
Citation: Ubal, C.; Di-Giorgi, G.;

Contreras-Reyes, J.E.; Salas, R.

Predicting the Long-Term

Dependencies in Time Series Using

Recurrent Artificial Neural Networks.

Mach. Learn. Knowl. Extr. 2023, 5,

1340–1358. https://doi.org/10.3390/

make5040068

Academic Editor: Krzysztof J Cios

Received: 24 July 2023

Revised: 15 September 2023

Accepted: 21 September 2023

Published: 2 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

Predicting the Long-Term Dependencies in Time Series Using
Recurrent Artificial Neural Networks
Cristian Ubal 1 , Gustavo Di-Giorgi 2, Javier E. Contreras-Reyes 1 and Rodrigo Salas 3,4,*

1 Instituto de Estadística, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
cristian.ubal@postgrado.uv.cl (C.U.); javier.contreras@uv.cl (J.E.C.-R.)

2 Escuela de Administración Pública, Facultad de Ciencias Económicas y Administrativas, Universidad de
Valparaíso, Valparaíso 2362797, Chile; gustavo.digiorgi@uv.cl

3 Escuela de Ingeniería C. Biomédica, Facultad de Ingeniería, Universidad de Valparaíso,
Valparaíso 2362905, Chile

4 Millennium Institute for Intelligent Healthcare Engineering (iHealth), Santiago 7820436, Chile
* Correspondence: rodrigo.salas@uv.cl

Abstract: Long-term dependence is an essential feature for the predictability of time series. Estimating
the parameter that describes long memory is essential to describing the behavior of time series models.
However, most long memory estimation methods assume that this parameter has a constant value
throughout the time series, and do not consider that the parameter may change over time. In this
work, we propose an automated methodology that combines the estimation methodologies of the
fractional differentiation parameter (and/or Hurst parameter) with its application to Recurrent
Neural Networks (RNNs) in order for said networks to learn and predict long memory dependencies
from information obtained in nonlinear time series. The proposal combines three methods that
allow for better approximation in the prediction of the values of the parameters for each one of the
windows obtained, using Recurrent Neural Networks as an adaptive method to learn and predict
the dependencies of long memory in Time Series. For the RNNs, we have evaluated four different
architectures: the Simple RNN, LSTM, the BiLSTM, and the GRU. These models are built from blocks
with gates controlling the cell state and memory. We have evaluated the proposed approach using
both synthetic and real-world data sets. We have simulated ARFIMA models for the synthetic data to
generate several time series by varying the fractional differentiation parameter. We have evaluated
the proposed approach using synthetic and real datasets using Whittle’s estimates of the Hurst
parameter classically obtained in each window. We have simulated ARFIMA models in such a way
that the synthetic data generate several time series by varying the fractional differentiation parameter.
The real-world IPSA stock option index and Tree Ringtime series datasets were evaluated. All of the
results show that the proposed approach can predict the Hurst exponent with good performance by
selecting the optimal window size and overlap change.

Keywords: long-term dependency; Hurst exponent; fractional differentiation; recurrent neural networks

1. Introduction

Time series analysis and forecasting are essential in many areas of application, such
as finance and marketing [1], air pollution [2], electricity consumption [3], and weather
forecasting [4,5], among others. However, selecting the appropriate model strongly depends
on the degree of predictability of the time series [6].

Long-term dependencies play an essential role in time series forecasting because they
are an inherent property of the degree of predictability of the observable time series [7,8].
It is necessary to infer the predictability level of the process based on memory and fractal
characteristics in order to select the appropriate forecasting model. However, learning
long-range dependencies embedded in time series is an obstacle for most algorithms [6].
Estimating the parameter that describes long memory is an essential part of describing the

Mach. Learn. Knowl. Extr. 2023, 5, 1340–1358. https://doi.org/10.3390/make5040068 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make5040068
https://doi.org/10.3390/make5040068
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-1439-3429
https://orcid.org/0000-0003-1172-5456
https://orcid.org/0000-0002-0350-6811
https://doi.org/10.3390/make5040068
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make5040068?type=check_update&version=2

Mach. Learn. Knowl. Extr. 2023, 5 1341

behavior of time series models. Moreover, most long memory estimation methods assume
that this parameter has a constant value throughout the time series, and do not consider
that the parameter may change over time.

