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Abstract: Human Pose Estimation (HPE) is the task that aims to predict the location of human
joints from images and videos. This task is used in many applications, such as sports analysis
and surveillance systems. Recently, several studies have embraced deep learning to enhance the
performance of HPE tasks. However, building an efficient HPE model is difficult; many challenges,
like crowded scenes and occlusion, must be handled. This paper followed a systematic procedure
to review different HPE models comprehensively. About 100 articles published since 2014 on HPE
using deep learning were selected using several selection criteria. Both image and video data types
of methods were investigated. Furthermore, both single and multiple HPE methods were reviewed.
In addition, the available datasets, different loss functions used in HPE, and pretrained feature
extraction models were all covered. Our analysis revealed that Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) are the most used in HPE. Moreover, occlusion
and crowd scenes remain the main problems affecting models’ performance. Therefore, the paper
presented various solutions to address these issues. Finally, this paper highlighted the potential
opportunities for future work in this task.
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1. Introduction

Human Pose Estimation (HPE) is a task in computer vision that aims to locate body
joints, such as the head, knees, wrists, and elbows, in an image or video frame. The goal is
to connect these joints to form a skeleton shape [1,2]. Estimating human pose is important
because it enables machines to interact with the human world by understanding human
body poses, movements, and behaviors. HPE has a wide range of applications in many
different fields. For example, in Hajj and Umrah, human poses are estimated to detect
abnormal behavior when people throw pebbles or perform Tawaf [3]. Other applications of
HPE include interacting with virtual worlds [4], animating game characters [5,6], tracking
patient movements [7], and analyzing sports performance [8].

Depending on the requirements of the application, such as understanding human
behavior or controlling robotics, the output of estimating human joints can be represented
in either 2D (two-dimensional) or 3D (three-dimensional) form [9]. When given an image
as input, 2D HPE locates all human joints (key points) in their X and Y coordinates.
Similarly, 3D HPE performs the same task as 2D HPE but also considers the Z-axis (or
depth information). Both 2D and 3D HPE face challenges [10]. Nevertheless, the accuracy
of 3D HPE heavily relies on 2D HPE [11], as obtaining a 2D location for each human joint is
the first step in 3D HPE. In addition, there are a lot of 2D HPE methods that aim to propose
an accurate way to estimate the person’s pose with less computational complexity. This
review will focus only on 2D HPE to comprehensively cover and analyze these methods.

Developing an accurate and robust 2D HPE technique is computationally complex
due to the challenges posed by pose estimation [9]. When a method is proposed to estimate
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human pose in an image or video, it must account for variations in body size. For example,
some bodies may be farther from the camera, making certain body parts almost invisible
and difficult to estimate. Additionally, a 2D HPE technique must identify which body
parts belong to which person when people overlap in an image. Other factors that increase
the challenges of 2D HPE include different environments with varying light contrast,
interaction with objects, and an unknown number of poses in an image [12].

Two approaches for estimating human pose are traditional computer vision-based
and deep learning-based methods [2], as shown in Figure 1. Traditional methods involve
designing handcrafted features and models to detect and locate body joints [13]. The
features in these conventional methods are often manually crafted and require experts to
develop features that handle diverse human poses. Figure 2 shows some of these features.
The techniques used in traditional methods, such as pictorial structure [14], incorporate
prior knowledge about the human body and its spatial relationships between body parts.
These techniques can estimate the human body with lower computational requirements.
However, they fail to capture complex variations in pose or occluded, nonvisible, or
overlapped joints. Additionally, estimating more than one pose using the traditional
approach was slow and challenging [15].
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In contrast, deep learning-based methods have made significant progress in HPE due
to their ability to extract features from data implicitly [13,16]. In other words, there is no
need to extract specific features as in traditional methods. Additionally, the availability of
large, annotated datasets, developments in computational hardware, and, most notably,
the use of deep convolutional networks (ConvNets) in current HPE algorithms have led
to a significant boost in performance [9]. Deep learning-based methods can handle most
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HPE challenges, unlike vision-based methods, such as estimating nonvisible key points.
The first study to convert the HPE process from traditional to deep learning-based was the
DeepPose model [17]. This model uses several ConvNets layers to regress the body joint
location from a single image.

Recently, most deep learning-based methods [18–20] use pretrained models that im-
plicitly extract human body features while focusing on designing network structures that
predict keypoint coordinates. Different techniques (e.g., multistages and branches) and
different feature levels (global and local) are used in building the model. As a result, the
accuracy of the model has increased. However, the model’s size also increases, leading
to an increase in computational complexity. Therefore, some methods attempt to build a
network structure that balances the model’s accuracy and size. More detailed information
about deep learning-based methods is covered in this review.

Extracting human shape data from an image or video required significant effort, as
most methods were vision-based. Some surveys [21,22] covered pose estimation and
motion capture tracking methods based on traditional computer vision techniques, while
other surveys [15,23] discussed more advanced topics of conventional methods. These
surveys discussed three main components: features extraction (e.g., silhouette, SIFT, and
HOG), appearance models (models used to detect human parts, such as SVM and AdaBoost
classifiers), and structure models (models used to create a relationship between human
parts, such as tree structure model). In addition, they also provided the limitations of
traditional methods in estimating the human pose.

With the emergence of neural networks, surveys [2,24] also included deep learning-
based techniques with vision-based methods. Gong et al. [2] comprehensively summarized
HPE from monocular images, including traditional and early deep-learning works. Their
survey covered feature extraction, the type of human body model used, and pose estimation
methods. Additionally, they provided a summary of existing datasets and performance
metrics used. However, only a few early deep-learning methods were covered. In contrast,
a more recent survey [24] covered more indepth works that have significant contributions
in estimating two or more persons’ poses in an image, such as OpenPose [25], DeepCut [26],
and Mask R-CNN [27], while highlighting their challenges and providing a brief description
of traditional methodologies.

As deep learning techniques improved, many 2D HPE approaches were proposed.
Several surveys collected and summarized these approaches [28–30]. Dang et al. [28]
collected papers on 2D pose estimation and classified them based on the number of people
in the image: single or multiple. They also included available datasets and a summary of
metrics used. Similarly, Song et al. [29] followed the same taxonomies. However, they did
not mention evaluation metrics.

Rather than grouping different 2D HPE methodologies based on the number of people
in the image, Munea et al. [30] explained the architectures of 2D human pose estimation
models. For each architecture, they provided details such as the number of layers, the types
of layers used, their order, the techniques used, and the names of datasets used for training.
In addition to covering datasets and metrics, they also discussed other main components
of 2D pose estimation, including loss functions and pretrained feature extraction models.

Recently, the number of published surveys concerned about HPE has
increased [9,31–35]. Like other surveys, the taxonomies for HPE in these surveys are
the same. Methodologies are classified based on the number of people in the input
data [9,31,34]. Each classification has a subcategory: regression and heatmap for single-
pose estimation and top-down and bottom-up for multipose estimation. Most works that
have made significant progress in HPE are included under each subcategory. However,
the surveys by Toshpulatov et al. [32] and Liu et al. [33] grouped these works based on
similar tasks performed by deep learning models. These tasks include structural modeling,
refinement, multistage processing, and multitasking.

The above surveys focus on images as input data, while only a few are interested
in video processing [33–35]. To our knowledge, only two surveys [33,36] have covered
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multipose video-based estimation. Their classification of methodologies differs, and ref. [36]
summarized fewer than ten works. Therefore, in addition to covering pose estimation
using a single image, we will also cover single and multipose video-based methodologies in
depth. Furthermore, since many surveys do not cover essential sections such as pretrained
feature extraction models and loss functions, we will include them here.

Although most existing surveys list the datasets used for HPE, some do not provide
sample data. Therefore, we will provide sample images for each dataset and represent their
keypoint annotations graphically. Additionally, only a few surveys follow a systematic
review procedure but have a limited scope, focusing on physical exercise [37,38] or gait
identification [39]. Collecting papers on 2D HPE and performing a systematic literature
review produces valuable contributions. Table 1 summarizes the differences between each
survey mentioned and our review paper.

Table 1. Summary of existing surveys of human pose estimation. The * symbol indicates that the
section is partially covered, and FE means the existing pretrain feature extraction models. “Loss”
shows the types of loss functions used for posing estimation tasks, and “Metric” shows the kinds of
metrics used to measure the performance of the pose estimation model.

Ref Year Journal Dataset Loss Metric FE
Single Pose Multi Pose Conventional/

SystematicImage Video Image Video

[2] 2016 Sensors 4 8 4 8 4 * 4 8 Conventional
[28] 2019 TST 4 8 4 8 4 8 4 8 Conventional
[31] 2020 CVIU 4 8 4 8 4 * 4 8 Conventional
[30] 2020 IEEE access 4 4 4 4 4 8 4 8 Conventional
[37] 2021 Sensors 4 8 4 8 * 8 * 8 Systematic
[38] 2021 ACM Com. Surv. 8 8 8 8 * * * 8 Systematic
[9] 2021 IVC 4 8 4 8 4 * 4 8 Conventional
[29] 2021 JVCIR 4 8 8 8 4 8 4 8 Conventional
[36] 2021 Patt. Recog. 4 8 4 8 8 8 4 4 Conventional
[32] 2022 JS 4 8 4 8 4 8 4 8 Conventional
[39] 2022 ACM Com. Surv. 4 8 4 8 4 8 4 8 Systematic
[33] 2022 ACM Com. Surv. 4 8 4 8 4 4 4 4 Conventional
[35] 2023 IEEE THMS 4 8 4 8 4 4 4 * Conventional
[24] 2023 MMS 4 8 4 8 4 8 4 8 Conventional
[34] 2023 ACM Com. Surv. 4 8 4 8 4 4 4 8 Conventional
our 2023 MAKE 4 4 4 4 4 4 4 4 Systematic

Many surveys have focused on collecting, presenting, and analyzing the structures of
different models. Similarly, we discuss how skeletons are generated from images and video
frames to provide readers interested in HPE with the latest advancements in pose estimation.
Formulating research questions will help us gather relevant articles and information about
HPE. This information may include the available datasets, loss functions, and evaluation
metrics used to measure the model performance and the existing methodologies. Research
questions with their purposes are shown in Table 2.

Due to the significant role that 2D plays in affecting the performance of 3D HPE, we
have limited our focus to 2D HPE methodologies. This survey follows a systematic search
procedure to gather these methods. Hence, our contributions are as follows:

• We have systematically collected up-to-date human pose estimation models for image-
and video-based input from 2014 to 2023;

• We classified pose estimation methods based on input type (image-based or video-
based) and the number of people (single or multiple);
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• We also provide an overview of existing datasets for estimating human poses and a list
of loss functions, evaluation metrics, and commonly used feature extraction models.

From now on, the remainder of the paper is organized as follows: The next section
describes the methodology of our research protocol, and the results of the search are in
Section 3. Sections 4–6 illustrate the existing datasets, the loss functions with evaluation
metrics, and available pretrained feature extraction models, respectively, that are used as
the main component of any human pose estimation model. Section 7 presents different
single-pose and multipose estimation techniques in images and videos. The discussion
of our survey is presented in Section 8, while future directions are discussed in Section 9.
Finally, Section 10 provides the conclusion of our review.

Table 2. Research questions of our review.

Question Purpose

RQ1

Which datasets are used to analyze the
performance of the deep learning
methods?

Discover the quality and other criteria of
the datasets used to train the model of
human pose estimation.

RQ2

Which loss functions and evaluation
criteria are used to measure the
performance of deep learning methods in
human pose estimation?

Discover the loss functions and
evaluation metrics used in human pose
estimation to measure model
performance in training and
testing mode.

RQ3

What pretrained models are used for
extracting the features of the human
pose?

Compares the available models utilized
to extract the features and knows the
criteria for selecting one of these models.

RQ4

What are the existing deep learning
methods applied for 2D human pose
estimation?

Review different methods that estimate
the human pose in images and videos to
know the new trend methods in this field.

2. Methodology

Our review seeks to collect and organize 2D HPE papers that use deep learning
techniques. Following systematic search procedures, 2D HPE-related papers were collected
and filtered based on selecting search terms and databases, establishing exclusion criteria,
and evaluating the papers’ content quality. Each of these stages will be described in detail
in this section.

