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Abstract: Federated learning (FL) is a technique that allows multiple participants to collaboratively
train a Deep Neural Network (DNN) without the need to centralize their data. Among other
advantages, it comes with privacy-preserving properties, making it attractive for application in
sensitive contexts, such as health care or the military. Although the data are not explicitly exchanged,
the training procedure requires sharing information about participants’ models. This makes the
individual models vulnerable to theft or unauthorized distribution by malicious actors. To address
the issue of ownership rights protection in the context of machine learning (ML), DNN watermarking
methods have been developed during the last five years. Most existing works have focused on
watermarking in a centralized manner, but only a few methods have been designed for FL and
its unique constraints. In this paper, we provide an overview of recent advancements in federated
learning watermarking, shedding light on the new challenges and opportunities that arise in this field.

Keywords: DNN watermarking; federated learning; intellectual property; security

1. Introduction

In the fast-paced digital era, machine learning (ML) has emerged as a revolutionary
technology that drives innovation across various industries. Its ability to analyze vast
amounts of data and make accurate predictions has opened up a world of possibilities.
From enabling personalized recommendations in e-commerce [1] and improving medical
diagnoses [2] to enhancing autonomous vehicles [3], the applications of machine learning
are both diverse and impactful.

The effectiveness of machine learning models depends on the availability of large,
high-quality datasets. Traditionally, the success of ML algorithms relied on centralized data
storage and processing, where organizations and institutions accumulated vast amounts of
information to train their models effectively. Unfortunately, this approach increases the risk
of privacy leakage, as sensitive information about individuals, customers, or proprietary
processes may inadvertently be exposed to unauthorized entities. This presents a roadblock
to the advancement of machine learning, as data holders are understandably hesitant to
compromise their users’ privacy and organizational security. Moreover, safeguarding the
privacy and security of sensitive data is not just an ethical obligation but a legal necessity, as
highlighted by various data protection regulations around the world, such as the General
Data Protection Regulation (GDPR) [4] in the EU, the California Consumer Privacy Act
(CCPA) [5] in the US, and Data Security Law (DSL) [6] in China.

Addressing these challenges, federated learning (FL) [7] emerges as a promising
solution. FL enables multiple data owners or distributed agents to collectively train a
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global model without directly sharing their private data. Incorporating privacy-preserving
techniques like homomorphic encryption [8], multi-party computation [9], private set
intersection (PSI) [10], differential privacy [11,12], or hardware-based solutions such as
trusted execution environment (TEE) [13], FL ensures data privacy and security while
enabling collaborative model training. The significance of federated learning lies not only
in its ability to alleviate privacy concerns but also in its potential to unlock the untapped
value of distributed data. By enabling cooperation among organizations and institutions,
federated learning allows for more comprehensive and representative models, ultimately
leading to more accurate predictions and valuable insights [14].

Another critical aspect to take into account is the protection of the intellectual property
of the trained model, which is aimed at preventing theft, plagiarism, and unauthorized
usage by external parties. In response to this concern, model watermarking has been
introduced since 2017 [15] as a solution to embed a unique watermark or fingerprint into
the model. This measure effectively safeguards the model’s intellectual property and
enables tracing the source in case of any illicit model leakage. However, the majority
of model watermarking methods address the problem of local or centralized training.
The collaborative setting of federated learning raises new challenges in the context of
ownership protection. How to identify that a participant contributed to the training of a
model resulting from federated learning? How to be sure that the final model will not be
misused by the aggregation party that coordinates the federated learning? These issues
may slow down parties from joining the learning consortium. Previously, Yang et al. [16]
conducted a survey on federated watermarking solutions, primarily focusing on security
issues within federated learning. However, the paper only presents two watermarking
algorithms (Waffle [17] and FEDIPR [18]) specifically designed for the context of FL.

1.1. Contributions

This work aims to provide a comprehensive analysis of watermarking in the context
of federated learning with benefits regarding an overview of recent advances and shedding
light on the remaining challenges and opportunities in this field. Concisely, our paper
makes the following main contributions:

• We emphasize the foundational principle of secure federated learning and stress the
importance of comprehensive security guarantees that align with the trust levels of
the participants. This includes addressing various aspects such as training on non-
Independently and Identically Distributed (non-I.I.D) data and ensuring robustness
against poisoning and backdooring attacks.

• We conduct a comprehensive examination of the challenges concerning model water-
marking in the context of federated learning.

• We expand upon the work presented in [16] by providing an in-depth analysis of
nine currently available DNN watermarking schemes in the FL context along with
their limitations.

• We bring attention to unresolved issues that necessitate further exploration.

1.2. Organization

The rest of the paper is organized as follows. Section 2 describes background infor-
mation on federated learning and the DNN watermarking concept. Section 3 presents
our definition of watermarking for federated learning followed by an overview of the
six existing works combining FL and DNN. In Section 4, we analyze then the different
elements that have to be taken into consideration while designing a watermarking scheme
for a collaborative training setting. We identify the unsolved challenges and thus give an
insight into possible future works. Section 6 concludes the paper.

2. Background

In this section, we provide the definition of federated learning and give a brief
overview of its different existing settings. Then, we introduce DNN watermarking.
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2.1. Federated Learning

Federated learning is a machine learning setting where K ∈ N∗ entities called clients
collaborate to train a global model MG while keeping the training data DC = {DCi}

K
i=1

decentralized [19].
The most popular framework is called client-server FL or the scatter and gather

framework. Here is a high-level overview of this setting:

1. Setup:

• Central Server: A central server manages the overall training process and initiates
model updates.

• Clients: These are the individual devices, such as smartphones, IoT devices, or
computers, that participate in the training process. Each edge device has its local
dataset that cannot be shared with the central server due to privacy concerns.

2. Initialization:

• Initially, the central server initiates a global model MG (e.g., with random param-
eters) and distributes it to a subset of clients selected randomly at each round.

3. Local Training:

• Each client trains the global model MG on its local dataset using its computational
resources. The training is typically performed using gradient descent or a similar
optimization algorithm.

4. Model Update:

• After the local training is complete, the clients generate a model update (typically
gradients) based on the locally processed data.

5. Aggregation:

• The clients send their model updates back to the central server without sharing
their raw data.

• The central server aggregates all received model updates to create a refined global
model. This aggregation procedure can be completed in different ways [20–24].
To give an idea, the most common one is FedAvg [25] where the aggregation is
completed by averaging the model weights (see Section 4.2).

6. Iterative Process:

• Steps 3 to 5 are repeated for multiple rounds or epochs, allowing the global
model to improve over time by leveraging knowledge from various clients.

7. Centralized Model Deployment:

• Once the federated training process is complete, the final global model can be
deployed from the central server to all clients for local inference.

Note that the presence of the server is not mandatory to perform FL. In a decentralized
setting also known as a cyclic framework, clients can perform FL without the supervision
of a server. BrainTorrent [26] proposes a server-less and peer-to-peer federated framework.
In this solution, a random client is selected to be the aggregator. Then, it checks if other
clients have an updated version of the model. If yes, they send it to the aggregator, who
performs an averaging of the model weights/updates. Then, it updates its own model with
the previous result.