The study of the relationship between Artificial Neural Networks and long memory time
series was carried out by Siriopoulos et al. [9], where the authors studied the application of the
multilayer perceptron in modeling the stock exchanges indexes. Lin et al. [10] used Recurrent
Neural Networks to deal with the problem of learning long-term dependencies in Nonlinear
Autoregressive models with eXogenous inputs (NARX models). Ledesma et al. [11] proposed
a method for estimating the Hurst parameter using Artificial Neural Networks, where
the experimental results show that this method outperforms traditional methods and can
be used in applications such as traffic control in computer networks. Menezes et al. [12]
proposed applying a feedforward time delay neural network (TDNN) as a NARX model
for long-term prediction of univariate time series. Hua et al. [13] introduced a random
connectivity LSTM model for predicting the dynamics of traffic and user locations through
various temporal scales. Kovantsev et al. [6] proposed clustering the time series based
on statistical indices such as entropy, correlation dimension, and the Hurst exponent in
order to test their predictability. Li et al. [14] proposed a new time series classification
model using long-term memory and convolutional neural networks (LCNN). The Hurst
exponent was used to measure the long-term dependency of time series, and LCNN was
found to improve classification performance and to be suitable for small datasets. Recently,
Di-Giorgi et al. [1] proposed the application of deep recurrent neural networks for volatility
forecasting as GARCH models. However, the works mentioned above have not addressed
the need to create a method that can accurately and efficiently estimate and predict the
time-varying long memory index of the time series.

In general, the sample autocorrelation function (ACF) is used in the literature to identify
long memory processes. However, as was empirically demonstrated by Hassani et al. [15], it
is not possible to determine long memory by summing the sample ACFs. They suggested
alternative methods for detecting long-range dependence. In this sense, in this work we
explore wavelet-based methods and fractional integration techniques in combination with
neural networks containing both states and memory.

We propose an adaptive method that combines recurrent neural networks with statis-
tical methods to learn the dependencies of long memory in time series and to predict the
fractional differentiation parameter (and/or Hurst parameter) based on a moving window
of the original time series. For the RNNs, we have evaluated four different architectures:
the Simple RNN, LSTM, the BiLSTM, and the GRU. These models are built from blocks
with gates controlling the cell state and memory. The rest of this work has the following
structure: in Section 2, we briefly describe the basic theories of long memory processes and
recurrent neural networks; in Section 3, the proposed approach is explained; and finally,
Sections 4 and 5 respectively present our results and concluding remarks.

2. Theoretical Framework

In a stationary time series, long-term dependence implies a non-negligible dependence
between the current and all past points. The characteristics of long memory parameters
are difficult to estimate, and even more so if the probability model evolves. Therefore, it is
necessary to construct an adaptive method for their estimation. The Hurst exponent is an
index of paramount importance in the analysis of the long-range dependence features of
observable time series [16]. For instance, time series with a large Hurst exponent have a
strong trend, making them more predictable than time series with a Hurst exponent closer
to random noise.

Several statistical methods for long-term dependency estimation have been proposed
in the literature. The oldest and most well known is the so-called re-scaled range analysis
(R/S) described by Hurst [16] and popularized by Mandelbrot et al. [17], in which the Frac-
tional Brownian Motion (FBM) and Fractional Gaussian Noise (FGN) are derived with their
properties and representations. Alternative estimators include downward fluctuation anal-

Mach. Learn. Knowl. Extr. 2023, 5 1342

ysis (DFA), proposed by Peng et al. [18], which was introduced in the study of the mosaic
organization of DNA nucleotides. Geweke et al. [19] proposed a simple linear regression
of the log-periodogram consisting of an ordinary least squares estimator of the parameter
formed using only the lowest frequency ordinates of the logarithmic periodogram. The
estimator proposed by Whittle [20] is based on the periodogram using the Fast Fourier
Transform (FFT). Veitch et al. [21] proposed the wavelet estimation method based on the
coefficients of discrete wavelet decomposition. Moreover, Taqqu et al. [22] studied several
long-range dependency parameter estimators for Fractional Gaussian Noise.

In the following subsections, we introduce several fundamental concepts required to
understand the basics of long dependency in stochastic processes. In addition, we review a
number of the most widely used methods to estimate the fractional parameter.

2.1. ARFIMA Model for Long Memory Processes

Autoregressive Fractionally Integrated Moving Average (ARFIMA) models are used to
model time series data that exhibit long memory or fractional integration, meaning that the
autocorrelation of the series declines very slowly. These models extend the ARIMA models
by incorporating a fractional differencing parameter, which allows them to capture the
long memory effect. ARFIMA models are particularly useful in modeling and forecasting
financial and economic time series with long memory, such as stock prices, exchange
rates, and interest rates, and are used in option pricing and volatility forecasting as well.
However, estimating these models can be computationally intensive, and interpreting their
parameters can be challenging [23].