2.1. Search Process

We chose several databases to gather papers from: IEEE Explore, Science Direct,
Google Scholar, Springer, and ACM Digital Library. For each database, we entered the
following search query to collect papers: [(“human pose estimation” OR “pose estimation”)
AND (2D AND NOT 3D) AND “deep learning”]. The search date was set between January
2014 and October 2023. The articles collected from this step were added to the pool of
candidate papers, which reached a total of 510. As shown in Figure 3, most of these articles
were from conferences, accounting for 64% of the total, while the remaining initial articles
were from journals, accounting for 36%. The following sections will show the criteria
by which these candidate papers were reduced from 510 to 107, where the proportion of
conference publications is 68% and the journals 32%.
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2.2. Exclusion Criteria

We used several criteria to exclude papers from the candidate set. The exclusion
criteria (EC) are as follows:

• EC1: Studies must be peer-reviewed articles published in English;
• EC2: We do not include books, notes, theses, letters, or patents;
• EC3: Only papers that focus on applying deep learning methods to the problem of 2D

human pose estimation are included;
• EC4: Unique contributions are considered for inclusion; repeated studies are not

included;
• EC5: Papers that estimate only a part of the human pose, such as the head or hand,

are omitted;
• EC6: Articles with multiple versions are not included; only one version will be in-

cluded;
• EC7: Papers found in more than one database (e.g., in both Google Scholar and IEEE)

are not included; only one will be included.

2.3. Quality Assessment

Defining quality assessment criteria will help ensure that the selection of candidate
papers is fully transparent and objective, without bias. Table 3 shows the quality assessment
criteria. This table has three columns: criteria description, potential value, and maximum
weight for each assessment criterion. The description column lists the quality criteria for
filtering the initial papers. The abstract, methodology, evaluation, result, and conclusion
sections have their quality criteria, and each paper in the candidate set must pass this
assessment. Each section has a weight value classified according to the type of answer.
If the answer requires a yes or no response, the value type is considered binary, and the
weight is either 0 or 1. However, assigning a binary value to some sections that contain
details, such as methodology, evaluation, and results, would be unfair. Therefore, the value
assigned to these sections ranges from 0 (no details mentioned) to the maximum value (all
aspects of the section are covered without missing any information).
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Table 3. Article quality assessment. The parenthesis () in the “Value” column means the value could
be 0 or 1, whereas [] square brackets indicate the value takes a float number. The results are out of 7.

Description Value Max Weight

QA1
Presenting a transparent and fair explanation of the
problem, the approach, and the results in the abstract. (0,1) 1

QA2

Presence of a visual representation of the proposed method.
In addition, the steps of the process must be described in
detail.

[0–2] 2

QA3
Gives information about the dataset and measures utilized
in the model’s evaluation. [0–1] 1

QA4

Interpreting the findings cautiously, considering the
study’s aims, limitations, the number of analyses
conducted, and related research findings.

[0–2] 2

QA5
Mentioning the study’s drawbacks and the limitations in
the conclusion section. (0,1) 1

3. Search Results

The initial search results, the selection criteria, and the qualitative evaluation of the
articles chosen for inclusion are discussed here. Figure 4 summarizes the number of articles
that passed the filtering process and shows how many were eliminated in each phase.
Answering and analyzing our review questions will be in the discussion section, Section 8.
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3.1. Exclusion of Articles from the Initial Search

The paper selection protocol was covered in Section 2, including everything from the
initial search through the content analysis. Figure 4 displays the sum of all 510 articles
collected across various databases during the initial search phase. After that, we eliminated
duplicate articles, works not papers, e.g., books and theses, articles not written in English,
and articles that used techniques other than deep learning, which left 448 unique articles.
The nonrelated articles, such as hand-foot pose estimation, were excluded, resulting in 226,
then reduced to 159 articles for each filter phase. Before applying the last quality assessment
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filter, we distributed these articles interested in human pose estimation, as Figure 5 shows,
to see the trend of HPE based on the input type. Lastly, the quality assessments, which will
be discussed next, helped select the high-quality articles, resulting in 107 remaining articles.
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3.2. Result of Quality Assessments

This section covers the quality assessment outcome to choose relevant articles. Based
on quality criteria, we defined them in Section 2.3. Failure to provide information according
to quality assessment criteria results in a lower paper evaluation score. Papers that scored
4.5 or less out of 7 are eliminated from the candidate set. Therefore, only papers of high
quality are considered. Figure 6 shows the papers that failed and passed these criteria.
Only 107 out of 159 articles passed the quality assessment criteria and Figure 7 shows the
distribution of these articles that are included in this review.
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There are several reasons why some papers fail to pass in the quality assessment phase.
One of them is that some studies did not mention the results in the abstract section. As a
result, the assessment score is impacted. The other reason is the poor analysis, in which
some studies compared their proposed methodology with old or fewer methods. Although
most of the studies thoroughly explained their methodology, some did not mention the
drawbacks and limitations of the methods, which also affected the assessment score.

4. Datasets of Human Pose Estimation

Deep learning models require large amounts of data to perform specific tasks ac-
curately. Human Pose Estimation (HPE) models, in particular, require diverse data to
handle challenges such as varying backgrounds, illumination, and clothing. Fortunately,
existing datasets address these challenges by offering a diverse recording environment.
Some datasets also provide different pose activities [40,41], such as daily life activities (e.g.,
standing, walking, sitting) and sports activities that contain complex poses and occlusion
problems.

Datasets play a crucial role in training and testing 2D HPE models. HPE datasets
typically consist of images, videos, or both that capture human subjects in various poses
and positions. They are annotated with keypoint locations (i.e., the positions of body joints).
In addition to keypoint locations, other annotations may also be provided, such as pose ID,
joint visibility, and activity name. These annotations help address HPE challenges such as
occlusion, tracking multiple poses, and handling complex poses.

The most well-known datasets used for 2D pose estimation that are available for
access are LSP, FLIC, MPII, COCO, and CrowdPose. These datasets are commonly used for
estimating single/multiple poses in images, while PennAction, JHMDB, and PoseTrack are
used to estimate poses from videos. All of these datasets will be discussed in this section.
Table 4 shows a comparison between the mentioned datasets.
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Table 4. Publicly available datasets of 2D human pose estimation. The letter “i” indicates images,
and the letter “v” means videos. Joints, size, and person instance indicate the number of annotated
joints for each person, the amount of data in the dataset, and the number of people poses with
annotation, respectively.

Dataset Year
Single Pose Multi Pose Joints Size

Person
Instance Source

Image Video Image Video

LSP [42] 2010 4 8 8 8 14 2 K - Flickr
LSPE [43] 2011 4 8 8 8 14 10 K - Flickr
FLIC [44] 2013 4 8 4 8 10 5 K - Movies
PennAction [45] 2013 8 4 8 8 13 2.3 K - -
JHMDB [46] 2013 8 4 8 8 15 900 - Internet

MPII [40] 2014 4 4 4 4 16 i = 25 K
v = 5.5 K 40 K YouTube

COCO [41] 2017 4 8 4 8 17 200 K 250 K Internet
PoseTrack17 [47] 2017 8 4 8 4 15 550 80 K Internet
PoseTrack18 [47] 2018 8 4 8 4 15 1 K 144 K Internet

CrowdPose [48] 2019 4 8 4 8 14 20 K 80 K Three
benchmarks

PoseTrack21 [49] 2022 8 4 8 4 15 1 K 177 K Internet

4.1. Leeds Sports Pose (LSP) and LSP Extended (LSPE)

The LSP dataset [42] is used for single-pose estimation. It has 1000 training images
and 1000 testing images. LSP built this collection of images based on sports-related tags on
Flickr, such as athletics, baseball, soccer, and tennis. As a result, most body poses in the
images have complex poses, as shown in Figure 8. The dataset labels have 14 key points. It
is worth noting that the data have been expanded [43] to include 10,000 training images,
known as the LSP-Extended dataset.
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4.2. Frames Labeled in Cinema (FLIC)

The FLIC dataset [44] is used for single and multipose estimation. It is split into
training and testing datasets containing around 4000 and 1000 images. Annotations include
ten key points. Images were collected from movies [30] depicting a distinct pose and
clothing. Figure 9 shows examples from the FLIC dataset.
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4.3. PennAction

The PennAction dataset [45] contains over 2000 videos with annotated frames, totaling
330,000 frames with an average of 70 frames per video. All video frames are in RGB color.
There are 13 annotated key points, as shown in Figure 10. Around 1200 videos are used
for training and 1000 for testing. The Penn dataset includes 15 actions such as pushups,
strumming guitars, baseball, jumping rope, and tennis serve. Keypoint visibility, the four
directions from which the point of view can be seen, and the bounding box of the person
are also labeled.
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4.4. Joint Human Motion DataBase (JHMDB)

The JHMDB dataset contains complete annotations of human actions [46], such as
brushing hair, catching, clapping, and climbing stairs. It is used for human action recogni-
tion and human pose estimation. Each person in this subset has 15 annotated joints and
around 900 video clips. This dataset annotates human actions in each frame, including
scale, segmentation, pose, and optical flow. Figure 11 shows samples of the dataset and
keypoint annotations.
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4.5. Max Planck Institute for Informatics (MPII)

The MPII dataset is used for single and multipose estimation and contains images and
video frames [40]. It has approximately 25,000 images depicting 410 different activities. The
dataset comprises around 22,000 training images, 3000 validation images, and 7000 testing
images. Annotations represent 16 joints of the human body. Images were collected from
YouTube videos, providing different scale variations and complex poses. The dataset
also contains several annotated video clips. Figure 12 shows some examples from the
MPII dataset.
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4.6. Common Objects in Context (COCO)

The COCO dataset [41] contains object detection, segmentation, and keypoint detection
annotations. Amazon’s Mechanical Turk workers gather and annotate images from the
internet. The dataset contains over 200,000 images and 250,000 human instances. It
was released in 2014 and updated in 2017, splitting the training/validation images from
83,000/41,000 to 118,000/5000. The test set contains 20,000 images with annotations. Each
2D pose has 17 body joint annotations. The COCO dataset includes various human poses
and objects of varying sizes and occlusion patterns, as shown in Figure 13.
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4.7. PoseTrack

The PoseTrack dataset [47] is widely used to train models for estimating and tracking
multiperson poses. This dataset contains challenging scenarios involving highly occluded
individuals in crowded environments with complex movements. There are two versions
of the PoseTrack dataset: PoseTrack 2017 and PoseTrack 2018. PoseTrack 2017 contains
550 videos, while PoseTrack 2018 is an extended version with approximately 1100 videos.
Both versions include three sets (train, validation, and testing) and have 15 labeled joints, a
person ID, and joint visibility annotations as labels. Not all video frames are annotated; only
the middle 30 and a few others are annotated. However, Döring et al. [49] have recently
extended pose annotations of the PoseTrack2018 dataset. This version of the extension is
known as PoseTrack21. The new version includes the small persons’ annotation in the
crowded scene, where out of 177,164 pose annotations have been included. Figure 14 shows
samples of data from the PoseTrack dataset.
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4.8. CrowdPose

The CrowdPose dataset is suitable for training models that aim to estimate single
poses. However, this dataset focuses more on multiple poses and crowded scenarios [48].
It contains 10,000 training images, 2000 validation images, and 8000 testing images. Addi-
tionally, the CrowdPose dataset provides various joint annotations based on the accuracy
of human capture. The source of CrowdPose images is based on three well-known datasets:
COCO, MPII, and AI Challenger. Figure 15 shows some crowded scenarios in the dataset.
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5. Loss Functions and Evaluation Metrics

Loss functions and evaluation metrics are essential to measure the model’s perfor-
mance. The loss function is used for training the model, while the metric is used for
evaluating the model. This section will show the most loss functions and metrics available
for person pose estimation.