Another type of decentralized learning is split learning [27], which consists of splitting
the DNN model between the server and the clients. Many configurations are possible, but
the most common for client privacy is the U-shaped configuration. The aim is that each
client has the first and last layers of the DNN model and the server has the rest of the layers.
In such a way, clients perform the forward/backward pass, keeping their data (inputs
and labels) private, and send/receive only the activation maps/gradients, respectively, to
update the whole model.

The FL is also defined by the data features partitioning, which can be categorized into
three types: horizontal, vertical, and hybrid FL. In the case of horizontal FL, all clients share
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the same set of features, but their sample data may differ. In contrast, vertical FL assumes
that all clients possess the same sample data but have distinct features. Lastly, hybrid FL
involves clients with varying samples and features across the board.

Ideally, the data should be Independently and Identically Distributed (I.I.D) for each
client. However, in real-world FL scenarios, data distribution and the amount differ
between clients since they collect and use their own data. This leads to a non-I.I.D data
partition, which can result in significant performance loss [28]. To address this issue, several
aggregation functions have been proposed, such as FedProx [20] and SCAFFOLD [22].
These methods aim to improve the performance of federated learning despite the non-I.I.D
data distribution across clients.

The aim of federated learning is to ensure the security and privacy of clients’ data while
achieving a model’s performance equivalent to centralized training. However, this objective
can be compromised if the server or certain clients act maliciously. In real scenarios, the
server may be considered an honest but curious entity, meaning it will abide by the FL
protocol regarding client selection and global model aggregation/distribution, but it will
attempt to infer information about the client data. This situation commonly arises in
classical federated learning setups, where only model parameters/gradients are shared.
The server can potentially employ attacks like the inversion attack, which reconstructs the
data used for learning from the gradients shared by the clients. To counteract this type
of attack, various countermeasures have been developed, one of which is homomorphic
encryption (HE) [8]. Homomorphic encryption enables linear operations to be performed
on data from their encrypted form (without having access to the secret key), preventing
the server from conducting inversion attacks on encrypted gradients. However, using HE
has some drawbacks, including high computational and communication complexity, and it
also restricts the range of aggregation methods, as it only allows linear operations to be
performed on the encrypted data.

Another approach to address privacy concerns is differential privacy, which combats
inversion attacks by introducing noise to the updated gradients [11,12]. Nevertheless, this
technique faces a limitation due to the trade-off between utility and privacy. Alternatively,
trusted execution environments (TEEs) [13,29] present another solution, where a trusted
third party is utilized to provide guarantees for code and data confidentiality and integrity.
Multi-party computation (MPC) has also been implemented to achieve secure model
aggregation in federated learning, as demonstrated in [13,29,30]. However, similar to
encryption-based solutions, MPC-based approaches are susceptible to efficiency issues. In
addition to reinforcing the confidentiality of the aggregated data, MPC—and more precisely
its private set intersection protocol [10]—can be applied to identify the intersection of
feature spaces between clients in vertically partitioned data.

In scenarios where a group of clients consists of malicious users, unlike the server,
these clients have access to their local data and models. Leveraging this knowledge, they
can employ various attacks to undermine the model’s performance. Some of these attacks
include poisoning attacks [31,32], which aim to introduce malicious data to corrupt the
model’s training or attacks that cause the model to misclassify data with specific patterns
while maintaining its performance on the primary task, which is known as backdooring
attacks [33,34]. These malicious actions pose significant challenges to the security and
integrity of the federated learning process.

To defend against poisoning and backdooring attacks in the context of federated
learning, two classes of approaches have been proposed. The first class involves developing
robust aggregation techniques, such as Krum aggregation [23] or median and trimmed
mean aggregation [35], which are designed to identify and remove abnormal local models
contributed by potentially malicious clients. These techniques help improve the overall
model’s resilience to attacks. The second class of defenses relies on the use of anomaly
detection techniques implemented by the server at each round of federated learning. These
anomaly detection methods enable the server to identify and filter out abnormal client
updates before performing the model aggregation process [36–38]. By doing so, the server
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can mitigate the impact of potential malicious clients and enhance the security of the
federated learning system. For more comprehensive insights into the threats and defenses
related to federated learning, interested readers can refer to the work cited in [32].

To summarize, to establish a secure federated learning (FL) environment, the first
step is to conduct a security analysis of the entities engaged in FL and assess their level of
trust. This analysis helps identify potential threats and risks specific to the scenario being
considered. Once the security analysis is complete, the next step involves integrating the
security tools discussed earlier to design a robust FL model that performs effectively while
ensuring data and model privacy. In Table 1, we present a list of secure federated learning
frameworks along with the corresponding security tools that are employed to provide the
necessary security measures. Furthermore, when developing an efficient and practical
watermarking solution for federated learning, it is crucial to consider all the aforementioned
security requirements. We elaborate on how these constraints can be accommodated in the
context of federated learning watermarking in Section 4.

Table 1. Examples of open-source federated learning (FL) frameworks.

FL Frameworks Developed by Purpose Security Protocols
Provided

Fed-BioMed [39] INRIA Research DP, HE
TensorFlow

Federated [40] Google Research DP

PySyft [41] OpenMined Research MPC, DP, HE, PSI
Flower [42] Flower Labs GmbH Industrial DP
FATE [43] WeBank Industrial HE, DP, MPC

OpenFL [44] Intel Industrial TEE
IBM Federated
Learning [45] IBM Industrial DP, MPC

NvFlare [46] Nvidia Industrial HE, DP, PSI
Clara [47] Nvidia Industrial DP, HE, TEE

2.2. DNN Watermarking
2.2.1. Requirements

DNN watermarking is a promising solution for ownership protection of ML mod-
els [48–53]. Inspired by multimedia and database watermarking [54–58], it consists of
introducing a secret change into the model parameters or behavior during its training in
order to enable its identification in the future. As multimedia content watermarking, DNN
watermarking must respect some requirements to be effective for IP protection. Table 2
summarizes these requirements.

The watermark must be secret (Secrecy). This requirement refers to the fact that
any person who analyzes the model is not able to detect if the latter is watermarked.
White-Box techniques can change the distribution of the parameters and then differ from a
non-watermarked model. In addition, a watermarking technique must also preserve the
model’s performance on the main task (Fidelity). If the watermarking embedding process
returns a model that has an accuracy up to a defined ε compared to a non-watermarked
model, then the watermarking technique is not efficient. Reliability ensures a low false
negative rate for the owner during IP verification, while Integrity aims to prevent false
positive claims by other parties. The watermarking algorithm should be independent of
the model (Generality) while providing a large insertion Capacity, which can be either
zero-bit, indicating only the presence of a watermark, or multi-bit, allowing the encoding
of multiple bits of information.
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Table 2. DNN watermarking requirements and properties.

Property Description

Fidelity
The watermarked model needs to have

performances as close as possible compared to
the model without watermark.

Capacity The capacity of a technique to embed
multiple watermarks.

Reliability

Demonstrate a low false negative rate, enabling
legitimate users to accurately identify their

intellectual property with a high level
of certainty.

