Mach. Learn. Knowl. Extr. 2023, 5 1846

8. Valosek, B. Apktool. 2010. Available online: https://ibotpeaches.github.io/Apktool/ (accessed on 9 September 2023).
9. Oprea, S.V.; Bara, A.; Dobrita, G.; Barbu, D.C. A Horizontal Tuning Framework for Machine Learning Algorithms Using a

Microservice-based Architecture. Stud. Inform. Control 2023, 32, 31–43. [CrossRef]
10. Sidorov, G. Vector Space Model for Texts and the tf-idf Measure. In Syntactic N-Grams in Computational Linguistics; SpringerBriefs

in Computer Science; Springer: Cham, Switzerland, 2019. [CrossRef]
11. Damodaran, A.; Troia, F.D.; Visaggio, C.A.; Austin, T.H.; Stamp, M. A comparison of static, dynamic, and hybrid analysis for

malware detection. J. Comput. Virol. Hack. Tech. 2017, 13, 1–12. [CrossRef]
12. Gopinath, M.; Sibi, C.S. A comprehensive survey on deep learning based malware detection techniques. Comput. Sci. Rev. 2023,

47, 100529. [CrossRef]
13. Akhtar, M.S.; Feng, T. Malware Analysis and Detection Using Machine Learning Algorithms. Symmetry 2022, 14, 2304. [CrossRef]
14. Kamran, S.; Suhuai, L.; Vijay, V. A novel deep learning-based approach for malware detection. Eng. Appl. Artif. Intell. 2023, 122,

106030. [CrossRef]
15. Geremias, J.; Viegas, E.K.; Santin, A.O.; Britto, A.; Horchulhack, P. Towards Multi-view Android Malware Detection Through

Image-based Deep Learning. In Proceedings of the 2022 International Wireless Communications and Mobile Computing
(IWCMC), Dubrovnik, Croatia, 30 May–3 June 2022; pp. 572–577. [CrossRef]

16. Kural, O.E.; Şahin, D.Ö.; Akleylek, S.; Kılıç, E.; Ömüral, M. Apk2Img4AndMal: Android Malware Detection Framework Based on
Convolutional Neural Network. In Proceedings of the 2021 6th International Conference on Computer Science and Engineering
(UBMK), Ankara, Turkey, 13–17 September 2021; pp. 731–734. [CrossRef]

17. Singh, J.; Thakur, D.; Gera, T.; Shah, B.; Abuhmed, T.; Ali, F. Classification and Analysis of Android Malware Images Using
Feature Fusion Technique. IEEE Access 2021, 9, 90102–90117. [CrossRef]

18. Ke, X.; Hui, Y.X. Android Malware Detection Based on Image Analysis. In Proceedings of the 2021 IEEE 2nd International
Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 17–19 December 2021;
pp. 295–300. [CrossRef]

19. Jin, X.; Xing, X.; Elahi, H.; Wang, G.; Jiang, H. A Malware Detection Approach Using Malware Images and Autoencoders. In
Proceedings of the 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Delhi, India, 10–13
December 2020; pp. 1–6. [CrossRef]

20. Naït-Abdesselam, F.; Darwaish, A.; Titouna, C. An Intelligent Malware Detection and Classification System Using Apps-to-Images
Transformations and Convolutional Neural Networks. In Proceedings of the 2020 16th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), Thessaloniki, Greece, 12–14 October 2020; pp. 1–6. [CrossRef]

21. Darwaish, A.; Naït-Abdesselam, F. RGB-based Android Malware Detection and Classification Using Convolutional Neural
Network. In Proceedings of the GLOBECOM 2020–2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December
2020; pp. 1–6. [CrossRef]

22. Fang, Y.; Gao, Y.; Jing, F.; Zhang, L. Android Malware Familial Classification Based on DEX File Section Features. IEEE Access
2020, 8, 10614–10627. [CrossRef]

23. Yujie, P.; Weina, N.; Xiaosong, Z.; Jie, Z.; Wu, H.; Ruidong, C. End-To-End Android Malware Classification Based on Pure
Traffic Images. In Proceedings of the 2020 17th International Computer Conference on Wavelet Active Media Technology and
Information Processing (ICCWAMTIP), Chengdu, China, 18–21 December 2020; pp. 240–245. [CrossRef]

24. Jiang, J.; Liu, Z.; Yu, M.; Li, G.; Li, S.; Liu, C.; Huang, W. HeterSupervise: Package-level Android Malware Analysis Based on
Heterogeneous Graph. In Proceedings of the 2020 IEEE 22nd International Conference on High Performance Computing and
Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), Yanuca Island, Cuvu, Fiji, 14–16 December 2020; pp. 328–335. [CrossRef]

25. Yajamanam, S.; Selvin, V.; Di Troia, F.; Stamp, M. Deep Learning versus Gist Descriptors for Image-based Malware Classification.
In Proceedings of the 2018 International Conference on Information Systems Security and Privacy, Funchal-Madeira, Portugal,
22–24 January 2018; pp. 553–561. [CrossRef]