A stochastic process {Yt} follows an ARFIMA (p, d, q) process, where p and q are
integers and d is a real number, if {Yt} can be represented as follows:

φ(B)(1− B)dYt = θ(B)εt, εt ∼ WN(0, σ2
ε), (1)

where φ(B) = 1−∑
p
i=1 φiBi and θ(B) = 1 + ∑

q
i=1 θiBi are the polynomials of the autore-

gressive and moving average operators, respectively. These polynomials do not have roots
in common.

The spectral density of the ARFIMA process is provided by

f (λ) = |1− eiλ|−2d σ2
ε

2π

|θ(eiλ)|2
|φ(eiλ)|2

(2)

where |1− eiλ| = 2 sin(λ
2) and i denotes the imaginary unit. Hosking [24] described the

fractionally differentiated process (FN(d)) with polynomials φ(B) = θ(B) = 1 and with the
spectral density provided by

f (λ) ∼ σ2
ε

2π
|1− eiλ|−2d. (3)

Thus, the spectral density has a pole at 0 for d > 0, leading to d = H − 1
2 , thereby

finding the relationship between the fractional differentiation parameter d and the Hurst
exponent H.

As demonstrated in Hassani’s ½-theorem, it is important to note that the sum of the
sample ACF is always negative one-half for any stationary time series with any length.
For this reason, relying solely on the sample ACF to identify long memory processes can
be misleading.

2.2. Long Memory Parameter Estimation Methods
2.2.1. Periodogram Regression Method

Under the assumption that the spectral density of a stationary process can be written as

f (λ) = f0(λ)(2 sin(λ/2))−2d, (4)

Mach. Learn. Knowl. Extr. 2023, 5 1343

where f0(λ) = 2πσ−2 fy(λ)|λ|2d is a continuous function with fy as the strictly positive spectral
density of {yt}, Geweke et al. [19] proposed a regression method for estimating the parameters;
by defining yj = log(I(λj)), α = log(f0(0)), β = −d, xj = log([2 sin(λj/2)]2), and

ε j = log

(
I(λj)[2 sin(λ/2)]2d

f0(0)

)
, (5)

the regression equation is obtained as

yj = α + βxj + ε j. (6)

The least squares estimator of the long memory parameter d is provided by

d̂m = −
∑m

j=1(xj − x)(yj − y)

∑m
j=1(xj − x)2 , (7)

where x = 1
m ∑m

j=1 xj and y = 1
m ∑m

j=1 yj.

2.2.2. Whittle Estimator Method

Whittle’s estimator [20] is based on the periodogram. This involves the following equation:

Q(η) =
∫ π

−π

I(λ)
f (λ, η)

dλ +
∫ π

−π
log(f (λ, η))dλ, (8)

where f (λ, η) is the spectral density at the frequency λ, η is the vectors of the unknown
parameters, and I(λ) is the periodogram, defined here as

I(λ) =
1

2πn

∣∣∣∣∣ n

∑
j=1

Yj exp(ijλ)

∣∣∣∣∣
2

. (9)

The second term in Equation (8) can be set to equal to 0 by renormalizing f (λ, η).
The normalization only depends on a scale parameter, not on the rest of the components
of η; thus, we replace f with f ∗ such that f ∗ = β f and

∫ π
−π log(f ∗(λ, η))dλ =0. Because

I(λ) is an estimator of the spectral density, a series with long-range dependence should
have a periodogram which is proportional to |λ|1−2H at the origin. Whittle’s estimator is
the value of η that minimizes the Q function. In actual application, instead of an integral,
the corresponding sum over the Fourier frequencies λj = 2π j/n is computed, where
j = 1, 2, . . . (n− 1)/2 and n is the length of the series. Thus, the actual function which the
algorithm minimizes is

Q∗(η) =
(n−1)/2

∑
j=1

I(λ)
f ∗(λj, η)

. (10)

If {Yt} is fractional Gaussian noise, then η is the parameter H or d. If {Yt} follows an
ARFIMA (p, d, q) process, η includes the unknown coefficients of the autoregressive and
moving average parts of that model. This estimator assumes that the parametric form of
the spectral density is known. For more details, see [25].