Integrity

Demonstrate a low false positive rate,
preventing unjustly accusing honest parties

with similar models of intellectual
property theft.

Generality
The capacity of a watermarking technique to be

applied independently of the architecture of
the model.

Efficiency
The performance cost generated by the
embedding and verification process of

the watermarking.

Robustness The capacity to resist against attacks aiming at
removing the watermark.

Secrecy The watermark should be secret
and undetectable.

Furthermore, the watermark must exhibit Robustness against attacks aimed at re-
moving or detecting it. A removal attack is considered effective if it maintains a high test
accuracy while eliminating the watermark. It is efficient if the resources required for the
attack, such as runtime, are relatively small compared to retraining the model from scratch.
Some common attacks include the following:

• Pruning Attack: Setting the less useful weights of the model to zero.
• Fine-Tuning Attack: Re-training the model and updating its weights without decreas-

ing accuracy.
• Overwriting Attack: Embedding a new watermark to replace the original one.
• Wang and Kerschbaum Attack: For static White-Box watermarking algorithms, it

alters the weight distribution of the watermarked model, relying on visual inspection.
• Property Inference Attack: Training a discriminating model to distinguish water-

marked from non-watermarked models, thereby detecting if a protected model is no
longer watermarked.

• Another attack is the Ambiguity Attack, which forges a new watermark on a model,
making it challenging for external entities, like legal authorities, to determine the
legitimate watermark owner. This ambiguity prevents the legitimate owner from
claiming the copyright of the intellectual property.

2.2.2. Related Works

DNN watermarking can be distinguished into two types of techniques:
White-Box [15,59–64,64–71] and Black-Box [65,72–85] watermarking. Each technique
is defined by the type of access to the model parameters during the verification process.

In the White-Box setting, we assume that the owner will have full access to the model
(architecture, parameters, activation maps...). In this way, to insert a watermark into a DNN,
the owner will hide a piece of information b in the form of a binary string or an image (e.g.,
Quick Response code) into the model’s parameters [15,71,86], activation maps [65,67,68]
or by adding a passport layer [66,87]. As formulated in [68], a White-Box watermarking
scheme is defined as follows:
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1. Initially, a target model M is considered, and a features extraction function
Ext(M, Kext) is applied with a secret key Kext. The features obtained can be a subset
of the model weights, where Kext indicates the indices of the selected weights. Alter-
natively, the features can be model activation maps for specific input data secretly
chosen from a trigger set. These features are then utilized for watermark insertion
and extraction.

2. The embedding of a watermark message b involves regularizing M using a specific
regularization term Ewat. This regularization term ensures that the projection function
Proj(., KProj) applied to the selected features encodes the watermark b in a predeter-
mined watermark space, which depends on the secret key KProj. The goal is to achieve
the following after training:

Proj(Ext(Mwat, Kext), KProj) = b (1)

where Mwat is the watermarked version of the target model M. To achieve this, the
watermarking regularization term Ewat relies on a distance measure d defined in the
watermark space. For example, in the case of a binary watermark with a binary string
of length l, i.e., b ∈ {0, 1}l , the distance measure could be the Hamming distance,
Hinge distance, or Cross-Entropy. The regularization term is formulated as follows:

Ewat = d(Proj(Ext(Mwat, Kext), KProj), b) (2)

To preserve the accuracy of the target model, the watermarked model Mwat is usually
derived from M through a fine-tuning operation parameterized with the following
loss function:

E = E0 + λEwat (3)

where E0 represents the original loss function of the network, which is essential to
ensure good performance in the main task. Ewat is the regularization term added to
facilitate proper watermark extraction, and λ is a parameter that adjusts the trade-off
between the original loss term and the regularization term.

3. The watermark retrieval process is relatively straightforward. It involves using both
the features extraction function Ext(., Kext) and the projection function Proj(., KProj)
as follows:

bext = Proj(Ext(Mwat, Kext), KProj) (4)

where bext is the extracted message from the watermarked model Mwat.

For example, in the watermarking scheme introduced by Uchida et al. [15], the feature
extraction function Ext(., Kext) involves computing the mean value of secretly selected
filter weights w, where Kext represents the index of the chosen convolutional layer. The
projection function Proj(., KProj) in [15] is designed to insert a watermark b ∈ {0, 1}l , where
l is the length of the watermark, and it is defined as follows:

Proj(w, KProj) = σ(wKProj) ∈ {0, 1}l (5)

Here, KProj represents a secret random matrix of size (|w|, l), and σ(.) is the Sig-
moid function:

σ(x) =
1

1 + e−x

Uchida et al. [15] use binary cross-entropy as the distance measure d for the water-
marking regularization Ewat, which is given by:

d(b, y) = −
l

∑
j=1

(bj log(yj) + (1− bj) log(1− yj)) (6)
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With the information on d, Proj(., KProj), and Ext(., Kext), the loss Ewat for watermarking a
target model M can be computed using (2).

Another example of a watermarking scheme is proposed in [88], where the feature
extraction function Ext(., Kext) consists of the scaling parameters of the Batch Normalization
(BN) weights Wγ = (γ1, γ2, ..., γl) (defined in Equation (7)) with l channels, which are
chosen according to the secret position parameter Kext.

yi = γi × xi + βi (7)

where γi and βi are the scaling and bias parameters in channel i for the BN layer, respec-
tively, and xi is the input of the BN layer. The projection function Proj(., KProj) in [88] is
designed to insert a watermark b ∈ {0, 1}l , where l is the length of the watermark, and it is
defined as follows:

Proj(Wγ, KProj) = Sgn(WγKProj) ∈ {0, 1}l (8)

where KProj is smiliar to the scheme of Uchida et al. [15], which represents a secret random
matrix of size (|w|, l), and Sgn(.) is the sign function:

Sgn(x) =
{

1 if x > 0
0 Otherwise.

(9)

The Hinge loss is used as the distance measure d for the watermarking regularization
Ewat, which is given by:

d(b, y) = −
l

∑
j=1

max(µ− biyi, 0) (10)

where µ represents the parameter of the Hinge loss as defined in [89]. Similar to the scheme
proposed by Uchida et al. in [15], and utilizing the information about d, Proj(., KProj), and
Ext(., Kext), the watermarking loss Ewat for the purpose of watermarking a target model M
can be computed using Equation (2).

On the other hand, the Black-Box setting assumes that the owner can perform the
verification process only through an API: he can interact with the model only by giving
inputs and receiving associated predictions. It also knows that the owner watermarks the
model by changing its behavior. The common technique consists of training the model
using a trigger set T = (Xi, Yi)i=1, which is composed of crafted inputs Xi with their
associated outputs Yi [75]. During each epoch, instead of giving a batch only from the
train set to the model, we give a concatenation between a batch from the train set and the
trigger set.

For example, Zhang et al. [74] propose using the same technique but with different
types of inputs. They try three different types of images for the trigger set:

1. Content Watermarking: Incorporating meaningful content into images from the
training dataset. The model should be activated by this content and provide the
corresponding predefined label. In our example, the text “TEST” serves as the trigger
for the model.

2. Unrelated Watermarking: Images that are irrelevant from the main task of the model.
Each image has an associated label (like in [75]) or each sample can have its specific
output. In our example, some images from the MNIST dataset are used to trigger
the model.