5.1. Loss Function

A loss function is a mathematical function that trains a model by updating its pa-
rameters. The choice of an appropriate loss function significantly impacts the model’s
performance. In 2D HPE, selecting a suitable loss function depends on several factors,
including the type of task (regression or classification), the model architecture, dataset size,
and the presence of occlusions. The most commonly used loss functions for regression
tasks in 2D HPE [17,50–53] are L1 and L2. Log loss is frequently used for classification
tasks [26,54,55]. Other loss functions, such as structure-aware [56], composite [57], fo-
cal [58], auxiliary [59], and knowledge distillation [50], are also used. This section provides
more detail about the most common and some other loss functions used for evaluating 2D
HPE models.

5.1.1. Cross-Entropy

Cross-entropy loss, also known as negative log-likelihood or log loss, is commonly
used in classification problems. For example, in 2D HPE, Zhou et al. [60] used this loss
function to classify the predicted occlusion status of human joints. The value of the loss
ranges from 0 to 1, with values closer to 0 being preferable. Cross-entropy loss is based on
logarithmic functions and is calculated using the following equation:

CrossEntropyloss = −∑n
i=1 yilog(ŷi), (1)



Mach. Learn. Knowl. Extr. 2023, 5 1626

where n indicates the number of human joints, yi is the true label of the ith joint visible, and
ŷi is the predicted label.

5.1.2. Focal

Focal loss is a variant of binary cross-entropy loss used in computer vision tasks such
as object detection and pose estimation [61]. It was proposed to address the issue of class
imbalance, where the majority of samples belong to the negative class. For example, Braso
et al. [58] used focal loss to classify whether the predicted location of the center keypoint
(used for the grouping method in a bottom-up approach) has a corresponding label in the
ground truth or not. Focal loss is defined as follows:

Focalloss(pt) = −(1− pt)
γ log(pt), (2)

where pt is the predicted probability of the positive class, i.e., the keypoint is present, and γ
is a parameter that controls the degree of focus on hard examples and misclassified samples
with high confidence.

5.1.3. Mean Absolute Error

Mean Absolute Error (MAE), or L1 loss, measures the absolute differences between
the ground truth and predicted values. It does not consider the direction of the joint [30],
only measuring the magnitude of the error. The following equation gives the L1 loss:

L1 =
1
n∑n

i=1 |yi − ŷi|, (3)

where n is the number of person joints, yi and ŷi are the true and predicted values of the ith
joint location, respectively. This loss is helpful when data outliers are present, as it is less
affected by outliers compared to the L2 loss.

5.1.4. Mean Squared Error

Mean Squared Error (MSE), also known as L2 loss, is commonly used in 2D human
pose estimation [51,62]. Like L1 loss, it measures only the magnitude of the error. L2
calculates the mean squared difference between predicted and ground truth joint positions,
as shown in the following equation.:

L2 =
1
n∑n

i=1 (yi − ŷi)
2, (4)

where n is the number of joints, yi is the true value of the current ith joint location, and ŷi is
the predicted value of the current ith joint location. Unlike L1, L2 is more sensitive to data
outliers, which may result in a less robust model.

5.1.5. Auxiliary

Auxiliary loss in HPE is a technique used to improve the training of deep neural
networks [59] by introducing additional loss terms that help guide the optimization process.
The main idea behind this loss function is to add additional outputs to the trained model
to enhance its performance. It addresses the vanishing gradients in deep neural network
models and prevents this by adding intermediate loss functions.

5.1.6. Knowledge Distillation

Knowledge distillation is a technique used to improve the performance and efficiency
of neural networks in computer vision tasks, including human pose estimation. The
idea is to train a student model (simpler model) to learn from a teacher model (complex
model) by mimicking its output [50]. In the context of HPE, the teacher model could be a
state-of-the-art model that produces accurate 2D joint locations. In contrast, the student
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model could be faster and more lightweight, creating similar joint locations but with lower
computational requirements.

5.2. Evaluation Metrics

Unlike loss functions, metrics are not used to update a model’s parameters. Instead,
they provide a quantitative measure of the performance of the trained model. Metrics
allow researchers to compare different models and select the most effective one for their
application.

Once human poses have been predicted, the predicted 2D joint locations are compared
with the ground truth annotations in the dataset. Evaluation metrics are then calculated
based on the difference between the predicted and ground truth joint locations. A model is
considered to have high performance when it meets certain thresholds. These thresholds
vary from metric to metric.

Several metrics are used to evaluate the performance of HPE models. AP, AR, and OKS
are the most popular metrics for evaluating 2D multipose models [34,63], while PCP, PCK,
and PDJ evaluate single-pose models [64,65]. This section provides detailed information
about these metrics, while Table 5 summarizes them and shows their thresholds.

Table 5. Commonly existing metrics of 2D human pose estimation. “Target” could be either “Limbs”
like arm, or “Joints” like hand. The “Threshold” column shows how to calculate the limit value the
predicted value of the model must pass.

Metric Variation Target Threshold

PCP PCP@0.5 Limbs Limb’s truth value × 0.5

PCK PCKh Joints Joint bounding box or head length × 0.5

AUC - Joints Different PCK thresholds

PDJ PDJ@0.2 Joints Torso diameter × 0.2

IOU - Joints Joint’s bounding box

OKS OKS@0.5
OKS@0.95 Joints Close to the ground-truth joint

AP

mAP
AP50

AP75

APM

APL

Joints
Various OKS thresholds, including primary
metric (OKS = 0.5:0.05:0.95), loose metric (OKS
= 0.5), and strict metric (OKS = 0.75)

AR

AR50

AR75

ARM

ARL

Joints Same as AP, it uses various OKS thresholds

5.2.1. Percentage of Correct Parts

The higher the Percentage of Correct Parts (PCP) value, the better the human pose
estimation model. This type of metric was commonly used in earlier works [66]. PCP
determines the rate at which body parts (limbs) are detected. The rate value is high if the
distance between the two predicted endpoints and the ground truth endpoints is less than
50 percent of the body part length [30]. Otherwise, the rate of detecting limbs is low.

5.2.2. Percentage of Correct Key points

Similar to PCP, a higher Percentage of Correct Key points (PCK) value indicates better
model performance. This metric measures the accuracy of predicting human body joints
within a certain threshold [31]. One such threshold is half the head segment length, denoted
as PCKh@0.5. Another threshold is a fraction of the size of the person’s bounding box.
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5.2.3. Area under the Curve

The Area Under the Curve (AUC) metric measures object detection performance [67,68].
This metric uses a variant of PCK thresholds and analyzes different pose estimation algo-
rithms in depth.

5.2.4. Percentage of Detected Joints

Like the PCK metric, the Percentage of Detected Joints (PDJ) metric follows a similar
rule. However, it was introduced to address the problem of short limbs created using the
same error threshold as PCP [17]. If a predicted joint is within a certain fraction of the torso
length, its location is considered correctly located.

5.2.5. Intersection over Union

Intersection over Union (IoU) [67] measures the intersection of the predicted bounding
box region with the ground truth bounding box. It determines the degree of similarity
between two sets, as indicated by the equation below.

IoU =
Area o f Intersection

Area of Union
, (5)

As a result, IoU is also used to measure the accuracy of an object detector. IoU values
range between 0 and 1. The accuracy of the object detector is higher if the IoU is closer to 1.

5.2.6. Object Keypoint Similarity

Object Keypoint Similarity (OKS) measures the accuracy of a predicted joint by finding
the distance between the predicted joint and the ground truth joint. Both OKS and IoU
metrics share the same task of object detection. The equation for OKS [63] is as follows:

OKS =
∑i exp

(
−d2

i /2s2 k2
i
)

δ(vi > 0)
∑i δ(vi > 0)

, (6)

where vi shows whether the joint is visible or not on the ground truth, di is the Euclidean
distance between the estimated joint and the joint of the ground truth, s is the human scale,
and ki is a way to control falloff at each joint.

5.2.7. Average Recall and Average Precision

Average Recall (AR) and Average Precision (AP) metrics are the most commonly
used for estimating multiple poses in many datasets, such as the MS-COCO dataset. Both
metrics depend on OKS. Table 5 shows several forms of AP and AR. AP Across Scales
is an alternative version of the AP metric [9]. It uses APMedium to measure how well a
model performs with medium-sized objects (those with an area between 322 and 962) and
APLarge to measure how well it performs with large objects (those with an area above 962).
Similarly, AR Across Scales has ARMedium and ARLarge. Methods that use the PoseTrack
and MPII datasets [31] are often evaluated using the mean Average Precision (mAP) across
all classes.

6. Feature Extraction

The pose estimation task involves predicting each joint’s position in a human pose
from an image. A single image typically contains various objects besides humans, such
as animals, cars, buildings, and furniture. Therefore, feature extraction is necessary to
distinguish the human pose from these other objects before estimating the position of the
joints. Unlike traditional HPE methods, which explicitly extract features from an image
using techniques such as HOG (histogram of oriented gradients), deep-learning-based HPE
generates features implicitly as part of a CNN operation [69]. In HPE tasks, CNNs are used
to extract features that represent the shape of the human body.
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A Convolutional Neural Network (CNN) is an artificial neural network used in
computer vision for object detection, classification, categorization, and estimation [70].
As shown in Figure 16, CNNs consist of three primary layers: convolutional, pooling,
and fully connected. The convolutional layer extracts features by applying a dot product
operation between the input pixels and a filter (or kernel), where the kernel window size is
smaller than the input size. The output of the convolutional layer is a feature map. Shallow
layers (those close to the input image) produce abstract features such as edges and lines,
while deeper layers produce more semantic features [2,67]. After the convolutional layer,
the pooling layer reduces the input volume and computational complexity. Two types of
pooling layers are commonly used: max pooling and average pooling. Max pooling takes
the maximum value within the kernel window, while average pooling takes the mean value.
The output of the convolutional and pooling layers is typically two-dimensional (width
and height) or three-dimensional (with depth representing the number of feature maps).
The fully connected layer converts these features into a one-dimensional representation.
Each class’s probability is then calculated using a classifier such as the SoftMax activation
function.
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Many researchers have developed custom CNN models to implicitly extract features
using convolutional, pooling, and fully connected layers. These models are trained on
large datasets such as ImageNet and Open Images. A convolutional network trained
on a large dataset to extract image features is also known as a backbone [70]. The first
backbone developed for implicit feature extraction was AlexNet [71], which consists of five
convolutional layers and three fully connected layers, with max-pooling layers following
some of the convolutional layers. The DeepPose model [17] adopted the AlexNet backbone
to estimate human poses from images and was the first method to use deep learning for
joint estimation. Since the introduction of AlexNet, many other models have been proposed,
including GoogLeNet, VGGs, ResNet, ResNeXt, and HRNet [70]. Most HPE studies have
recently used ResNet as their backbone [30,33].

Backbones can generally be classified as either deep or lightweight [72]. The main
difference between these two types is the number of parameters in the model; deep models
have more parameters and are larger than lightweight models. The choice between a
deep or lightweight model depends on the goal of the pose estimation task. If precision is
the primary objective, deep networks such as VGGs, ResNets, and HRNets are excellent
backbones. If efficiency (speed) is more important, particularly for real-time estimation or
mobile devices, lightweight networks such as GoogLeNet and MobileNetV2 are suitable
backbones. Table 6 shows some popular CNN architectures used in HPE. Please refer to
these works for more details about other CNN architectures [67,70,72].
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Table 6. Popular backbones network used as an encoder in human pose estimation. The number
of parameters and the FLOP metric help to show the size and speed of the model, respectively.
“M” = million, and “G” = Giga, i.e., billion.

CNN Network Year Layers Accuracy #Params FLOP Keynote

Deeper network

AlexNet [71] 2012 7 84.70% 61 M 7.27 G First network used
GPU.

VGGNet-16 [73] 2015 15 93.20% 138 M 154.7 G Using AlexNet with
modified filter sizes.

HRNet_W48 [74] 2019 48 94.00% 77.5 M 16.1 G
Providing
high-resolution
features.

ResNet-50 [75] 2016 49 96.40% 23.4 M 3.8 G Skip connection.

ResNeXt [76] 2017 49 97.00% 23 M - A Derivative of
ResNet.

Lightweight network

MobileNetV2 [77] 2018 53 90.29% 3.5 M 300 M Has a low number of
parameters.

GoogLeNet [78] 2015 22 93.30% 6.8 M 1500 M Design with multiple
filter sizes.