2.2.3. Detrended Fluctuation Analysis

Detrended fluctuation analysis (DFA) was introduced by Peng et al. [18], and proceeds
as follows. Let {y1, y2, . . . , yn} be a sample of a stationary process with a long memory and
let xt = ∑t

j=1 yj for t = 1, . . . , n. A sample {y1, y2, . . . , yn} is divided into k blocks without
overlap which contain m = n/k observations. A linear regression model of xt versus t

Mach. Learn. Knowl. Extr. 2023, 5 1344

within each block is fitted. Let σ2
k be the estimated residual variance of the regression within

the block, and let k be the dual variance of the regression within block k:

σ2
k =

1
m

m

∑
t=1

(xt − α̂k − β̂kt)2 (11)

where α̂k and β̂k are the least squares estimators of the intercept and slope of the regression
line, respectively. Furthermore, let F2(k) be the average of these variances:

F2(k) =
1
k

k

∑
j=1

σ2
j . (12)

For a random walk, the last term behaves as F(k) ∼ ck1/2, while for a time series
with long dependence we have F(k) ∼ ckd+1/2. Thus, an estimator of d can be obtained as
d̂ = β̂− 1/2 by applying the least squares estimator to log(F(k)) = α + β log(k) + εk.

2.2.4. Rescaled Range Method

Let {y1, y2, . . . , yn} be a sample of a stationary long memory process, let
xt = ∑t

j=1 yj for t = 1, . . . , n, and let s2
n = 1

(n−1) ∑n
t=1(yt − y)2 be the sample variance,

where y = xn/n. The rescaled range statistic introduced by Hurst [16] is defined by

Rn =
1
sn

[
max

1≤t≤n

(
xt −

t
n

xn

)
− min

1≤t≤n

(
xt −

t
n

xn

)]
. (13)

2.2.5. Wavelet-Based Method

A real-value integrable function ψ(t) is defined as a wavelet if it satisfies
∫

ψ(t)dt = 0.
The family of dilations and translations of the wavelet function ψ is defined by

ψjk(t) = 2−j/2ψ(2−jt− k), j, k ∈ Z. (14)

Here, the terms j and 2j are called the octaves and scale, respectively. With this, we
can define the discrete wavelet transform (DWT) of a process {y(t)} as

djk =
∫

y(t)ψjk(t)dt, j, k ∈ Z. (15)

Moreover, the family {ψjk(t)} forms an orthogonal basis, and the representation of
the process {y(t)} is

y(t) =
∞

∑
j=−∞

∞

∑
k=−∞

djkψjk(t). (16)

Now, we define the statistic

µ̂j =
1
nj

nj

∑
k=1

d̂2
jk, (17)

where nj is the number of coefficients in octave j available to be calculated.
Veitch et al. [21] demonstrated that

µ̂j ∼
zj

nj
χnj , (18)

where zj = 22djc, c > 0, and χnj is a chi-square random variable with nj degrees of freedom.
The heteroscedastic regression model can be written as

yj = α + βxj + ε j, (19)

Mach. Learn. Knowl. Extr. 2023, 5 1345

where ε j = log2(log(χnj))− log2(nj)−ψ(nj/2) + log(nj/2)with yj = log2(µ̂j)−ψ(nj/2) +
log(nj/2), α = log(c), and β = 2d . Therefore, when the estimator β̂ is obtained, an estimate
for the long memory parameter d is provided by d̂ = β̂/2. Furthermore, it follows that
Var(d̂) = Var(β̂)/4.

2.3. Recurrent Artificial Neural Networks

Artificial Neural Network (ANN) models consist of layers of nonlinear processing
units called neurons that are linked to each other by weighted connections. These models
use the backpropagation algorithm to learn from data by fitting the weights of the connec-
tions between the neurons [26]. ANNs are highly parameterized nonlinear models capable
of learning from data. Moreover, they are universal function approximations that learn
from data (see Cybenko [27] and Hornik et al. [28]), and have been successfully applied
in time series forecasting (for instance, see [2]). Specifically, ANN models outperform
standard linear techniques when the time series is noisy and the underlying dynamical
system is nonlinear [12].

Deep Recurrent Neural Networks (RNN) are a subclass of Artificial Neural Networks
(ANN) in which the processing units, or neurons, may be grouped either in layers or
blocks connected to the following units (feedforward connections) or to previous units
(feedback or recurrent connections). These feedback connections introduce memory to the
model structure. By using these recurrent connections, historical inputs can be “memo-
rized” by the RNN and subsequently influence the network’s output. The “memory” that
RNNs possess allows them to outperform feedforward neural networks (FNN) in many
real-world applications.