3. Noise Watermarking: Adding a specific noise to images from the train set. Then,
the model classifies any images with this specific noise as a predefined label. In our
example, we add a small Gaussian noise to trigger the model.

The trigger set can also be built using adversarial examples. The authors of [77]
proposed using a trigger set composed of two adversarial examples :
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1. True adversaries: Samples that are misclassified by the model while being close to
being well classified.

2. False adversaries: Well-classified samples from which we add an adversarial pertur-
bation without changing their classification.

Figure 1 shows some examples of images from such trigger sets.

(A) (B) (C) (D) (E)

Figure 1. Illustration of trigger set samples derived from an original image. (A) original image;
(B) content-based trigger sample; (C) unrelated-based trigger sample; (D) noise-based trigger sample;
(E) adversarial-based trigger sample. All images are taken from the CIFAR10 dataset [90] except (C),
which comes from the MNIST dataset [91].

Then, the model is trained to well classify the true adversaries with their true associated
labels and the false adversaries with their labels. In Figure 1, we use the Fast Gradient Sign
Method [92] to generate a possible false adversary.

To evaluate the performance of Black-Box watermarking embedding, we assess the
accuracy of the model’s output on the trigger set T and their labels as follows:

acc =
1
|T| ∑

(x,y)∈T
1Mwat(x)=y (11)

3. Watermarking for Federated Learning

In this section, we introduce and define what is watermarking for federated learn-
ing including the different possible scenarios. Then, we formulate requirements for
watermarking deployed in a federated learning context. Finally, we analyze the nine
state-of-the-art methods.

3.1. Definition

In the context of centralized DNN watermarking, the goal is to simply prove the
model’s ownership subsequent to its training and release. In FL, ownership rights protec-
tion becomes a more complex problem due to the presence of multiple participants and
multiple exchanges between them that have to be taken into account during the threat
model formulation. To illustrate this issue, the authors in [17] show that the existing meth-
ods can naively be applied to FL in two manners: The first one consists of watermarking
the model after the training is completed: for example, by using fine tuning to embed the
watermark into the trained model. Without taking the fidelity requirement into account,
any participant who receives the model (client or server) can steal the DNN before the last
round. The second way is to embed the watermark before starting the training process.
Even if the watermark will resist during the first rounds, it will be removed after several
aggregation rounds. Thus, it is important to design a specific watermarking technique for
FL that will be persistent from the first round until the model deployment.

We define watermarking for federated learning as the process for a participant or
multiple participants to insert a watermark into the shared model. Following the client–
server FL framework, the first question is to determine which part of the federation can
watermark the model. Is the server more trustworthy since it manages the federation?
Or are the clients more trustworthy, since their data are used? During this study, we
distinguish three watermarking scenarios in the FL context, which we illustrate in Figure 2
according to who is watermarking the model.

(S1) Server: The server is in charge of watermarking the global model.
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(S2) Clients: One or multiple clients watermark their updates in order to watermark
the global model.

(S3) Server and clients: The server and the clients collaborate to watermark the global
model together.

Figure 2. An example of the three possible scenarios of watermarking (S1–S3) in FL with one server
and three clients. Green rectangles are the participants who follow the same watermarking procedure
together. Red rectangles are those who are not enrolled in the watermarking procedure.

All watermarking requirements defined in Table 2 are also true in the federated context.
However, due to the new constraints and the extension to several participants, we can add
precision to five of them:

1. Capacity: When multiple clients want to insert their own message bCi , the watermark-
ing technique needs to avoid possible conflict between the different inserted bCi . The
number of bits needs to be then enough.

2. Generality: In a real FL scenario, many additional mechanisms are added for se-
curity and privacy such as robust aggregation functions (Section 4.2) or differential
privacy [93] (Section 4.5). The watermarking technique must be applied independent
of these mechanisms.

3. Efficiency: The cost generated by the embedding process is more crucial in FL. For
example, in a cross-device architecture, clients have low computation power and
they cannot perform many operations. The watermarking techniques must take this
parameter into account.

4. Secrecy: If all parties are not enrolled in the watermarking process, the watermark
should not be detected. In particular, if one or some clients are trying to watermark
the global model, their updates need to be similar to benign updates. Otherwise,
the server can use a defensive aggregation function to cancel the FL watermarking
process (as described in Section 2.1).

5. Robustness: Since the model can be redistributed for any clients or the server, the
watermark must track who is the traitor. Traitor tracing is the fact that each actor
of the federation has a unique watermark that can be used to uniquely identify the
owner in addition to a global watermark.

3.2. Related Works

In this section, we describe all state-of-the-art solutions of FL watermarking for IP
protection. Note that all of the following papers are watermarking algorithms except for the
last two, which focus on the ownership verification protocol. Table 3 gives a clear overview
of existing methods depending on the previously described characteristics.
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Table 3. FL watermarking taxonomy, categorized according to the access required to the verifier
(White-Box or Black-Box ), the entity that embeds the watermark (server, one or multiple clients),
their compatibility with the cryptographic security tools, clients selection and poisoning defense
mechanisms.  : Compatible and tested, G#: Compatible but not tested, -: Not compatible.

Existing Works Verification Watermarks
Embedding

Security Tools Compatibility Clients
Selection

Poisoning Defense

DP HE MPC TEE Aggregation Anomaly Detector

WAFFLE [17] Black-Box Server G# - G# G# G# G# G#
FedIPR [18] White-Box and Black-Box Client(s)  G# G# G#   G#

FedTracker [94] White-Box and Black-Box Server G# - G# G# G# G# G#
Liu et al. [95] Black-Box Client G#  G# G# G# - -
FedCIP [96] White-Box Client(s) G# G# G# G#  G# G#

FedRight [97] White-Box Server G# - G# G# G# G# G#
Yang et al. [98] Black-Box Client G#  G# G# G# - -

FedZKP [96] White-Box Client(s) G# G# G# G# G# G# G#
Merkle-Sign [99] White-Box and Black-Box Server G# - G# G# G# G# G#

3.2.1. WAFFLE

WAFFLE [17] is the first DNN watermarking technique for FL. The security hypothesis
presented in the paper assumes that the server is a trusted party that embeds the watermark
(S1) using a Black-Box watermarking technique using a trigger set. Clients cannot backdoor,
poison, or embed their own watermarks since they are incentivized to maximize global
accuracy. The adversary can only save the model and apply the post-processing technique
as described in Section 2. Any trigger set that does not need any knowledge of the client’s
data can be used, but the authors present a specific set that is more suitable for FL: the
WAFFLEPattern. WAFFLEPattern is defined as a set of images containing random patterns
with a noisy background. Basically, the server will embed the watermark into the global
model using the two following functions:

• PreTrain: Train an initialized model with the trigger set until the model has good
accuracy on this set.

• ReTrain: Fine-tune the model with the trigger set until the model has learned
the watermark.