# Number of model parameters.

7. Existing Methods of Human Pose Estimation

Estimating a human pose from a video is different from an image. Videos present
more challenges than images due to motion blur and dynamic backgrounds. In addition,
estimating one person’s pose (single pose) is less challenging than estimating two or more
persons’ poses (multipose). This section will review the existing methods for estimating
single and multiple poses in images and videos. Figure 17 shows the general taxonomy of
these methods.
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7.1. Single Pose Estimation Image-Based

If there is only one person in an image, two approaches can be used to estimate the
pose: regression-based and detection-based. Regression-based methods use an end-to-end
framework [34] to learn a mapping from an image to the joint coordinates of the body,
directly producing joint coordinates. On the other hand, detection-based methods use
heatmaps (2D Gaussian distribution) to independently detect key points [28,30] and then
combine these maps to obtain a predicted pose. Figure 18 illustrates the pipelines of the
regression and detection approaches. Both approaches have their pros and cons. While
detection learning is supervised by dense pixel information, direct regression learning of
a single point is challenging due to being a highly nonlinear problem. In the following
sections, we will discuss existing methods for each approach in detail.
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regression approach and (b) is the detection approach.

7.1.1. Regression-Based Pose Estimation

Some works have followed the regression-based paradigm to predict joint location.
For example, Toshev et al. [17] proposed the DeepPose model, the first work that uses deep
neural networks to predict human body joints. The DeepPose framework, as shown in
Figure 19, has an initial stage that estimates the initial joint positions, followed by multiple
stages that improve performance by refining results from the previous stage. Another early
work that used deep CNNs was by Li et al. [66]. The authors proposed a heterogeneous
multitask framework with two tasks: a regression task for predicting body joints and a
classification task using a sliding window to detect whether a joint or part exists.
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Directly predicting joint coordinates from an input image is challenging. As a result,
more powerful networks with refinement and body model structures have been proposed.
Based on GoogLeNet, Carreira et al. [51] introduced Iterative Error Feedback (IEF), which
recursively combines the input image and output results to provide a self-correcting
model that iteratively refines a proposed solution by returning and correcting erroneous
predictions. Sun et al. [79] suggested a regression method based on structure-aware
information. The structure-aware representation includes information about the body’s
structure to obtain more reliable results than just using joint locations.

To provide a fully differentiable framework, Luvizon et al. [80] presented an end-to-
end regression method that replaces the argmax function with soft-argmax to transform
feature maps into joint body coordinates. This technique can indirectly learn heatmap
representations. Zhang et al. [50] attempted to provide an efficient model with low com-
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putational cost. They proposed a novel Fast Pose Distillation (FPD) method that led to
the developing a lightweight human pose model through knowledge distillation from a
teacher to a student model.

Li et al. [81] recently investigated Residual Log-likelihood Estimation (RLE) to capture
changes in output distribution, facilitating the training process rather than relying on the
original unreferenced underlying distribution. Instead of predicting key points individually,
which is difficult when occlusion problems exist, Shamsafar et al. [82] proposed using both
part-based and whole-body predictions. Tables 7 and 8 summarize the above methods and
show their performance.

Table 7. Types and techniques of deep learning (DL) used by different studies to estimate human
pose through a regression-based approach.

DL Type Address the Issues Techniques Used Studies

CNN

Incorrect the predicted joint Multistage
Iterative optimization
Graphical model

[17]
[51]
[79,83]

Self/object occlusion Multitask [66]

Limitation in device resources Distillation [50]

Table 8. Performance of the single-person pose estimation methods on the (MPII test set), where
the input is an image. All these methods follow the regression-based approach. The number of
parameters shows the model’s size, while the GFLOP metric shows the model’s speed.

Method Year Backbone Input Size #Params GFLOPs PCKh@0.5

IEF [51] 2016 GoogLeNet 224 × 224 - - 81.3
Sun et al. [79] 2017 ResNet-50 224 × 224 - - 86.4
FPD [50] 2019 Hourglass 256 × 256 3 M 9.0 90.8
Luvizon et al. [80] 2019 Hourglass 256 × 256 - - 91.2

# Number of model parameters.

7.1.2. Detection-Based Pose Estimation

In detection-based methods, ground truth is produced from joint locations by applying
a 2D Gaussian distribution with its center at the joint. For each joint ji with coordinates
(x, y), the proposed methods must produce heatmap Hi [84], as shown in Figure 18b. The
total number of heatmaps equals the total number of N joints, where the heatmap for each
joint represents {H1, H2, . . ., HN}. The detection-based framework faces two difficulties [9].
The first is generating a keypoint heatmap by estimating the likelihood that each pixel
represents a joint. The second involves refining the resulting joint confidence map.

One of the most significant networks that have served as a backbone for various
studies is the Stacked Hourglass [85,86]. It consists of repeated down-sampling (bottom-up)
and up-sampling (top-down) operations with intermediate supervision to estimate human
poses. The bottom-up process converts high resolutions to low resolutions through pooling
layers. The top-down approach then uses up-sampling layers to recover high-resolutions
from low-resolution data. Figure 20 shows the framework of a single hourglass.

Many studies have improved the Hourglass model. Hua et al. [86] proposed an
affinage module that refines low-resolution features from the up-sampling operation of
Hourglass to obtain high-resolution feature maps. On the other hand, Yang et al. [87]
improved the scale invariance of networks by using pyramid residual blocks instead of
residual blocks in the stacked hourglass. The Pyramid Residual Modules (PRMs) frame-
work learns convolutional filters from multiscale input features. Furthermore, Tian et al. [88]
proposed the Densely Connected Attentional PRM (DCAPRM), which improved PRM
through a densely connected network. Another work that uses intermediate supervision is
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Convolutional Pose Machines (CPMs) [89]. Ke et al.’s method [56] also uses supervision
and regression on a Stacked Hourglass at multiple scales.
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Instead of recovering high-resolution from low-resolution, Sun et al. [74] proposed
a High-Resolution Network (HRNet) that maintains high-resolution representations of
features throughout the entire network. Figure 21 shows the HRNet framework. Some
studies focus on solving specific problems. For example, Belagiannis and Zisserman [59]
improved the performance of the Human Pose Estimation (HPE) model by integrating
feedforward and recurrent modules to fine-tune the results iteratively to predict occluded
key points. Hwang et al. [90] combined information from local and global networks to
estimate complex poses such as athlete poses. In contrast, Lifshitz et al. [91] suggested
a voting technique that uses information from the entire image. Each pixel votes for the
best possible position of each keypoint, and the results are tallied to obtain the optimal
pose configuration.
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and branches, representing depth and scale. As the branch level increased, the input resolution scale 
Figure 21. The stages and branches in a High-Resolution Network. This network has multiple stages
and branches, representing depth and scale. As the branch level increased, the input resolution
scale decreased. Each stage contains convolution layers (Conv. unit) to extract the feature, and the
downsampling and upsampling help to extract deep features.

On the other hand, several studies have utilized graphical models to correct pose
estimation by encoding body structure information into networks. Tompson et al. [83] used
a convolutional Part-Detector network to produce a heatmap for each joint. A Markov
Random Field (MRF) is then formulated from a Spatial-Model to remove incorrect pose
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predictions implicitly. Chen et al. [92] presented a method for learning pairwise relation-
ships from predicted confidence maps, in which conditional probabilities of joint and
spatial relationships within image patches are learned with deep CNNs. Instead of using
pose priors or a holistic perspective to estimate human poses, Fan et al. [14] introduced
dual-source deep CNNs that combine these methods. The dual-source uses two types of
image patches (whole body and local part) as inputs and produces joint detection results of
sliding windows as heatmaps and joint localization coordinates. Based on graph convolu-
tional networks, Bin et al.’s recent work [12] developed a novel Pose Graph Convolutional
Network (PGCN) to construct a graph between body key points.

As graphical models do not account for the challenge of keypoint occlusion, Fu
et al. [93] presented the Occlusion Relational Graphical Model (ORGM) to capture both
occlusion by other objects and self-occlusion. Similarly, to reduce low-level image ambi-
guities caused by nearby persons, overlapping parts, and cluttered backgrounds, Tang
et al. [94] proposed the Deeply Learned Compositional Model (DLCM). This model inte-
grates bottom-up/top-down inference stages across multiple semantic levels to understand
compositional relationships among body parts. Tang et al. [95] proposed a Part-based
Branching Network (PBN) to learn representations unique to each group of body parts. Su
et al. [96] introduced the Cascade Feature Aggregation (CFA) method, which attempts to be
more resistant to changes such as low resolution and partial occlusions through cascades of
several hourglasses.

Generative Adversarial Networks (GANs) have also been utilized to estimate human
poses by providing adversarial supervision. Chen et al. [97] proposed an Adversarial
PoseNet network to address the problem of occlusions and overlapping joints. Similarly,
Chou et al. [13] employed a generator and a discriminator, each constructed from a stacked
hourglass network. Shamsolmoali et al. [98] designed two residual Multiple-Instance
Learning (MIL) networks, a generator and a discriminator, to learn constraints on human
structure priors.

Recently, some studies have focused on enhancing model efficiency. For example, Pa-
paioannidis et al. [57] proposed a fast CNN architecture using a global body head and a joint
body regression head to quickly estimate human poses for lightweight embedded systems.
Similarly, Dai et al. [99] presented the FasterPose model, which aims to reduce computa-
tional costs by analyzing and designing Low-Resolution (LR) features. Tables 9 and 10
provide summaries of detection-based methodologies and their performance, respectively.

Table 9. Types and techniques of deep learning (DL) used by different studies to estimate human
pose through a detection-based approach.

DL Type Address the Issues Techniques Used Studies

CNN

Incorrect the predicted joint Multistage
Refinement
Graphical model

[89,96]
[91]
[12,14,83,92]

Different scales of the human body Multibranch [87,88]
Complex pose Multitask [90]
Self/object occlusion Graphical model

Multistage
Multibranch

[91]
[56,94]
[95]

Feature resolution Multistage
Multistage/branch

[85,86]
[74]

Limitation in device resources Distillation [57,99]

GAN
Self/object occlusion Multistage

Multitask
[13]
[97,98]

RNN Incorrect the predicted joint Multistage [59]
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Table 10. Performance of the single-person pose estimation methods on the (MPII test set), where the
input is an image. All these methods follow the detection-based approach. The number of parameters
shows the model’s size, while the GFLOP metric shows the model’s speed.

Method Year Backbone Input Size #Params GFLOPs PCKh@0.5

MRF [83] 2014 AlexNet 320 × 240 40 M - 79.6
Lifshitz et al. [91] 2016 VGG 504 × 504 - - 85.0
CPM [89] 2016 CPM 368 × 368 - - 88.5
Stacked Hourglass [85] 2016 Hourglass 256 × 256 25.1 M 19.1 90.9
Hua et al. [86] 2020 Hourglass 256 × 256 41.9 M 56.3 91.0
Papaioannidis et al. [57] 2022 ResNet-50 256 × 256 - - 91.3
Chou et al. [13] 2018 Hourglass 256 × 256 - - 91.8
AdversarialPoseNet [97] 2017 En/Decoder 256 × 256 - - 91.9
PRM [87] 2017 Hourglass 256 × 256 28.1 M 21.3 92.0
Ke et al. [56] 2018 Hourglass 256 × 256 - - 92.1
DLCM [94] 2018 Hourglass 256 × 256 15.5 M 15.6 92.3
HRNet [74] 2019 HRNet 256 × 256 28.5 M 9.5 92.3
PGCN [12] 2020 Hourglass 256 × 256 - - 92.4
PBN [95] 2019 Hourglass 256 × 256 26.69 M - 92.7
DCAPRM [88] 2019 Hourglass 256 × 256 - - 92.9
CFA [96] 2019 Hourglass 384 × 384 - - 93.9

# Number of model parameters.

7.2. Single Pose Estimation Video-Based

Many real-life applications, such as detecting suspicious activity during Hajj and
Umrah, cannot be implemented by estimating pose from a single image. Therefore, track-
ing and predicting the location of key points across video frames is essential. However,
estimating poses from videos presents challenges. Unlike image-based estimation, where
the background is static, video-based estimation has a dynamic background due to camera
movement [100]. This background change adds to the challenges of 2D Human Pose
Estimation (HPE). Additionally, effects such as motion blur and changing light intensity
also contribute to these challenges. However, in video-based estimation, estimating poses
with occlusion problems is more straightforward than in image-based estimation because
the location of invisible and occluded key points can be predicted from other frames.