Recurrent Neural Networks (RNN) are ANNs with at least one recurrent connection,
and are capable of learning features and long-term dependencies from sequential and
time series data [29]. Moreover, RNNs are universal approximations [30]. Hochreiter [31]
introduced the Long Short-Term Memory Network (LSTM), an RNN consisting of memory
cells and gate units. LSTMs address the vanishing gradient problem [32,33]. LSTMs can
learn long-term dependencies, and are well known for working with sequential data. Later,
Graves et al. [34] proposed the Bidirectional LSTM (BiLSTM) network, which consists of
two LSTMs, the first taking the input in a forward direction and the second in a backward
direction. Cho et al. [35] proposed a simplified version of the LSTM called Gated Recurrent
Unit (GRU), which lacks an output gate.

Figure 1 shows the structure of a simple RNN [36], where xt is the mini-batch input of
the t-th time step in the sequence and ht = fσ(Wixt + Wiht−1 + br) is the hidden variable
of the time step t, which is determined by both the input of the current time step and the
hidden variable of the previous time step. The RNN stores the hidden variable ht−1 for
the previous time step and introduces a new weight parameter Wh to describe how the
hidden variable of the previous time step is used for the current time step. An RNN can be
understand as multiple replications of the same network; during each replication, a state is
transferred to the next layer, and the hidden variables can be used to capture the historical
information of the sequence up to the current time step. This means that the neural network
is able to memorize information. The calculation formula for the output layer is as follows:

ot = fσ(Woht + Wi + bo). (20)

The parameters of the RNN include the hidden layer weights Wi and Wh, the hidden
layer bias br, the output layer weight Wo, and the output layer bias bo.

A Long Short-Term Neural Network (LSTM) is a variant of the Recurrent Neural
Network (RNN) proposed by Hochreiter et al. [31]. An LSTM has a similar basic structure
to an RNN, except that memory blocks replace neurons. Each memory block contains three
nonlinear units called gates. The input gate it, the output gate ot, and the forget gate ft
control the information in the network. The memory of the cell is controlled by the hidden
state ht and the cell state ct. Figure 2 shows the diagram of the LSTM block.

Mach. Learn. Knowl. Extr. 2023, 5 1346

Figure 1. The left side shows the simple RNN architecture; on the right side, the RNN is unfolded
into a full network.

𝑡𝑎𝑛ℎ

𝑥%

𝐶%&' 𝐶%

ℎ%

ℎ%&'

𝜎 𝜎 𝜎

𝑜%
𝑡𝑎𝑛ℎ

ℎ%

𝑓%
𝑖%

'𝐶%

Figure 2. Block diagram of an LSTM recurrent neural network cell unit.

At the time t, the input vector xt ∈ Rd flows forward in the LSTM cell, where the
operations formula are:

Input Gate: it = fσ(Wixt + Uiht−1 + bi) (21)

Forget Gate: ft = fσ(W f xt + U f ht−1 + b f) (22)

Output Gate: ot = fσ(Woxt + Uoht−1 + bo) (23)

Hidden State: ht = ot � tanh(ct) (24)

Cell State: ct = ft � ct−1 + it � tanh(Wcxt + Ucht−1 + bc) (25)

where Wi, W f , Wo, Wc Ui, U f , Uo, Uc correspond to the weight matrices and bi, b f , bo, bc are
the bias vectors. The initial values are c0 = 0 and h0 = 0. The activation functions are the
sigmoid function fσ(z) = 1

1+e−z and the hyperbolic tangent function tanh(z) = ez−e−z

ez+e−z . The
operator � denotes the Hadamard product.

The Bidirectional LSTM Network (BiLSTM) proposed by Graves et al. [34] is a se-
quence processing model that consists of an LSTM with two hidden states that allows the
information to flow both forward and backward. Figure 3 shows the architecture of the
BiLSTM. After processing each time step t, the BiLSTM network generates two hidden
states hF

t and hB
t .

Mach. Learn. Knowl. Extr. 2023, 5 1347

𝜎 𝜎 𝜎

𝑦!"# 𝑦! 𝑦!$#

𝑥!"# 𝑥! 𝑥!$#

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

ℎ!"#
ℎ!"#

ℎ! ℎ!$#
ℎ! ℎ!$#Forward

Layer

Backward
Layer

Figure 3. Architecture of the BiLSTM Network.