PreTrain is used to embed the watermark in the model before the first round. During
each round, after the aggregation process, the server uses ReTrain to re-embed the wa-
termark into the model. The authors evaluated the robustness of their approach against
various common post-processing techniques like fine-tuning and pruning and different
types of attacks such as evasion attacks and backdoor detection using Neural Cleanse [100].
Figure 3 presents the learning curve of our WAFFLE implementation with 10 clients training
a VGG16 model [101] on CIFAR10 [90]. We employed an IID configuration in which each
client had an equal amount of training data with the same distribution. The server had
access to the testing set, which exhibited a distribution similar to the training set. This
accessibility enabled the server to evaluate the model at each round. As depicted in Figure 3,
after 200 rounds, the watermarked model achieved a convergence with an accuracy of 0.84
on the testing set and a watermark detection rate close to 1.00 both before and after the
ReTrain global model update by the server.

3.2.2. FedIPR

FedIPR [18] is both a Black-Box and White-Box technique. This technique allows all
clients to embed their own watermark in the global model (S2) without sharing secret
information. In terms of security hypothesis, the server is assumed to be honest but curious,
while clients can be considered as malicious due to the fact they can interfere in the FL
process. Each watermark can be described as follows:

• Black-Box Watermark: Each client generates a trigger set using the Projected Gradient
Descent technique in a small Convolutional Neural Network (CNN) trained with the
local data.
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• White-Box Watermark: Each client generates a random secret matrix and a location
in the Batch-Normalization layers to embed its message.

Both White-Box and Black-Box watermarks are inserted using an additional loss
during the local training. For Black-Box Watermark, the loss is exactly the same as the
loss used for the main task but with a batch of the trigger set as input. For the White-Box
Watermark, the loss used is a Hinge-like loss [102] between the original message and the
reconstructed message. They evaluate their solution in terms of robustness and additionally
cover ambiguity and overwriting attacks. This scheme is the only one that has been tested
under a federation with “free-riders”, i.e., clients that typically send random model weights
(e.g., Gaussian noise).

Figure 3. Progression of test accuracy and watermark detection rate during the training of a
VGG16 [101] model with WAFFLE. The watermark detection rate is shown both before and after the
ReTrain operation, as calculated using Equation (11).

3.2.3. FedTracker

FedTracker [94] is a watermarking technique that allows the server to embed a global
Black-Box watermark (S1) but also a White-Box watermark specific to each client. The server
is assumed to be a trusted party that has no access to natural data related to the primitive
task. Some clients can be malicious and others are assumed to be honest. Malicious clients
can copy and distribute the model, but they follow the training process to maximize global
model accuracy. Each watermark can be described as follows:

• Global Black-Box Watermark: A trigger set is generated using the WAFFLEPattern
method [17].

• White-Box Watermark: The server generates a random secret matrix and a fingerprint
for each client.

After the aggregation, the server embeds the global Black-Box watermark using the
intuition of Continual Learning [103] to avoid forgetting the main task. Then, for the
White-Box Watermark, the loss used is a Hinge-like loss between the original message b
and the reconstructed message b̃. Authors demonstrate robustness against fine-tuning,
pruning, quantization, and overwriting.

3.2.4. Scheme of Liu et al.

Liu et al. [95] propose a client-side Black-Box watermarking scheme (S2). This tech-
nique is designed to embed a watermark only from one client (which represents the initiator
of the FL). This framework is designed to be used under HE, since the server is not trusted.
The authors assume also that other clients can be malicious. During the verification process,
a fully trustworthy third party is recruited to be the arbitrator. The initiator creates a trigger
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set composed of Gaussian noise images with a given label as a trigger set. Then, the client’s
model will overfit with this set like in [75]. To tackle the fact that this particular client will
probably not be selected at each round, the authors introduce a scaling factor

λ =
N
n

(12)

where N is the number of clients and n is the number of clients selected at each round. The
client will then send its model weights multiplied by λ. According to the authors, this will
be approximately equivalent to the case in which this client is selected every iteration and
the watermark will be embedded more easily. The authors only tested fine-tuning, pruning,
and quantization as possible attacks to defeat their watermarking solution.

3.2.5. FedRight

FedRight [97] is a solution for the server to fingerprint the model in the FL framework
(S2). DNN fingerprinting is a process in which instead of embedding a watermark in the
model, we extract a fingerprint to identify this model [104]. The security assumptions
presented by the authors assume that the server is trusted and honest while clients may
not be trustworthy. To do so, the server generates adversarial examples from a set of inputs
(key samples). Then, the server extracts the probability distribution of each prediction and
feeds it to a detector with the key sample target. Then, during the verification process, this
detector is used to predict whether the corresponding model is a good one or not.

3.2.6. FedCIP

FedCIP [96] is a White-Box watermarking framework that is compatible with FL secu-
rity aggregation and allows tracking traitors. This solution allows the clients to watermark
the FL model (S2). They assume that the server is honest but curious, while model theft
can be undertaken by any malicious client. The server cannot directly modify the model’s
parameters. The last security hypothesis relies on the fact that the trigger set should not
rely on the original data. This technique is based on the concept of a unique watermark per
client for a given number of rounds called a cycle. During a cycle, a portion cK of clients is
designated to contribute during the following rounds. For each client, the watermark is
unique during the cycle. If the round is the first iteration of the cycle, the algorithm will
quickly replace the previous watermark with the new one. Otherwise, a small update is
made to reinforce the watermark. The server divides the model parameters for all clients to
avoid watermark conflicts, and it records the participants at each round, which is used for
the verification process.

The verification is then performed using the “federated watermark”, which is a
concatenation of the watermark of all the contributors for a given cycle. If a client leaks the
model multiple times during the FL, the authors point out that they can find the traitor by
computing the intersection of the participants that have a high watermark detection rate
with the leak models. In particular, they can identify the traitor if cnK ≤ 1 where n is the
number of traitor leaks.

3.2.7. Yang et al. Scheme

Yang et al. [98] proposed a Black-Box watermarking framework based on Liu et al. [95]
solution (described in Section 3.2.4) (S2). This approach has been developed to allow the
client initiator of the federated learning (FL) process to embed a watermark for all the
federations. More clearly, other clients and the server are not authorized to protect the
model. Additionally, this method is compliant with the framework where homomorphic
encryption (HE) is used due to a lack of trust in the server. The main contribution of this
paper is the proposed trigger set schema. Instead of using a classical Gaussian noise-based
trigger set, they build images using permutation-based secret keys and noise-based patterns.
The authors claim and demonstrate that this trigger set is resistant to ambiguity attacks.
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Whether the adversary tries to brute force the secret key or generate a new trigger set with
its own key, both ways are hard to accomplish.

3.2.8. Merkle-Sign

Merkle-Sign [99] is a framework focusing on ownership verification in a collaborative
client–server setting (S3). The authors propose a public verification protocol that uses the
Merkle-tree [105]. In this framework, the server uses at each round an embedding function
to insert two pieces of identity information (i.e., keys) into MG: one that identifies the server
and the other one that identifies the client that will receive the model. In parallel, the server
uploads the tuple of keys and the tuple of verification function (which are generated by the
watermarking embedding function) into a Merkle-tree with the recording time. In the final
round, the server embeds also all keys generated by the clients into MG and updates the
Merkle-tree. This framework is also compatible in a peer-to-peer context. The associated
Black-Box watermarking scheme relies on the training of an auto-encoder [106] (AE) for
each client. Then, the server averages the received AE to obtain a final AE from which it
can generate a trigger set using the keys as input for the decoder part.