Videos consist of multiple images (frames). Most video-based work on single-person
pose estimation explores ways to refine results from a single frame by propagating temporal
clues across frames [33,101]. Temporal clues can be sequential, local, or global, as shown in
Figure 22. Sequence model-based methods, such as Recurrent Neural Networks (RNNs),
rely on previous information to predict current information; thus, using only the previous
frame to estimate pose in the current frame is known as sequential temporal clues. On
the other hand, local cues estimate human pose using information from adjacent frames
(previous and next frames). Unlike local cues, global cues obtain necessary information
from different distant frames.

Pfister et al. [102] were the first to use a deep CNN to estimate human upper-body
joints from videos. Their network exploits temporal information in videos by inserting
multiple frames into color channels as input, where each video frame has three colors (RGB).
In addition to color channels, Jain et al. [103] incorporated motion features, resulting in two
inputs being inserted into the CNN framework, thus providing a spatial-temporal model.
Nie et al. [104] also proposed a spatial-temporal model based on an And-Or graph, which
combines action recognition with video pose estimation. However, this model suffers from
occlusion problems due to hand-crafted features. Liu et al. [105] were also interested in the
spatial-temporal model.
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Some studies have relied on optical flow models to identify the motion flow of humans
across video frames. Pfister et al. [53] used optical flow to combine multiple frames by
warping predicted heatmaps from neighboring frames onto a target frame. To improve pose
estimation in long videos that may face occlusion problems, Charles et al. [106] introduced
a personalized Convolutional Network (ConvNet) pose estimator that leverages annotated
high-quality data to enhance the performance of a generic pose estimator. Song et al. [107]
proposed a Thin-Slicing Network model that uses a flow-warping layer to align joints of
the current frame with previous heatmaps.

Recurrent Neural Networks (RNNs) provide another means of incorporating temporal
context information. Gkioxari et al. [108] proposed a chained model that adapts the
sequence-to-sequence model to estimate spatial pose in videos by using the previous
frame’s result (body keypoint) as input for the current frame. Luo et al. [109] presented a
recurrent CNN model with Long Short-Term Memory (LSTM) for Human Pose Estimation
(HPE). Similarly, Artacho et al. [110] proposed the UniPose-LSTM framework, which
leverages the memory capability of LSTM. Fan et al. [100] introduced the Motion Adaptive
Pose Net (MAPN), which captures spatial-temporal features using motion-compensated
convolutional LSTM and skips feature extractions based on residual information for a set of
frames. Li et al. [111] presented a module called Temporal Consistency Exploration (TCE)
that overcomes the shortcomings of both RNN and optical flow methods.

As most datasets annotate key points after the Kth frames, leaving some frames without
annotation, several studies [8,112,113] have relied on unsupervised approaches to estimate
key points along video frames. Zhang et al. [112] introduced the Key Frame Proposal
Network (K-FPN), which recovers the entire pose sequence unsupervised by selecting
spatial and temporal information from a set of keyframes. Schmidtke et al. [113] proposed
an unsupervised method that uses simple 2D Gaussian templates for feature extraction.
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However, this method is not robust against dynamic backgrounds. To address this issue,
Jiao et al. [101] introduced a framework called Global-Local Enhanced Pose (GLPose)
estimation, which integrates results from nearby temporal frames (local features) and
similar global information to the target frame for pose prediction. Ludwig et al. [8] also
proposed an unsupervised method using two techniques: selective pseudo labeling and
mean teacher training.

Ma et al. [114] recently proposed a semi-supervised approach that utilizes labeled
frames and temporal dynamics (predicted key points) to address the problem of limited
availability of temporally sparse annotations in videos. They introduced the REinforced
MOtion Transformation nEtwork (REMOTE) framework, where a Motion Transformer
(MT) and an RL-based Frame Selection Agent (FSA) are combined. Nie et al. [115] proposed
the Dynamic Kernel Distillation (DKD) model, which reduces the computational cost using
pose kernel distillation for a lightweight pose estimation model.

Table 11 summarizes all of the above methods, while Table 12 shows their performance
in estimating single-person poses in videos using the JHMDB dataset for testing.

Table 11. Types and techniques of deep learning (DL) used by different studies to estimate a single
person’s poses in the video.

DL Type Address the Issues Techniques Used Studies

CNN

Few annotations Multistage
Multitask

[8,112,114]
[101]

Limitation in device resources Distillation [115]
Capturing spatial-temporal features Multistage/branch

Graphical model
Optical flow
Multistage

[103,111]
[104]
[53,106,107]
[102,105]

RNN
Capturing spatial-temporal features Multistage/branch

Multistage
Multibranch

[110]
[100,109]
[108]

Table 12. Performance of the single-person pose estimation methods on the (Sub-JHMDB test set),
where the input is a video.

Method Year Backbone Input Size GFLOPs PCKh@0.2

And-Or graph [104] 2015 - - - 55.7
Song et al. [107] 2017 CPM 368 × 368 - 81.6
Luo et al. [109] 2018 - 368 × 368 70.98 93.6
DKD [115] 2019 ResNet50 255 × 256 8.65 94.0
K-FPN [112] 2020 ResNet17 224 × 224 4.68 94.5
MAPN [100] 2021 ResNet18 257 × 256 2.70 94.7
GLPose [101] 2022 HRNet 384 × 288 - 95.1
REMOTE [114] 2022 ResNet50 384 × 384 - 95.9
TCE [111] 2020 Res50-TCE-BC 256 × 256 - 96.5

7.3. MultiPose Estimation Image-Based

Multiperson pose estimation is more challenging than single-person estimation be-
cause the model needs to predict the location of all the key points for all individuals,
regardless of the number of individuals. Figure 23 shows two well-known approaches
for estimating multiperson poses: top-down and bottom-up. The top-down approach has
two steps: first, detecting people in an input image and then estimating individual key
points within each person’s bounding box. On the other hand, the bottom-up approach
simultaneously predicts all key points and then assigns them to different people. This
section will cover most methods for these two approaches.
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7.3.1. Top-Down Approach

The main idea of the top-down approach [67] is to use a separate stage of CNN
and classification to recognize objects before estimating human poses. A region-proposal
pipeline detector must first detect each human pose in the image before applying a single-
person pose estimation method to predict human joints. The strength of this framework is
its ability to extract features with high accuracy due to using a pretrained model for pose
detection. However, its weakness is the slow processing time. This section will discuss
some works that focus on building proposal pipeline detectors.

The first method in this area was R-CNN (Region-based Convolutional Network) [116],
which integrated AlexNet with a selective search strategy considering edge, gradient,
texture, and color. However, one of R-CNN’s drawbacks was its slow detection speed.
Later methods such as Fast R-CNN and Faster R-CNN addressed this issue. R-CNN was
improved by Moon et al. [117], who utilized multiscale information for each person in the
image to estimate poses in parallel.

As an alternative to extracting features from each proposed region, Fast R-CNN [118]
used the entire image as input to extract features, speeding up the detection process. Fast
R-CNN increased detection speed but relied on external region proposal methods (such as
selective search), impacting the process’s speed. Faster R-CNN [119] addressed this issue
by replacing selective search with a Region Proposal Network (RPN).

Other proposed models focused on increasing object detection accuracy. One such
model is Mask R-CNN [27], which extended Faster R-CNN and used two built-in feature
extractors, ResNet and FPN, to achieve good accuracy and efficiency. It also replaced
RoIPool with RoIAlign to obtain small feature maps and address the issue of feature extrac-
tion from the input. Fang et al. [120] proposed the Regional Multiperson Pose Estimation
(RMPE) framework to address the problem of imprecise detection of human bounding
boxes. According to Huang et al. [121], data transformation and encoding-decoding af-
fected top-down approach performance. Therefore, they introduced the Unbiased Data
Processing (UDP) method, which statistically analyzed frequently biased data processing
in human pose estimation and processed data based on unit length rather than pixels.

Chen et al. [62] presented a Cascaded Pyramid Network (CPN) that generated features
for simple joints such as eyes and heads using GlobalNet to address the failed estimation
of difficult key points. RefineNet handled difficult key points caused by occlusions or
invisibility. The CPN framework is shown in Figure 24. Li et al. [122] adopted the GlobalNet
of CPN as a single-stage module for extracting features and proposed the MultiStage Pose
Network (MSPN) for estimating multiperson poses.
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Data augmentation was also used to estimate difficult joints. To overcome occlusion
problems, Zhou et al. [60] adopted a Siamese network that took two inputs: a pose and the
same pose with erased key points as an occlusion simulation. Similarly, Xie et al. [123] used
data augmentation to avoid collapsing problems by feeding the network with a typical
image and an image covering some key points. Moon et al. [55] presented an independent
single-stage network called PoseFix to correct human poses by training the model using
data augmentation that added synthesized errors such as jitter, inversion, and swap to pose
ground truth.

The Graph-PCNN model, proposed by Wang et al. [124], has a two-stage, model-
agnostic framework that uses a heatmap regressor for rough keypoint localization and a
custom-designed graph pose refining module to increase accuracy. Cai et al. proposed
the Residual Steps Network (RSN) [125], which won the COCO Keypoint 2019 challenge.
While RSN can learn detailed local representations through intra-level features, its pose
refinement machine was designed to find a better balance between using local and global
representations in features. To reduce the negative impact of background, Dong et al. [65]
used an hourglass network and added a global attention module. Wang et al. [54] used
semantic-aware transfer to estimate multiperson poses in crowded scenes to alleviate
missing key point detection. Zhang et al. [20] proposed one of the well-known top-down
methods called DARK (Distribution-Aware coordinate Representation of Key points),
which addressed quantization error by decoding predicted keypoint heatmaps into 2D
coordinates (x, y) of joints.

Most studies modified [126,127] or used [20,54,121] the HRNet model as a back-
bone. However, following this method increases computational complexity. Therefore,
recently, many models have been proposed, like LiteHRNet [128], HRNet-Lite [129], and
SRPose [130], that aim to build small networks. Another work that builds an efficient
network is McNally et al. [131]. They proposed the EvoPose2D network, designed using
neuroevolution to provide an effective weight transfer scheme that accelerates 2D human
pose networks. Xu et al. [132] proposed a Lightweight Dynamic convolution Network (LD-
Net) that aimed to reduce the number of network parameters using depthwise separable
convolution. Recently, Xu et al. [133] designed ZoomNet, a single neural network for esti-
mating whole-body human parts, including body, feet, face, and hands. Tables 13 and 14
summarize and display the performance of these methodologies, respectively.
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Table 13. Types and techniques of deep learning (DL) used by different studies to estimate human
pose through a top-down approach.

DL Type Address the Issues Techniques Used Studies

CNN

Incorrect the predicted joint Refinement
Graphical model

[55]
[124]

Incorrect the bounding box Multistage/branch
Multistage
Nonmaximum Suppression

[117]
[27,116,118,119]
[120]

Feature resolution Multistage
Multistage/branch

[122,125]
[127]

Limitation in device
resources

Multistage
Multibranch
Multistage/branch

[126]
[130,131]
[128,129]

Self/object occlusion Multibranch
Multistage/branch

[60]
[62]

Variant background Multistage
Multitask

[65]
[54]

Quantization error Modifying Gaussian kernel [20,126]
Estimating whole body Multitask [132]

Table 14. Performance of the multiperson poses estimation methods on the (COCO test-dev set),
where the input is an image. All these methods follow the top-down approach. The number of
parameters shows the model’s size, while the GFLOP metric shows the model’s speed.