A Gated Recurrent Unit (GRU) is a simpler version of the LSTM network proposed
by Cho et al. [35]. Figure 4 shows the architecture of the GRU. The input vector xt is
introduced to the network, passing through both the update gate zt and the reset gate zt.
On the one hand, the update gate decides how the input xt and the previous output ht flow
to the next cell. On the other hand, the reset gate determines how much past information
can be forgotten. The equations that control the functionality of the GRU are:

Update Gate: zt = fσ(Wzxt + Uzht−1 + bz) (26)

Reset Gate: rt = fσ(Wrxt + Urht−1 + br) (27)

Hidden State: h̃t = tanh(Whxt + Uh(rt � ht−1) + bh) (28)

Output state: ht = (1− zt)� ht−1 + zt � h̃t (29)

where Wz, Wr, Wh, Uz, Ur, Uh correspond to the weight matrices and bz, br, bh, are the
bias vectors.

𝑡𝑎𝑛ℎ

𝑥%

ℎ%&'

ℎ%

𝜎 𝜎

#ℎ%𝑟% 𝑧%

Figure 4. Block diagram of the GRU recurrent neural network cell unit.

3. Materials and Methods
3.1. Dataset Description

The synthetic data considered in this work for training the networks were artificially
constructed and of size n = 10 ,000, which can be seen in Figure 5. These data consisted of
fractional noise (FN) obtained with different fractional differentiation parameters d.

Mach. Learn. Knowl. Extr. 2023, 5 1348

Fractional Noise FN(d=−0.3)

Time

x
0 100 200 300 400 500

−
3

−
1

1
3

Fractional Noise FN(d=0)

Time

x

0 100 200 300 400 500

−
3

−
1

1

Fractional Noise FN(d=0.3)

Time

x

0 100 200 300 400 500
−

4
−

2
0

2

Figure 5. Simulated data FN(d) for d = { −0.3, 0, 0.3}.

The real data that were used to train the networks consisted of: (1) a percentage
variation of the IPSA (used in the Santiago Stock Exchange as the primary utility index to
measure the profitability of the leading forty stocks that are moving in the economy; these
incorporate all the capital changes of each share, weighting the relative weight of each for
the calculation) in the period 2000–2021, as can be seen in Figure 6a; and (2) tree-ring widths
in dimensionless units recorded by Donald A. Graybill, 1980, from Gt Basin Bristlecone Pine
2805M, 3726-11810 in Methuselah Walk, California, as plotted in Figure 6b. In particular,
this time series has been analyzed in several studies, for example in [37].

(a) (b)
Figure 6. Real world datasets: (a) IPSA dataset for the period 2000–2021; (b) tree ring dataset.

3.2. Methodology

The purpose of this work is to propose an automated methodology that combines
the estimation methodologies of the fractional differentiation parameter (and/or Hurst
parameter) with its application to recurrent neural networks such that the network learns
and predicts long memory information dependencies obtained in nonlinear time series.
The information that is entered in the RNN is obtained from the previously estimated
parameter using the Whittle method (chosen from among other estimation methods from a
previous study) given data windows of optimal size.

The proposal combines three methods that allow for better approximation in the
prediction of the values of the parameters for each one of the windows obtained. The
proposed approach makes predictions of the Hurst exponent values by learning the estimate
obtained using conventional methods applied to a moving time window.

The scheme of this methodology is shown in Figure 7.

Mach. Learn. Knowl. Extr. 2023, 5 1349

 Step 0: Original
data set

 Step 2: Whittle
Estimation in each
block

 Step 3: Training
using RNN

 Step 1: Block
Constructions

 Step 4: Prediction
using RNN

Figure 7. Scheme of the methodology: Step 0, original dataset; Step 1, block construction (in red,
the data blocks of the series from which the estimates are obtained); Step 2, Whittle estimation in
each block; Step 3, training of the Hurst estimation dataset using the RNN (Blue: Training Data Set;
Orange: Test Data Set); Step 4, prediction using the RNN (Blue: Target data series; Orange: Prediction
data series).