In the Merkle-sign scheme, the server is trusted, and clients are considered honest
but curious. The authors explore various attacks to assess the verification protocol’s
robustness, including ambiguity, spoiling, and traitor-tracing attacks. Ambiguity attacks
can be countered by using an authorized time server or decentralized consensus protocol
for timestamp authorization [67]. Security against spoil attacks involves applying multiple
watermarks to the model, allowing clients to prove ownership even if an adversary spoils
one watermark. For traitor tracing, the server embeds unique watermarks for each client,
enabling successful ownership declaration over pirated models. However, the paper lacks
a protocol for identifying traitor clients after training has terminated, as the model is
watermarked using information from all clients simultaneously.

3.2.9. FedZKP

The authors in [88] propose a verification protocol based on the zero-knowledge proof
and specifically on xLPN ZKP [107] called FedZKP. FedZKP does not require a trusted
verifier to protect the confidentiality of the credentials, which reduces the risk of credential
leakage. The security hypothesis presented in the paper assumes that clients are trusted
entities, while the server and verifying authority are considered honest but curious (S2).
Watermarking is conducted by the clients, each equipped with a public and private key.
The hash of all clients’ public keys is then embedded into the model using a White-Box
mode. The paper examines four attacks: fine-tuning, pruning, and targeted destruction
attacks. The experimental results demonstrate the watermark’s robustness against these
attacks. The last attack discussed in the paper involves a scenario where a user is required
to prove ownership of a DNN model by sharing their public key with the trusted authority.
However, this opens up the possibility for an adversary who intercepts the key to falsely
claim ownership of the model. To address this vulnerability, the verification authority
implements a zero-knowledge proof protocol, ensuring that only the individual possess-
ing the private key associated with the public key in the watermarking can successfully
demonstrate ownership.

It is worth noting that while the majority of the proposed solutions focus on IP pro-
tection, some papers explore alternative approaches using FL watermarking. For instance,
WMDefense [108] utilizes FL watermarking to detect malicious client updates by assessing
the degree of watermark recession. In this section, we have covered solutions encompassing
both Black-Box/White-Box and client(s)/server watermarking with various ownership ver-
ification schemes. The summary of these solutions is presented in Table 3. Each solution is
categorized based on the verification process (White-Box/Black-Box), the entity performing
the watermarking (client(s) or server), compatibility with standard security tools as well as
the client selection, and compatibility with poisoning defense mechanisms. After reviewing
Table 3, it becomes apparent that most solutions have not undergone testing with security
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tools such as differential privacy (DP) or homomorphic encryption (HE). Furthermore, none
of the solutions have been subjected to testing involving multi-party computation (MPC)
and trusted execution environments (TEEs). This same observation applies to poisoning
defense mechanisms, as comprehensive testing across various solutions in this regard is
yet to be explored.

4. Discussion

In this section, we identify and discuss specific challenges related to watermarking in
FL. In particular, we evaluate how existing methods deal or not with these new challenges.

4.1. Trigger-Set-Based Watermarking on the Server Side

Black-Box watermarking consists of changing the behavior of the model. To do so,
most methods let the model overfit on the trigger set by adding a regularization term in
the loss function. Usual DNN watermarking techniques can easily be applied in S2 and S3.
However, it is not so easy in S1. When the client Ck wants to watermark its model MCk , he
can rely on two things:

1. Have access to its private dataset DCk ;
2. Train the model on both the main task dataset DCk and its trigger set TCk at the

same time.

A large number of Black-Box watermarking techniques need to build TCk using
DCk = (Xi, Yi)i=1 (as discussed in Section 2.2). Using such techniques is motivated by
the fact that training the model from these datasets is multi-task learning. Building TCk
from DCk helps to reduce the negative impact on learning from two domains. Moreover,
learning these two tasks together avoids catastrophic forgetting [109].

In S1, since the server does not have its own dataset, it cannot perform such types
of watermarking. The choice is limited by using unrelated or noise-based inputs such as
WAFFLEPattern [17]. He can also generate them from auto-encoders provided by clients
such as in Merkle-Sign [99]. However, as we said before, learning two tasks separately
can be negative for Fidelity. FedTracker [94] is the only server-side framework in which
they use Continual Learning [103] and a global gradient memory to not interfere with
previously learned tasks. Table 4 exhibits the type of trigger set used by each Black-Box
technique with their resilience against two attacks.

Table 4. Black-Box FL watermarking techniques with their trigger set type and their resilience against
Black-Box attacks.  : Resilient, -: Not tested.

Existing Works
Watermarks
Embedding Trigger Set Evasion Attack Backdoor Detection [100]

WAFFLE [17] Server Noise   
Merkle-Sign [105] Server Generated by Auto-Encoder - -

FedTracker [94] Server Noise   
FedIPR [18] Client(s) Adversarial Examples - -

Liu et al. [95] Client Noise - -
Yang et al. [98] Client Noise - -

In addition, this limitation increases vulnerability to evasion attacks. More clearly, dur-
ing the Black-Box verification process, the owner will ask about the suspicious Application
Programming Interface (API) that possibly contains his DNN. The owner will send samples
from the trigger set and check if the corresponding labels are the same as the ones learned
by its model. However, the attacker may evade this verification using a query detector:
such a type of detector analyzes the input of the request to check if this latter is consistent
with the task of the model. If it is not consistent, the query is rejected [110]. Since the trigger
set is built using images that are qualified to be Out-Of-Distribution (O.O.D), this implies
an easier detection for the attacker who stole the model [111]. WAFFLE’s authors show
that their method is resilient against evasion attacks with the WAFFLEPattern trigger set
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(see Section 3.2.1), but it is also under some constraints especially in terms of the number of
clients who share their data to build the detector.

4.2. Aggregation Functions

The most common aggregation function is FedAvg [7], which consists of averaging
clients’ parameters after they perform multiple epochs on mini-batches. Each client weight
matrix is multiplied by a scaling factor defined as

nCk
n where nCk is the number of samples

in DCk and n = ∑K
k nCk . Many aggregation functions emerged to meet various challenges

in FL. Since the clients do not necessarily know which aggregation function the server is
using, the proposed methods must be independent of this parameter.

For the Byzantine-attacks problem in which one or multiple clients try to disturb the FL
process, these attacks can be simple noise weights or complex label-flipping backdoors. To
leverage this problem, multiple aggregation functions appear to select only benign updates
such as Krum [23] Trim-mean or Bulyan [24]. Since clients’ watermarking techniques are
sensitive to embedding a watermark b and the trigger set T, they keep their updates far
from each other. A part of the updates can be rejected for this reason if we use defensive
aggregation techniques. As an example, FedIPR shows that the White-Box watermark
results are similar to FedAvg with a detection rate of 97.5% using Trim-mean. However, the
Black-Box watermark reaches only 63.25% of the watermark detection rate at the end of the
FL process. Even if this score is enough to detect plagiarism, using a defensive aggregation
function has a huge impact on the watermark. The study of Liu et al. [95] and its extension
by Yang et al. [98] have not tested yet their solution with a defensive aggregation function
because they use HE. But we can guess that multiplying weights by a big scaling factor λ
can be easy to detect for Krum as a Byzantine attack, as shown in a similar example [37].