26. Bagga, N.; Troia, F.; Stamp, M. On the Effectiveness of Generic Malware Models. In Proceedings of the 15th International Joint
Conference on e-Business and Telecommunications (ICETE 2018)—Volume 1: DCNET, ICE-B, OPTICS, SIGMAP and WINSYS,
Porto, Portugal, 26–28 July 2018; San José State University: San Jose, CA, USA, 2018; pp. 442–450, ISBN 978-989-758-319-3.
[CrossRef]

27. Yang, M.; Wen, Q. Detecting android malware by applying classification techniques on images patterns. In Proceedings of the
2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 28–30 April
2017; pp. 344–347. [CrossRef]

28. Wang, T.; Xu, N. Malware variants detection based on opcode image recognition in small training set. In Proceedings of the 2017
IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 28–30 April 2017;
pp. 328–332. [CrossRef]

29. Kumar, A.; Sagar, K.P.; Kuppusamy, K.S.; Aghila, G. Machine learning based malware classification for Android applications
using multimodal image representations. In Proceedings of the 2016 10th International Conference on Intelligent Systems and
Control (ISCO), Coimbatore, India, 7–8 January 2016; pp. 1–6. [CrossRef]

30. Neeraj, C.; Di Troia, F.; Stamp, M. A Comparative Analysis of Android Malware. In Proceedings of the 5th International
Conference on Information Systems Security and Privacy, ICISSP 2019, Prague, Czech Republic, 23–25 February 2019.

https://ibotpeaches.github.io/Apktool/
http://dx.doi.org/10.24846/v32i3y202303
http://dx.doi.org/10.1007/978-3-030-14771-6_3
http://dx.doi.org/10.1007/s11416-015-0261-z
http://dx.doi.org/10.1016/j.cosrev.2022.100529
http://dx.doi.org/10.3390/sym14112304
http://dx.doi.org/10.1016/j.engappai.2023.106030
http://dx.doi.org/10.1109/IWCMC55113.2022.9824985
http://dx.doi.org/10.1109/UBMK52708.2021.9558983
http://dx.doi.org/10.1109/ACCESS.2021.3090998
http://dx.doi.org/10.1109/ICIBA52610.2021.9688179
http://dx.doi.org/10.1109/MASS50613.2020.00009
http://dx.doi.org/10.1109/WiMob50308.2020.9253386
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9348206
http://dx.doi.org/10.1109/ACCESS.2020.2965646
http://dx.doi.org/10.1109/ICCWAMTIP51612.2020.9317489
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00040
http://dx.doi.org/10.5220/0006685805530561
http://dx.doi.org/10.5220/0006921504420450
http://dx.doi.org/10.1109/ICCCBDA.2017.7951936
http://dx.doi.org/10.1109/ICCCBDA.2017.7951933
http://dx.doi.org/10.1109/ISCO.2016.7726949

Mach. Learn. Knowl. Extr. 2023, 5 1847

31. Sood, G. Virustotal: R Client for the Virustotal API, R Package Version 0.2.2; 2021. Available online: https://www.virustotal.com/
gui/home/upload (accessed on 9 September 2023).

32. App Manifest Overview|Android Developers. Available online: https://developer.android.com/guide/topics/manifest/
manifest-intro (accessed on 9 September 2023).

33. Naik, N.; Jenkins, P.; Savage, N.; Yang, L.; Boongoen, T.; Iam-On, N.; Naik, K.; Song, J. Embedded YARA rules: Strengthening
YARA rules utilising fuzzy hashing and fuzzy rules for malware analysis. Complex Intell. Syst. 2020, 7, 687–702. [CrossRef]

34. Chen, J.; Wang, C.; Zhao, Z.; Chen, K.; Du, R.; Ahn, G.-J. Uncovering the Face of Android Ransomware: Characterization and
Real-Time Detection. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1286–1300. [CrossRef]

35. Mahdavifar, S.; Abdul Kadir, A.F.; Fatemi, R.; Alhadidi, D.; Ghorbani, A.A. Dynamic Android Malware Category Classification
using Semi-Supervised Deep Learning. In Proceedings of the 18th IEEE International Conference on Dependable, Autonomic,
and Secure Computing (DASC), Calgary, AB, Canada, 22–26 June 2020.

36. Mahdavifar, S.; Alhadidi, D.; Ghorbani, A.A. Effective and Efficient Hybrid Android Malware Classification Using Pseudo-Label
Stacked Auto-Encoder. J. Netw. Syst. Manag. 2022, 30, 22. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
http://dx.doi.org/10.1007/s40747-020-00233-5
http://dx.doi.org/10.1109/TIFS.2017.2787905
http://dx.doi.org/10.1007/s10922-021-09634-4

	Introduction
	Related Concepts
	Fuzzy Hashing
	APK File Structure
	Natural Language Processing Techniques

	Related Work
	Proposed Method
	Android Binary to Visual Representation
	Convolutional Neural Network

	Experiments
	Experimental Setup
	Corpus Description
	Classification Accuracy
	Experimental Results

	Discussion
	Conclusions
	Limitations and Future Work
	Available Datasets
	Labeling Dataset
	Broken Samples
	Imbalanced Classes
	Multiplatform

	References