The proposed methodology consists of three main steps. The first step is to divide
the sample {Y1, . . . , YT} into a number M of overlapping blocks of length N and with a
shift of S such that T = S(M− 1) + N and the midpoint of the j-th block is obtained as
tj = S(j− 1) + N/2 with j = 1, . . . , M. When the data blocks are determined, the second

Mach. Learn. Knowl. Extr. 2023, 5 1350

step of the methodology consists of obtaining the Hurst exponent’s local estimates over
each block using the Whittle estimation method. The idea of segmenting the time series is
provided by Palma et al. [38], among others. The methodology for approximating the MLE
is based on the calculation of the periodogram I(λ) by means of the fast Fourier transform
(FFT), e.g., [39], and the use of the approximation of the Gaussian log-likelihood function
follows Whittle [40] and Bisaglia [41]. Suppose that the sample vector Y = (y1, y2, . . . , yn)
is normally distributed with zero mean and with the autocovariance provided by

γ(k− j) =
∫ π

−π
f (λ)eiλ(k−j)dλ, (30)

where f (λ) is defined as in (2) and is associated with the parameter set Θ of the ARFIMA
model defined in (1). The log-likelihood function of the process Y is provided by

L(Θ) = − 1
2n

[log |∆| −YT∆−1Y], (31)

where ∆ = [γ(k− j)] with k, j = 1, . . . , n. For calculating (31), two asymptotic approxima-
tions are made for the terms log(|∆|) and YT∆−1Y to obtain

L(Θ) ≈ − 1
4π

{∫ π

−π
log[2π f (λ)]dλ +

∫ π

−π

I(λ)
f (λ)

dλ

}
, (32)

as n→ ∞ where I(λ) = |∑n
j=1 yjeiλj|2/(2πn) is the periodogram indicated before. Thus, a

discrete version of (32) is the Riemann approximation of the integral, and is

L(Θ) ≈ − 1
2n

{
n

∑
j=1

log[f (λj)] +
n

∑
j=1

I(λj)

f (λj)

}
, (33)

where λj = 2π j/n are the Fourier frequencies. Now, to find the estimator of the parameter
vector Θ, we use the minimization of LT(Θ) produced by the relation

Θ̂ = arg minL(Θ), (34)

where the minimization is over a parameter space Θ. This nonlinear minimization function carries
out a minimization of L(Θ) using a Newton-type algorithm. Under regularity conditions, the
Whittle estimator that maximizes the log-likelihood function provided in (33) is consistent
and distributed normally (e.g., [42]). This estimation method has been used in studies on
local seasonal series (see [43,44]), and the use of this estimator in this work is justified later
on in the subsequent comparative study.

The time series is separated into two segments, where the first partition, corresponding
to 90% of the samples, is used for training and the final segment, corresponding to 10% of
the samples, is used for testing. The recurrent neural networks are fitted with the training
set, then the models are compared and validated on the test set. The RNNs are explained
in the following subsection.

In order to obtain the predictions and measure their performance, we use measures
such as the Root Mean Square Error (RMSE) and Coefficient of Determination R2.

The RMSE is often preferred over the MSE, as it is on the same scale as the data.
Historically, both the RMSE and MSE have seen widespread use due to their theoretical
relevance in statistical modeling. However, they are more sensitive to outliers than the
MAE, which has led a number of authors, e.g., [45], to recommend their use in assessing
forecasting accuracy.

A two-sample two-sided Kolmogorov–Smirnov (KSPA) test, as proposed by Hassani et al. [15],
was applied to determine the existence (or not) of statistical significant differences in the distribution
of forecasts between the two models with the best performances.

The pseudo-code of the proposed methodology is provided in Algorithm 1.

Mach. Learn. Knowl. Extr. 2023, 5 1351

Algorithm 1 Predicting the Hurst parameter

1: Define the block length N and the shift S.
2: Segment the blocks of size N from the Times Series.
3: for each block j = 1 to M do
4: Apply the Whittle method given by Equation (33) to obtain the value of the Hurst

Exponent at time tj = S(j− 1) + N/2.
5: end for
6: Separate the blocks of the original Time Series into training and test sets.
7: Separate the Hurst’s Time Series into training and test sets.
8: Fit the RNN (simpleRNN, LSTM, BiLSTM or GRU) using the training sets. The inputs

are the blocks of the original Time series and the targets are the Hurst’s time series.
9: for each block in the Test set do

10: Predict the value of the Hurst parameter for the next block using the RNN.
11: end for
12: Obtain the performance metrics for the test set: Root Mean Square Error (RMSE) and

the Coefficient of Determination R2.

4. Results
4.1. Comparative Study of Estimation Methods

In this section, a comparative study of the following estimation methods is carried
out: the periodogram regression method, Whittle estimator method, detrended fluctuation
analysis, rescaled range method, and wavelet-based method. In addition, a Monte Carlo
simulation was performed using simulated time series of sizes n = 10,000 with specific
values of the fractional differentiation parameter and 1000 simulations.