Another problem is that FedAvg performs well when the data are statistically homoge-
neously distributed among the clients. However, in real use cases, data are heterogeneous,
which may lead to difficulty for the model to converge using FedAvg [20]. As we can see
from Table 5, existing watermarking techniques for FL have not evaluated aggregation
methods that tackle this problem such as FedProx [20], FedNova [21] or SCAFFOLD [22]. If
we want to use the proposed solution in a real secure FL framework, these methods need
to be tested in a such context, which is actually not the case.

Table 5. Applications and parameters considered for experimenting with each FL watermarking
method.  : Tested, -: Unmentioned.

Existing Works Framework Task
Maximum Number

of Clients Aggregation Function
Non-I.I.D Repartition

of Training Set

WAFFLE [17] PySyft, Pytorch Image Classification 100 FedAvg  
FedIPR [18] Pytorch Image Classification, NLP 100 FedAvg, Trim-Mean, Bulyan, Multi-Krum  

FedTracker [94] - Image Classification 50 FedAvg  
Liu et al. [95] - Image Classification 100 FedAvg -
FedCIP [96] - Image Classification 10 FedAvg  

FedRight [97] - Image Classification 100 FedAvg -
Yang et al. [98] - Image Classification 100 FedAvg -

FedZKP [96] - Image Classification 50 FedAvg -
Merkle-Sign [99] - Image Classification 200 Gradient Average [105] -

4.3. Clients Selection

For the sake of communication efficiency, especially when dealing with a large number
of clients, a strategy involves selecting a fixed number of clients during each round, as
outlined in Section 2.1. This process entails the random selection of cK clients, where c
lies in the interval (0, 1). It is important to note that this client selection mechanism can
significantly impact watermarking. In the context of (S1), the impact of this mechanism is
expected to be minimal. This is because in (S1), the server embeds the watermark during
each round regardless of the value of cK. On the contrary, (S2) is more susceptible to the
influence of the client selection process. Given that every client aims to insert its individual
watermark, clients not selected run the risk of having their watermarks compromised or
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eliminated in the global model. However, this effect has not been extensively explored in
most research papers.

Researchers behind the FedIPR [18] study have revealed that with c > 0.2, both
White-Box and Black-Box watermark detection rates approach 100%. In cases where c ≤ 0.2,
the detection rate for a feature-based watermark remains close to 100%, whereas the detec-
tion rate for the backdoor watermark drops to 62%. In contrast, the FedCIP [96] framework
is intentionally crafted to incorporate a client selection routine. As demonstrated, this
framework showcases strong performances across various watermarking requirements.

4.4. Cross-Device Setting

All proposed papers are treating the case in which we have a small number of clients.
According to Table 5, the worst scenario is tested in Merkle-Sign in which 200 clients
are enrolled in the federation. However, there is no solution that takes into account the
cross-device setting. In this setting, a large number of clients (up to 1010 devices) are
enrolled in the FL procedure [19]. These clients are not always reachable, and they have a
low dedicated computational power, which is defined as a performance condition by the
authors of WAFFLE.

In the Black-Box setting, the problem can come from the low computation power that
does not allow the clients to perform more computations to increase the batch size using
trigger-set methods. For the White-Box setting, the bottleneck would be the Capacity, as
mentioned in Section 3.1, in particular in cases where the proposed methods are tested using
Normalization layers such as FedIPR or FedTracker, which limits the overall embedding
capacity. It makes it difficult for each client to embed its watermark b without conflicting
with the face of other clients’ watermarks.

4.5. Differential Privacy and Homomorphic Encryption

Since federated learning (FL) ensures the privacy of clients’ data by sharing the model
or gradient updates between the server and clients (or directly among clients), there are
concerns about potential attacks, such as membership inference, which can reveal the
presence of specific data points [112]. To address this issue, differential privacy (DP) is
often employed, providing robust privacy guarantees for algorithms working on aggregate
databases [93,113]. In FL, a common DP technique involves introducing Gaussian random
noise to the gradients sent to the aggregator, adding an extra layer of privacy protection.

Another cryptographic measure to enhance security in client–server FL is homomor-
phic encryption (HE) [114–116]. In this approach, clients can protect their model updates
using their public keys, encrypting the data before sending it to the server. The server
performs the model aggregation (usually using FedAvg) in the encrypted space, ensuring
that the server cannot misuse the privilege of having access to individual client updates
to learn about private datasets. Clients can then use their private keys to decrypt the
aggregated global model once it is received.

The combination of differential privacy and homomorphic encryption addresses
privacy and security concerns in different aspects of FL. While DP protects against attacks
attempting to extract sensitive information from gradient updates, HE safeguards the
clients’ data during aggregation, preventing unauthorized access by the server. In the
context of watermarking, the use of HE is particularly suitable for scenario (S2), as clients
can access their model parameters to embed watermarks securely. However, a challenge
remains for scenario (S1), as the server cannot decrypt the model parameters to perform
watermarking embedding.

4.6. Watermarking for Non-Client–Server Framework

Decentralized FL (S2) is an interesting framework in which clients do not need a server
to perform the model aggregation. The proposed methods seem to be applicable to this
setting, since watermarking the model from the client side does not require the server.
However, Merkle-Sign is a unique solution that extends to the decentralized setting. We



Mach. Learn. Knowl. Extr. 2023, 5 1399

can also cite split learning, in which the server has a part of the network and clients have
another part. Performing White-Box watermarking as in [15] can be more difficult for the
server or for clients. In both cases, they have access to a part of the model parameters that
can be arbitrarily small.

In the U-shape split learning architecture, the server has only the middle part of the
model and the clients have the first and last layers. In this setting, performing a Black-
Box watermarking on the server side is hard, since it cannot use its inputs and labels on
the model.

4.7. Attacks from Clients and/or Server Sides

When we analyze (S1) and (S2) scenarios, we can see that each one has different
parameters to play with whether for watermarking or disrupting it. The server can control
the selected participants or how to aggregate the model parameters. It has also sometimes
a clear view of clients’ parameters at each round if no safety measures are considered in
the learning process. However, it does not have data, and it cannot fully control whether
clients are strictly following the training process. On the other hand, clients have their
private dataset, and they can send the update that they want. Nevertheless, they have no
control over what happens with their updates at the server level.

If the server wants to avoid a subset of clients to watermark the model, it can use
methods proposed for Byzantine attacks [32] detection. In particular, attacks that consist of
multiplying the weights by a scaling factor to replace or have a bigger impact in the global
model are easy to detect [37]. The proposed method by Yang et al. [95], without HE, is
then easily removable, and the global model will not be watermarked. A solution to catch
backdoor models was presented in [117,118]. Then, all proposed solutions that rely on a
backdoor-based watermarking can be rejected.