Method Year Backbone Input Size #Params GFLOPs AP

RMPE [120] 2017 PyraNet 320 × 256 - - 61.8
Mask R-CNN [27] 2017 ResNet 800 × 800 - - 63.1
MSPN [122] 2019 ResNet-50-FPN 640 × 640 - - 68.2
LiteHRNet [128] 2022 Lite-HRNet-30 384 × 288 1.8 M 0.70 69.7
Chen et al. [62] 2018 ResNet 384 × 288 102 M 6.2 72.1
LDNet [131] 2022 LDNet 384 × 288 5.1 M 3.7 72.3
HRNet-Lite [129] 2023 HRNet-W32 256 × 192 14.5 M 2.9 73.3
SRPose [130] 2023 HRFormer-S 256 × 192 8.86 M 3.34 75.6
EvoPose2D [126] 2021 EvoPose2D 512 × 384 14.7 M 17.7 75.7
HrFormer [127] 2021 HRFormer-B 384 × 288 43.2 M 26.8 76.2
DARK [20] 2020 HRNet 384 × 288 63.6 M 32.9 76.2
UDP [121] 2020 HRNet 384 × 288 63.8 M 33.0 76.5
PoseFix [55] 2019 HR + ResNet 384 × 288 - - 76.7
Graph-PCNN [124] 2020 HRNet 384 × 288 - - 76.8
Wang et al. [54] 2021 HRNet 384 × 288 63.9 M 35.4 76.8
Xie et al. [123] 2021 HRNet 384 × 288 63.6 M 32.9 77.2
DiffusionPose [126] 2023 HRNet-W48 384 × 288 74 M 49 77.6
RSN [125] 2020 4×RSN-50 384 × 288 111.8 M 65.9 78.6

# Number of model parameters.

7.3.2. Bottom-Up Approach

Instead of using region proposals to detect people, DeepCut [26] adopted Fast R-CNN
first to detect all key points and then group body parts into the same individual. Since
the DeepCut model heavily relies on part detectors, DeeperCut [134] adopted DeepCut
and replaced the old keypoint detector with robust body part detectors. Another work
that achieved real-time performance is that of Varadarajan et al. [135]. Unlike DeepCut
and DeeperCut models that use an Integer Linear Programming (ILP) solver to formulate
keypoint assignment, which is time-consuming due to the NP-hard problem, they proposed
an assignment algorithm that greedily selects body parts, reducing time complexity.

MultiPoseNet [136] offered a multitask model that independently identified key points
and human proposals before using a pose residual network to allocate discovered key
points to different pose bounding boxes. One of the most well-known methods in the
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bottom-up approach is OpenPose [25], which proposed Part Affinity Fields (PAF) to learn
keypoint locations and their associations through a set of 2D vector fields that indicate
the location and orientation of body parts. The OpenPose model won the COCO 2016
key points challenge and achieved real-time performance with its two-branch, multistage
architecture (Figure 25). Kreiss et al. [137] presented the PifPaf method, in which their
network encoder two fields, Part Intensity Field (PIF) and PAF, for locating and associating
body parts, respectively. Nasr et al. [138] employed various approaches for estimating
multiperson poses, such as PAF for part association and person parsing, after applying a
confidence map for keypoint identification.
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While most bottom-up methods use post-processing to group key points, the Hierar-
chical Graph Grouping (HGG) method [139] provides an end-to-end trained network that
detects key points and clusters them using a graph network. Another end-to-end trained
method that includes a detector for grouping key points is CenterGroup [58]. Jin et al. [140]
proposed a two-stage pipeline for estimating multiperson poses. The first stage detects all
key points, while the second stage predicts offsets from key points to body centers using a
greedy grouping strategy with a dynamic threshold. In addition to detecting all key points,
Du et al. [141] combined groups of specific key points with prior knowledge to obtain better
associative encoding.

Pose Partition Networks (PPN) [142] introduced a novel dense regression module to
detect and partition key points for multiple people. HigherHRNet [143] attempted to esti-
mate small-scale people of different sizes by adopting HRNet and adding a deconvolution
module that generates multiresolution and high-resolution heat maps. Instead of predicting
key points using fixed standard deviation, which sometimes fails to handle variations in
human scales and labeling ambiguities, Luo et al. [144] proposed Scale-Adaptive Heatmap
Regression (SAHR) to adjust the standard deviation for each key point automatically.

Like ZoomNet, Hidalgo et al. [145] proposed a single network for estimating whole-
body key points, including body, face, hands, and feet. However, they followed a bottom-up
approach instead of a top-down one. Zhao et al. [146] presented a network architecture
consisting of a multistage and two branches that combined local and global features
by combining dense and sparse keypoint clusters in each branch to detect key points.
Additionally, intra- and interclusters were used for grouping predicted key points into
individuals. Tables 15 and 16 summarize the methodologies of the bottom-up approach
and their performance.
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Table 15. Types and techniques of deep learning (DL) used by different studies to estimate human
pose through a bottom-up approach.

DL Type Address the Issues Techniques Used Studies

CNN

Self/object occlusion Detecting and grouping
Multitask
Multibranch

[26,58,128]
[129]
[141]

Limitation in device resources Multitask
Part Affinity Fields
Multistage/branch

[136]
[25,137]
[142]

Feature resolution Multistage/branch [143,146]
Different scales of the human body Iterative optimization

Multibranch
[140]
[144]

Incorrect the predicted joint Part Affinity Fields [147]
Estimating whole body Part Affinity Fields [145]

GNN Incorrect grouping of key points Graph layers [139]

Table 16. Performance of the multiperson pose estimation methods on the (COCO test-dev set),
where the input is an image. All these methods follow the bottom-up approach. The number of
parameters shows the model’s size, while the GFLOP metric shows the model’s speed.

Method Year Backbone Input Size #Params GFLOPs AP

OpenPose [25] 2017 CMU-Net 368 × 368 - - 61.8
Zhao et al. [146] 2020 Hourglass 512 × 512 - - 62.7
PifPaf [137] 2019 ResNet 401 × 401 - - 66.7
HGG [139] 2020 Hourglass 512 × 512 - - 67.6
Du et al. [141] 2022 HrHRNet 512 × 512 28.6 M - 67.8
MultiPoseNet [136] 2018 ResNet 480 × 480 - - 69.6
HigherHRNet [143] 2020 HRNet 640 × 640 63.8 M 154.3 70.5
Jin et al. [140] 2022 HrHRNet 640 × 640 67.0 M 177.6 70.6
CenterGroup [58] 2021 HRNet 512 × 512 - - 71.4
SAHR [144] 2021 HRNet 640 × 640 63.8 M 154.6 72.0

# Number of model parameters.

7.4. Multipose Estimation Video-Based

When multiple people are present in a single video frame [148], three processes are
applied: pose detection, estimation, and tracking. There are two types [147] of multiperson
pose tracking: offline and online. Offline tracking methods typically represent complex
spatiotemporal interactions across multiple frames for robust tracking but have high
computational costs. Offline pose tracking methods often employ graph partitioning-based
methodologies. In contrast, online pose-tracking methods are more efficient because they
avoid the need to model complex spatiotemporal interactions. This section discusses
various methods for offline and online approaches.

7.4.1. Offline Approach

The PoseTrack approach [149] used a spatiotemporal graph to represent joint body
detection for every three frames and track each person’s head and neck edges in a video.
This approach addressed problems such as truncation of persons and occlusions. Similarly,
these problems were tackled by the ArtTrack model proposed by Insafutdinov et al. [150].
Recently, Liu et al. [18] proposed a deep Dual Consecutive Pose (DCPose) model for
pose prediction that addressed motion blur and pose occlusion problems. Similarly, the
TDMI model [151] overcomes the blur and occlusion problem by exploiting the temporal
difference information of the video frame. Ruan et al. [152] proposed an end-to-end
network called Pose-Guided Ovonic Insight Network (POINet) that provides a multistage
process consisting of feature extraction, similarity estimation, and identity assignment as a
unified network.
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Mask R-CNN [27] was extended by Girdhar et al. [52] to include temporal information
as a third dimension (3D). The 3D Mask R-CNN has two stages: the first extracts pose
features using Mask R-CNN, while the second tracks multiperson poses using temporal
information. Similarly, HRNet [74] was extended by Wang et al. [19] to include temporal
information between key points as 3D for tracking poses in videos. The approach used
a clip-tracking network to estimate and track pose joints, followed by a video-tracking
pipeline to merge the predicted poses of the same person.

Xiao et al. introduced two simple baselines for pose estimation and pose tracking called
FlowTrack as model complexity increased [153]. A ResNet with a few deconvolutional
layers was used to extract features from image frames (as shown in Figure 26), and the
3D Mask R-CNN pipeline was adapted with changes to the human detector and metric
for pose tracking. In contrast, Bertasius et al. [154] proposed PoseWarper, which achieved
strong pose detection performance. Table 17 summarizes the methodologies of the offline
approach, while Table 18 shows their performance.
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Table 17. Types and techniques of deep learning (DL) used by different studies to estimate human
pose through an offline approach.

DL Type Address the Issues Techniques Used Studies

CNN

Few annotations Multitask [154]
Self/object occlusion Multistage/branch

Multistage
[152]
[151]

Model high complexity Multistage [153]
Capturing spatial-temporal features Graph layers

Multistage
Multistage/branch

[149]
[52,150]
[18,19]

Table 18. Performance of the multiperson pose estimation methods on the (PoseTrack 2017 test set),
where the input is a video. The methods in this table follow an offline approach. MOTA metric
is used to evaluate human pose tracking. The symbol * indicates the model was test based on the
(PoseTrack 2017 val set).

Method Year Backbone Input Size Total mAP Total MOTA

PoseTrack [149] 2017 - - 59.4 48.4
ArtTrack [150] 2017 ResNet-101 - 59.4 48.1
3D Mask R-CNN [52] 2018 ResNet-18 256 × 256 59.6 51.8
Ruan et al. [152] 2019 ResNet-101 900 × 900 72.5 58.4
3D HRNet [19] 2020 3D HRNet - 74.1 64.1
FlowTrack [153] 2018 ResNet-152 384 × 288 76.7 65.4
Bertasius et al. [154] 2019 HRNet - 77.9 -
DCPose [18] 2021 HRNet 384 × 288 79.2 -
TDMI-ST [151] 2023 - - 85.9 * -
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7.4.2. Online Approach

The PoseFlow model [36] was the first online pose tracker. Xiu et al. [155] proposed
the PoseFlow model to leverage pose tracking using only a few frames. This model consists
of three pipelines: a pose estimator based on Faster R-CNN, a pose flow builder, and a
nonmaximal suppression pipeline to enhance tracking. Guo et al. [156] won the PoseTrack
ECCV 2018 challenge by training their network using their proposed multidomain pose
prediction method, which takes all poses embedded in a single frame and trains them
using three datasets: COCO, MPII, and PoseTrack. Ning et al. [148] followed a top-down
approach for estimating and tracking multiperson poses in videos.

Inspired by Part Affinity Fields (PAF) [25] representation, Doering et al. [157] proposed
the JointFlow model that applied a Siamese network to extract pose features such as belief
maps or PAFs. Temporal flow fields were then used to track multiperson poses between
two frames (previous and current). Similarly, Raaj et al. [158] used a recurrent network
that predicted poses from previous and current frames to present Spatio-Temporal Affinity
Fields (STAF) based on PAFs. Yang et al. [159] employed a Graph Neural Network (GNN)
to address the issue of missed detections across frames by learning pose dynamics from
previous pose sequences and using that information to inform pose detection in the current
frame. To solve ambiguity problems in crowded scenes, Stadler et al. [160] introduced
different strategies based on a tracking-by-detection approach using a distance matrix.

Jin et al.’s [161] framework used two components, SpatialNet and TemporalNet, for
detecting body parts and tracking human poses, respectively. The authors also proposed
human and temporal instance embeddings to avoid drifting problems due to camera
motion and achieve temporal consistency in video frames. Zhou et al. [147] improved pose
association and estimation by proposing two modules: temporal keypoint matching and
refinement for learning similarity metrics and correcting individual poses, respectively.
The above online methodologies are summarized in Table 19, while Table 20 shows their
performance.

Table 19. Types and techniques of deep learning (DL) used by different studies to estimate human
pose through an online approach.