Clients can also try to disturb the watermarking process. FedIPR (S2) [18] authors
present the free-riders problem in which some clients do not contribute to the training of
MG and the watermarking process. Even if with their solution they have no important
impact on the watermarking, no testing has yet been performed on (S1). Another attack
that is specific to FL as described in FedRight [97] and WAFFLE [17], consists of the fact that
multiple clients will use their models and private datasets. As mentioned in Section 4.1, an
evasion attack works better when multiple datasets are used to train the detector. But it is
also possible to fine-tune the model with the combined dataset.

To sum up, the key findings of our analysis are the following:

• Client-side solutions—None of these solutions have undergone testing with poisoning
detection mechanisms such as anomaly detection, and only a few of them consider
defensive aggregation functions like Krum and GeoMed.

• Server-side solutions—Black-Box watermarking is still challenging since the training
data are not available for the server. And no watermarking algorithm has been found
compatible with cryptographic tools like homomorphic encryption (HE).

• Other FL architectures—Only one method is compatible with peer-to-peer FL, and
no solution is proposed for split learning. No solution has been tested with the
cross-device setting, despite its importance in FL.

• Data distribution—Only a small portion of the proposed solutions have been tested in
non-I.I.D scenarios, and none have been experimented with in vertical
data distribution.

• FL framework—Despite the number of proposed FL watermarking solutions, no FL
framework integrates such a tool as presented in Table 1.

5. Perspectives

Based on existing methods described in Section 3 and challenges related to FL wa-
termarking in the previous section, one can list the following future research directions
to investigate:
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• As mentioned by Boenisch [52], like most centralized watermarking techniques, FL
watermarking is designed and tested for image classification tasks. FedIPR [18] is the
only method that extends the experimental testing to Natural Language Processing
(NLP) tasks. Thus, it is of interest to design new FL watermarking techniques for other
tasks such as Object Detection [119], Semantic Segmentation [120], Regression [121],
Conversational [122], and so on.

• It is worth noting that each state-of-the-art method has been experimented with non-
standardized parameters, as illustrated in Tables 3, 5, and 6. Furthermore, the majority
of authors have not shared their source codes, making reproducibility and method
comparison challenging. Table 6 summarizes the performance of each method. Given
that they were tested with different datasets, model architectures, and parameters,
making a fair comparison is inherently difficult. Nonetheless, it is evident that these
methods have achieved commendable performance. As a final observation, it is worth
mentioning that the tested models and datasets may not fully align with the realities
of federated learning frameworks in domains such as health care [123] and IoT [124],
as discussed in Section 4.4.

• Merkle-Sign [105] and FedZKP [88] are the only two proposals that present a rigorous
ownership verification process based on cryptographic security. Such a verification
protocol is also a research axis that needs to be investigated. This is of interest, for
example, to counteract ambiguity and spoiling attacks or to enable traitor tracing.

• In Table 1, we have listed eleven open-source federated learning frameworks. Half
of these frameworks are designed for research purposes, while the other half serve
industrial purposes. Unfortunately, none of these solutions includes a watermarking
feature or a pipeline to facilitate the integration and experimentation of such protection
measures, as has been completed for differential privacy, homomorphic encryption,
multi-party computation, and trusted execution environments [8,11–13,29,30]. Further-
more, as discussed in Section 4.5, it is worth noting that proposed federated learning
watermarking solutions do not always account for the presence of these other security
mechanisms within their frameworks.

Table 6. Experimental results for each method based on authors’ parameters. Due to variations in
these parameters and the use of different architectures, conducting a fair comparison is challenging.
In the Baseline, Fine-Tuning, and Pruning columns, the first number represents the accuracy on
the test set (Acc.), while the value in parentheses indicates the watermark detection rate (WDR).
-: Not mentioned.

Existing Works Model Used Dataset Baseline Fine Tuning Pruning

Acc. (WDR) Acc. (WDR) Acc. (WDR)

WAFFLE [17] VGG CIFAR10 85.8 (99.0) 85.6 (96.2) 85.0 (47.0)
MNIST 98.9 (100.0) 98.7 (98.0) 97.0 (47.0)

FedIPR [18] AlexNet CIFAR10 91.7 (99.0) 91.7 (98.0) 78.0 (99.0)
ResNet CIFAR100 76.9 (99.0) - (-) - (-)

FedTracker [94] VGG CIFAR10 88.6 (99.1) - (99.1) 83.0 (84.5)
AlexNet CIFAR10 84.3 (82.6) - (82.6) 73.0 (52.4)

Liu et al. [95] VGG CIFAR10 84.2 (100.0) - (87.0) 78.0 (71.0)
LeNet MNIST 99.3 (100.0) - (97.5) 98.4 (100.0)

FedCIP [96] ResNet CIFAR10 82.0 (100.0) - (100.0) - (92.0)
FedRight [97] VGG CIFAR10 86.0 (100.0) - (87.0) 85.13 (62.85)

LetNet MNIST 96.0 (100.0) - (100.0) 93.5 (58.1)
Yang et al. [98] VGG CIFAR10 82.4 (99.7) - (99.7) 68.3 (87.9)

LeNet MNIST 99.2 (99.2) - (99.2) 99.2 (100.0)
FedZKP [96] AlexNet CIFAR10 91.5 (100.0) 91.5 (99.0) - (-)

ResNet CIFAR100 77.2 (100.0) - (-) 51.0 (100.0)
Merkle-Sign [99] ResNet CIFAR10 89.1 (100.0) - (-) - (-)

CIFAR100 62.5 (100.0) - (-) - (-)
MNIST 99.6 (100.0) - (-) - (-)
Fashion 93.8 (100.0) - (-) - (-)
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6. Conclusions

In this paper, we have shown through the existing methods how DNN watermarking
is an efficient solution for federated learning IP protection. We also point out that several
problems have to be considered. For the first time, these techniques are used mainly for
image classification, while emerging FL models address more complex tasks (e.g., semantic
segmentation, object detection, text generation) while considering constraints associated
with specific fields such as the health-care domain, IOTs, and so on. All these issues lead to
difficulties in evaluating such methods in real-world FL scenarios. Second, these methods
often take into account non-IID data in their experiments without using aggregation
functions designed for such data distribution. That is in particular the case in the context of
vertical distribution or split learning, which are two unexplored areas despite their interest
in the FL field. Another important point is that the source code of the methods is rarely
given. This makes it difficult to reproduce the experiments. If the community merges
to find a standard for the implementation and integration into existing FL frameworks,
development and interest in FL watermarking will be enhanced. Furthermore, one needs
to anticipate that these solutions will be seamlessly integrated into secure FL frameworks,
enabling their deployment across a wider range of use cases. However, the authors of FL
watermarking methods rarely take into account FL privacy-preserving mechanisms. So,
future works need to combine security tools such as homomorphic encryption, differential
privacy, and multi-party computation to clearly identify possible interferences with FL
watermarking. It is our hope that this paper will contribute to the advancement of research
in the area of Intellectual Property (IP) protection. In future work, we will implement
the presented methods to compare them in a unified framework. Showing the results of
each technique using the same FL parameters will allow making a deeper comparison and
highlight the most realistic techniques in a real-world FL scenario.
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