DL Type Address the Issues Techniques Used Studies

CNN Incorrect the predicted joint features Multibranch [156]
Capturing spatial-temporal features Nonmaximum

Suppression
Multistage/branch
Part Affinity Fields

[155]
[161]
[157]

GNN Capturing spatial-temporal features Graph layers [148,159]

RNN Capturing spatial-temporal features Part Affinity Fields [158]

Table 20. Performance of the multiperson pose estimation methods on the (PoseTrack 2017 test set),
where the input is a video. The methods in this table follow an online approach. MOTA metric is
used to evaluate human pose tracking. The symbol * indicates the pose inference time is excluded.

Method Year Backbone Input Size Total
mAP

Total
MOTA FPS

PoseFlow [155] 2018 Hourglass - 63.0 51.0 10.0 *
JointFlow [157] 2018 - - 63.4 53.1 0.2
Ning et al. [148] 2020 FPN - 66.5 55.1 0.7
STAF [158] 2019 VGG 368 × 368 70.3 53.8 2.0
Guo et al. [156] 2018 ResNet-152 384 × 288 75.0 50.6 -
Jin et al. [161] 2019 Hourglass - 77.0 71.8 -
Zhou et al. [147] 2020 HRNet - 79.5 72.2 -
Yang et al. [159] 2021 HRNet 384 × 288 81.1 73.4 -
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8. Discussion

The main objective of this survey is to analyze findings related to 2D human pose
estimation (HPE) studies. We systematically collected papers on person pose estimation
and detailed the process and results of collecting articles in Sections 2 and 3. Our procedures
in searching and collecting articles were limited in estimating the person’s pose as a 2D
skeleton using deep learning methods from images and videos. As a result, we selected
100 papers and summarized them in Section 7 based on our selection criteria. We also
discussed the four main components used to build HPE models: available datasets, loss
functions, evaluation metrics, and pretrained feature extraction models (Sections 4–6). This
section aims to further analyze these findings by answering the survey questions in Table 2.
The answers to the survey questions are provided below.

8.1. Which Datasets Are Used to Analyze the Performance of the Deep Learning Methods (RQ1)?

The dataset is a crucial component of the HPE process for training and testing models.
Many datasets are available online, as listed in Section 4. When choosing a dataset, several
requirements should be considered:

• Size: HPE is a nonlinear problem, and the size of the dataset affects model performance.
Therefore, larger datasets are generally better for improving model accuracy;

• Data quality: A large amount of low-quality data can negatively impact performance.
Data should be high-resolution and free of watermarks;

• Diversity: Datasets must include diverse data so that models can handle real-world
scenarios. Hence, the datasets should provide different camera angles, poses, body
shapes, races, ages, clothing styles, illumination conditions, and backgrounds;

• Complexity: Datasets must contain a variety of poses and actions to apply HPE to
diverse applications. The datasets should include a range of poses, from simple ones
such as standing and walking to more complex ones like flipping and kicking;

• Challenges: Datasets should include occlusions, cluttered backgrounds, and poses
that change over time to assess the robustness of the models;

• Annotation quality: Annotations for key points and person detection in any dataset
should be consistent, complete, and accurate.

Unfortunately, existing datasets only meet some of these requirements (as shown in
Table 21), which can negatively impact model performance.

Table 21. Available datasets of 2D human pose estimation. The requirements, with their meaning,
are listed in Section 8.1. The 4 indicates that the dataset fully meets a requirement, whereas the 8

mean does not. The * symbol indicates that some characteristics of requirements are met.

Dataset Size Data
Quality Diversity Complexity Challenges Annotation

Quality

LSP [42] 2 K 4 8 4 * *
LSP Extended [43] 10 K 4 * 4 * *
FLIC [44] 5 K * * * 8 *
PennAction [45] 2.3 K 4 * 4 4 *
JHMDB [46] 900 * * * * *
MPII [40] 30.5 K 4 * * * *
COCO [41] 200 K 4 * * * *
PoseTrack [47] 550 4 * * * *
CrowdPose [48] 80 K * * 4 * *

Most data in standard datasets are high-resolution and contain various pose activities
such as running, walking, talking, and kicking. However, only a few datasets, including
MPII, COCO, and JHMDB, provide occlusion annotations; others offer only key point
coordinates as annotations. Some annotations in existing datasets are inaccurate, with
missed or wrongly labeled key points. Images and videos in these datasets typically
contain large and medium-sized human bodies. Although some datasets contain crowded
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scenes with small-sized human poses, these poses often do not have labels. In other words,
not all poses in images and videos are annotated. Additionally, some datasets, such as
PennAction and LSP, focus on specific activities like sports, while others provide daily life
activities. Most datasets also have limitations in data diversity, such as race, age, view
angle, and activity.

Due to these issues with existing datasets, most studies [14,57,109] prefer to combine two
or more datasets when training their models. Table 22 shows the combinations of datasets
used by different studies and illustrates the pros and cons of these combination processes.

Table 22. The advantages and disadvantages of training human pose estimation models using
multiple datasets.

Training Dataset Advantage Disadvantage Studies

LSPE + FLIC
• A combination of single and multipose.
• Learning simple and complex poses.

• Some data in LSPE dataset
have incorrect annotations.

• The number of key points
annotations is different.

[14,83,92]

MPII + LSPE

• Exploits the scale, center, and invisible
joint annotations from MPII.

• Learning simple and complex poses.

• Some data in LSPE dataset
have incorrect annotations.

[12,13,26,60,65,82,
87,89,91,97]

MPII + COCO

• Images are high resolution.
• Exploits person boxes annotation from

the COCO dataset.

• Unifying the size of the
image is required.

• Data augmentation is used
to learn estimating hard key
points.

[20,25,56,99,120,
123,132,138,145]

PennAction + JHMDB

• Increasing the size of training.
• Exploits the invisible joint annotation

from the PennAction dataset.

• The other data set is used for
pretraining.

• Varying length of video
frames.

• Data augmentation is
needed.

[100,104,107,109,
111,112,114,115].

Combining datasets aims to address the shortcomings of individual datasets. For
example, the MPII dataset is used with other datasets, such as LSPE and COCO, to exploit
occluded keypoint annotations and enable models to estimate difficult joints. The LSPE
dataset contains complex poses but cannot be used alone to train models. Therefore, it
is combined with other datasets to teach models to predict unusual poses. Combining
PennAction and JHMDB datasets increases the number of training samples for estimating
single-person poses in videos. For predicting multiperson poses, the PoseTrack dataset
provides sufficient data for training. Despite the characteristics of these datasets, data
augmentation is still necessary to increase data diversity. Therefore, a comprehensive
dataset that offers diverse data addresses the challenge of occlusions and provides precise
labeling is still needed for 2D HPE tasks.

8.2. Which Loss Functions and Evaluation Criteria Are Used to Measure the Performance of Deep
Learning Methods in Human Pose Estimation (RQ2)?

As discussed in Section 5.1, several loss functions are used for HPE tasks. The choice
of the loss function to optimize the network parameters depends on the model task. For
example, if the model attempts to predict the location of key points (regression task), loss
functions such as L1 and L2 are used. The difference between these losses and similar
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loss functions (e.g., Smooth L1 loss) is their sensitivity to data outliers (data with different
values than other data in the same dataset). It is known that the loss function L1 is less
sensitive than L2. Therefore, choosing the L1 loss function in the regression task is best if
the datasets contain noisy data.

On the other hand, if the model focuses on classification tasks like joint visibility or
recognizing the pose behavior, loss functions such as cross-entropy and focal losses are
used. Cross-entropy loss is suitable for classifying more than one class, while loss like
binary cross-entropy is used to classify binary values (e.g., is the joint occluded or not).
Whenever imbalanced classes exist in the dataset, the focal loss is utilized to solve such
problems.

After updating the model parameters to minimize the error between predicted and
ground truth values during the training mode, measuring the model’s performance on
unseen data is necessary. The choice of evaluation metric depends on the specific task
in HPE. For example, PCP (Percentage of Correct Parts) and PCK (Percentage of Correct
Key points) metrics are used to measure the performance of models estimating single
poses from images [12,51,79] and videos [101,111]. In contrast, the AP (Average Precision)
metric is used to measure the performance of models estimating multiperson poses from
images [58,121] and video frames [18,161]. For methods that include object detection
tasks in pose estimation, metrics such as IoU (Intersection over Union) are used [120,136].
Detailed information about these evaluation metrics is discussed in Section 5.2.

We used PCKh, AP, and mAP metrics in the tables in Section 7 to compare the per-
formance of different HPE methods. Most HPE methods use these metrics to measure
their model’s performance, and one primary reason is that the benchmark datasets use
these metrics. The other reason is [40] using metrics like PCP to measure the performance
of estimating foreshortened body parts is challenging and affects model evaluation. One
drawback of the PCK metric is relying on a fraction of the pose bounding box as a threshold,
making this metric articulation-dependent. Therefore, Andriluka et al. [40] have modified
the PCK metric to make it articulation-independent by changing the threshold from the
bounding box to the length of the pose head size. They named that metric as PCKh. How-
ever, these metrics are not suitable to measure the model performance of a single pose [26]
as they do not penalize false positives (the key points of the target pose and other poses
are recognized as they belong to a single pose). Therefore, metrics such as AP measure the
model performance that estimates multiposes.

8.3. What Are the PreTrained Models Used for Extracting the Features of the Human Pose (RQ3)?

There are many pretrained models available to use in extracting human body features.
Huge datasets like ImageNet train these models. Pretrained models such as Hourglass,
ResNet, HRNet, and HrHRNet are the most used by different studies [137,143,146]. Each
of these models attempts to solve specific problems. HRNet, for example, maintains the
input resolution along the network structure. Hence, it solves the problem of predicting
the key points’ location from low-feature resolution.

On the other hand, Hourglass resolves the vanishing gradient problem by adding
Intermediate supervision in every stage. Another model that provides a way to solve the
vanishing gradient problem is ResNet model, which uses the skip connections between
network stages. As the resolution of the input is essential to estimate the different sizes of
the joints, HRNet and HrHRNet are the best choices. However, they affect the size of the
HPE model and are unsuitable for real-time applications. Therefore, other pretrain models,
such as GoogLeNet and MobileNet, were used but did not achieve high accuracy. More
detailed information about the pretrained models was discussed in Section 6.

8.4. What Are the Existing Deep Learning Methods Applied for 2D Human Pose Estimation
(RQ4)?

Deep learning has significantly improved the performance of HPE from images and
videos. After summarizing the candidate papers, we identified four types of deep learning
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used for HPE: CNNs (Convolutional Neural Networks), GANs (Generative Adversarial
Networks), GNNs (Graph Neural Networks), and RNNs (Recurrent Neural Networks).
Most studies [14,83,116,125,137] used CNNs to estimate the person’s pose from a single
image due to its ability to extract the body joint’s features implicitly using different kernel
sizes that capture the spatial information. Popular methods that used CNNs, such as HR-
Net [74] and Stacked Hourglass [85], achieved good accuracy but had high computational
complexity. Therefore, techniques such as distillation were used to reduce the complexity
of HPE models [57,115].

A few studies [13,100,139] used other types of deep learning to enhance HPE perfor-
mance. For example, GANs were used to train models on real and fake data to address the
problem of occlusions. According to Chou et al. [13], computation is unaffected because
the discriminator is not included after training the model. GNNs and RNNs were also used
to address the problem of occlusions, which is a significant cause of low HPE performance.
GNNs were used to represent human joints as graphical representations [148] to refine
human poses after predicting key points.

Similarly, RNNs were used for the same purpose, especially when the input was a
sequence of images. RNNs exploit their memory component to use information from
previous frames to refine poses in the current frame. Compared to CNNs for estimating
human poses in videos, RNNs have lower computational complexity because they do not
need to extract features from all frames [100].

Therefore, each deep learning type has its strengths and weaknesses. For example,
while CNNs are excellent at extracting features relevant to the body joints, it is limited to
dealing with sequential data (i.e., video frames), which is where RNN comes in. RNN is
designed for capturing temporal dependencies and dealing with variable-length sequences
of video frames. However, when sequences are long, they fail to estimate the human pose
efficiently. On the other hand, GNN is designed to capture and represent the relationships
between body joints as a graph. At the same time, GAN trains the model with synthetic
data, augmenting limited annotated datasets. However, building an accurate graph using
GNN is challenging, and using GAN may fail to produce diverse samples. Therefore,
some studies [79,83,110] combine these deep learning types to leverage their strengths and
mitigate their weaknesses.

Most HPE approaches use CNNs. For image-based single-person pose estimation,
approaches may follow either regression or detection. In general, detection-based methods
outperform regression-based methods (as shown in Tables 8 and 10). However, model
sizes in detection-based approaches are larger than those in regression-based approaches
due to the varying scales of heatmaps used in detection-based approaches. Since no
additional data are required for regression-based approaches other than full/patch images,
regression-based methods run faster than detection-based methods. Despite high accuracy
in estimating single-person poses in images for both approaches, self-occlusions between
symmetric body parts (e.g., left and right legs) still affect performance.

Estimating human poses becomes more challenging when more than one person
is present in an image, and their joints must be predicted. Two approaches exist for this
situation: top-down and bottom-up. As shown in Tables 14 and 16, most top-down methods
outperform bottom-up methods. However, due to the person detection step, the top-down
approach has a high computational time. Compared to single-person pose estimation, the
accuracy of both approaches decreases when multiple people are present in an image due
to challenges such as self/object occlusion, different backgrounds, varying sizes of people,
and diverse clothing. Many methods for estimating multiperson poses aim to balance
network size and computational speed. Therefore, accurately estimating multiperson poses
in an image remains a challenging task.

The same challenges apply to video-based single/multiperson pose estimation. How-
ever, video-based methods require tracking poses across video frames. Compared to
single-person pose estimation in videos (see Table 12), most methods for estimating multi-
person poses in videos (see Tables 18 and 20) have lower accuracy. Unlike single-person
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pose estimation, multiperson pose estimation requires additional methods to track each
pose throughout the video. Possible reasons for the low accuracy of these models include
frequent occlusions due to the continuous movement of people, varying scales of human
bodies, and truncated body parts in some frames. These challenges remain unsolved and
provide opportunities for researchers to develop suitable solutions.

The task of estimating human poses is classified as a nonlinear problem. Therefore,
designing simple networks is inefficient. Many studies [89,96,110] use techniques such
as multiple stages, branches, and tasks to increase the accuracy of the network. These
techniques help produce multiple scales of features from multiple input resolutions, which
increases the accuracy of the HPE model in predicting the location of body joints. For
example, the multistage technique transfers what the previous stage learned (i.e., low-level
features) to the next stage sequentially to obtain more high-level features. Figure 27 shows
these techniques.
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Another example of shared features is the multiple-task technique in which two or
more networks (e.g., one for capturing local features and the other for capturing global
features) of different tasks work together to estimate the joints of human pose. The main
drawback of using these techniques is increasing the model size. Therefore, a technique
like distillation reduces the model’s size to be usable in real-time applications. However, a
limitation of the distillation technique is its effect on accuracy.

Another solution that handles the HPE challenge, especially the body occluded prob-
lem, is incorporating the graphical model into the HPE model. The graphical model is
considered a traditional technique that uses the knowledge of human structure to know
the relationship between the joints. However, some poses may fail to be represented by
this technique. Table 23 shows the advantages and disadvantages of standard techniques
used in HPE.

Table 23. Standard techniques used in human pose estimation tasks.

Technique Advantage Disadvantage Example Studies

Multistage

• Provide low and high
features.

• Improve accuracy.
• End-to-end learning.

• Without intermediate
supervision, it faces a
vanishing gradient.

• Adding more stages means
more computational
resources.

• Require efficient way to
recover the high-resolution.

Hourglass
network

[8,13,27,52,56,65,89,94,
96,100,102,105,118,153]
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Table 23. Cont.

Technique Advantage Disadvantage Example Studies

Multibranch

• Provide various scales of
features.

• Provide multiscale input
resolution.

• Improve accuracy.
• End-to-end learning.

• A way to initialize the
weights of multibranch
networks is required.

• Adding more branches
means more computational
resources.

Pyramid
network

[12,14,60,83,92,95,108,
132,141,144,156]

Multistage/
branch

• Improve extraction of the
feature.

• Maintain the high
resolution of the input.

• Improve accuracy.
• End-to-end learning.

• Increase the size of the
model.

• Increase in the
computational.

High-
Resolution
network

[18,19,62,74,103,110,
111,117,142,143,146]

Multitask
• Shared features extraction.
• Improve accuracy.
• End-to-end learning.

• Increase the size of the
model.

• Increase in the
computational.

GLPose model [54,66,90,97,98,101,133,
136]

Graphical
model

• Incorporation of prior body
structure.

• Handel more pose
challenges.

• Describe relationships
between body parts.

• Limited representation.
• Increase in the

computational.

Graph-
PoseCNN
model

[12,14,83,92,93,104,124]

Part Affinity
Fields

• Real-time performance.
• Multiposes estimation.
• Full pose estimation.
• End-to-end learning.

• Ambiguity in complex
poses.

OpenPose
model

[25,137,138,145,157,
158]

9. Future Directions

Despite significant progress in estimating human poses from images or videos, existing
deep-learning models still face challenges with accuracy and efficiency, particularly in the
presence of occlusions and crowded scenes. In this section, we list several potential ideas
for future directions in 2D HPE:

• While CNNs are commonly used in HPE studies [50,79,83] for their effectiveness in
implicit feature extraction from images, a few studies [108,139] have explored other
deep learning methods such as GANs [13], GNNs [139], and RNNs [59]. The relative
performance of these methods is unclear and warrants further research.

• Many studies [12,95,96] have found that detection-based approaches outperform
regression-based approaches for estimating single poses. Recently, Gu et al. [162]
analyzed these two approaches to determine why detection-based methods are supe-
rior to regression-based methods. They ultimately proposed a technique that showed
regression-based approaches could outperform detection-based approaches, especially
when facing complex problems. Further study of this work may open new directions
for estimating single-person poses;

• While many studies [88,96,111] have achieved good performance (above 90% accuracy)
in estimating single-person poses from images or videos, performance significantly
decreases when estimating multiperson poses due to challenges such as occlusions
and varying human sizes. Various studies [18,144,159] have proposed methodologies
to address these challenges, but finding the best solutions remains an open problem;
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• Optical flow has been used by some studies [53,107] to track motion in videos. How-
ever, it is easily affected by noise and can have difficulty tracking human motion in
noisy environments. To improve performance, a few works [100,111] have replaced
optical flow with other techniques, such as RNNs or temporal consistency. Focusing
on such techniques may further boost performance;

• Many studies [119,124] use post-processing steps such as search algorithms or graph-
ical models to group predicted key points into individual humans in bottom-up
approaches. However, some recent works [58,139] have incorporated graphical infor-
mation into neural networks to make the training process differentiable. This area
warrants further investigation;

• Improving the efficiency of HPE tasks is not limited to enhancing models; dataset
labels also play a significant role. In addition to keypoint position labels, only a few
datasets [40,45] provide additional labels, such as visibility of body joints, that can
help address the challenge of occlusions. As occlusion is one of the main challenges
in 2D HPE, researchers need to increase the number of occluded labels in datasets.
Unsupervised/semi-supervised and data augmentation methods are currently used
to address this limitation;

• Another challenge in 2D HPE is crowded scenes. Only a few datasets provide data
with crowded scenarios (e.g., CrowdPose and COCO), and their data consist only of
images. Recently, a dataset called HAJJv2 [163] was introduced that provides more
than 290,000 videos for detecting abnormal behaviors during Hajj religious events.
The data in this dataset are diverse in terms of race, as many people from all over the
world [164,165] perform Hajj rituals. They also have a large crowd scale, providing
nine classes with normal and abnormal behaviors for each category. This dataset may
help train 2D HPE models;

• An excellent example of research attempting to solve the problem of HPE in crowded
scenes is research on Hajj and Umrah events [3,163,166], where more than 20 people
must be detected, estimated, and classified in real-time. These types of research heavily
rely on HPE techniques. For example, models such as YOLO and OpenPose are used
for detecting and estimating poses to identify suspicious behavior during Hajj events.
However, these models still face challenges in handling large numbers of poses in
real-time. Developing methods to address this problem remains an open challenge.

10. Conclusions

This review systematically reviewed state-of-the-art deep learning types and tech-
niques in 2D human pose estimation (HPE). We collected different articles published
between 2014 and 2023 that interested 2D HPE. We selected and summarized 107 articles
according to several criteria that we listed. Then, we classified their methodology based on
the number of people estimated (single-person or multiple persons pose estimation) and
the input type (image- or video-based). Under each of these classifications, many methods
were present. Therefore, we grouped these methods according to their general approach.

These approaches are regression-based and detection-based, targeted to estimate a
single pose in the image, and top-down and bottom-up approaches, targeted to estimate
multiple poses from the image. Each approach proposes a general framework for solving
HPE challenges like occluded and invisible joints. While the methods that follow the
regression-based and detection-based approaches achieved an excellent performance in
estimating single pose, the methods in top-down and bottom-up approaches still face
challenges in increasing the accuracy. One reason is not knowing the number of people, as
they must be detected first by using the pose detector (top-down approach) or discovering
all the joints in the image and then grouping them for the appropriate individual (bottom-
up approach). The other reason is the crowd scene’s high occlusion between body joints.
We found the Stacked Hourglass, HRNet, DARK, CPM, and OpenPose models are the most
well-known models that significantly boost the accuracy of estimating single and multipose
images. While designing the network architecture using techniques like multistage (e.g.,
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Stacked Hourglass) and multibranch (e.g., Pyramid network) increased the accuracy of
the HPE model, it is not suitable for real-time applications. Many articles focused more
on improving the model’s accuracy than reducing the model size. Therefore, designing
a network that aims to increase the HPE model’s efficiency is one area that needs more
research.

One main contribution of our systematic review is the summary of different methods
that focused on estimating single and multiple poses from videos. Like image-based
methods, we grouped the various video-based methods according to their general approach.
These approaches are temporal cues, offline, and online approaches. The first approach
estimates a single pose through propagated temporal clues to track the human pose. In
contrast, the last two approaches estimate multiple poses in video frames. We found the
RNN was the most popular deep learning type used for estimating the pose from the target
frame by combining the features from other frames, resulting in a robust performance.
Different video-based models also used the graphical model.

In contrast to the offline approach, which is accurate in estimating the poses of many
subjects but has a high time complexity, the online approach aims to estimate many peo-
ple and maintain a balance between accuracy and time complexity. Many studies used
lightweight methods such as PAF (part affinity fields) to achieve real-time performance.
However, the analysis shows that estimating multiple poses in real-time from video (online
approach) is still challenging.

In addition to analyzing different 2D HPE methodologies, we also examined the main
components of any HPE model, including the existing datasets, loss functions, evaluation
metrics, and pretrained features extraction model. The results show LSP, COCO, MPII, and
PennAction are the most used datasets for training different models. These datasets have
standard evaluation metrics such as PCKh, AP, and their variation is used to evaluate the
model’s performance. Our analysis shows that most of the studies train their models using
two or more datasets to generalize the model in dealing with data. Because HPE used two
tasks, classification and regression, different loss functions, such as Log and focal losses, are
used. Furthermore, our review listed the standard feature extraction models like HRNet
used as the backbone of the HPE model.

Our analysis found that CNN and RNN are the most common types of deep learning
used in 2D HPE. CNN works well in detecting human body joints from a single image.
However, it fails to capture the temporal clues. Therefore, RNN is used for estimating the
human pose if the input is video. Other types, like GAN and GNN, need to be investigated
more.

Additionally, the approaches that hardly maintain the performance between accuracy
and efficiency must be improved. Since the occlusion and the crowded scenario are still the
main challenges in HPE, using datasets with crowd scenes to train the model may solve
these problems. Our review has considered these points as potential future directions for
HPE.

Finally, as the analysis of the collecting process shows a significant increase in publish-
ing articles annually, we found that the number of articles interested in estimating the poses
from images is higher than estimating the poses from videos. Therefore, more research on
human pose estimation in a video is required. In addition, building an accurate and small
size of the network is still an open area challenge.
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