Figures 8 and 9 show the degree of fit of the different estimation methods with the
Hurst parameter and the fractional differentiation parameter.

0.00

0.25

0.50

0.75

1.00

−0.50 −0.25 0.00 0.25 0.50
fdp

H
ur

st
_E

st

Method

R/S

DFA

GPH

Whittle

Wavelet

Figure 8. Comparison H vs. d of the estimation methods.

From Figure 8, it can be seen that with n = 10,000, the estimation methods of the
Hurst exponent concerning the differentiation parameter d stabilize around the relationship

Mach. Learn. Knowl. Extr. 2023, 5 1352

obtained in the ARFIMA(d), as provided by H = d + 0.5. It can be observed that at around
d = −0.5 (H = 0) the Whittle method fits better than the rest of the methods, which
either deviate from the true value or have unstable behavior, such as in the GPH method.
Around d = 0 (H = 0.5), all of the models fit the relationship between said parameters well
except for the GPH method. Finally, around d = 0.5 (H = 1) the behavior of the methods
becomes unstable except in the case of the Whittle method. From this, it can be concluded
that Whittle’s method is the one that best fits this relationship in the interval of a good
definition of the fractional differentiation parameter. This behavior occurs in the Whittle
and wavelet-based methods, as they are better able to fit the relationship, as shown by
Figure 9 for all the values of the fractional differential parameter. These methods show less
dispersion in the Hurst parameter estimates; however, the Whittle method shows more
stability, while the GPH method shows a greater range of dispersion in its estimates. In
particular, little dispersion is observed in almost all methods except the GPH method when
d < 0 , although they are claimed from the objective value. When d approaches 0, the R/S
and DFA methods increase their dispersion even though it approach the target value, as
the R/S, DFA, and GPH methods are already unstable in their dispersion when d > 0. We
use the Whittle method in what follows based on the previous results, which are consistent
with those obtained by Palma et al. [38].

0.0

0.1

0.2

0.3

R/S DFA GPH Whittle Wavelet
Method

H
ur

st
_E

st

Coef. Hurst para d=−0.4

0.1

0.2

0.3

0.4

R/S DFA GPH Whittle Wavelet
Method

H
ur

st
_E

st

Coef. Hurst para d=−0.3

0.2

0.3

0.4

R/S DFA GPH Whittle Wavelet
Method

H
ur

st
_E

st

Coef. Hurst para d=−0.2

0.2

0.3

0.4

0.5

R/S DFA GPH Whittle Wavelet
Method

H
ur

st
_E

st

Coef. Hurst para d=−0.1

0.40

0.45

0.50

0.55

0.60

0.65

R/S DFA GPH Whittle Wavelet
Method

H
ur

st
_E

st

Coef. Hurst para d=0

0.5

0.6

0.7

R/S DFA GPH Whittle Wavelet
Method

H
ur

st
_E

st
Coef. Hurst para d=0.1

0.5

0.6

0.7

0.8

R/S DFA GPH Whittle Wavelet
Method

H
ur

st
_E

st

Coef. Hurst para d=0.2

0.7

0.8

0.9

R/S DFA GPH Whittle Wavelet
Method

H
ur

st
_E

st

Coef. Hurst para d=0.3

0.7

0.8

0.9

1.0

1.1

R/S DFA GPH Whittle Wavelet
Method

H
ur

st
_E

st

Coef. Hurst para d=0.4

Figure 9. Comparison of the estimation methods with Monte Carlo simulation.

4.2. Hurst Parameter Prediction Using Recurrent Neural Networks
4.2.1. Synthetic Data

Tables 1–3 show the performance results of these models. We ran ten simulations
for each model, then the results were averaged, which are the results appearing in the
tables below. It can be seen that the performance metrics for the test set are better on the
BiLSTM network. For the best two models, we applied the Shapiro–Wilk test to check the
normal distribution of the performances and the pooled variance t-test to verify statistical
differences. Moreover, the KSPA test was applied to verify the statistical significance of the
observed difference in performance.

Mach. Learn. Knowl. Extr. 2023, 5 1353

Table 1. Performance results and training time for prediction of the Hurst parameter for the
FN(d = −0.3) simulated data using recurrent neural networks.

d = −0.3

R2 RMSE Training Time (s)

sRNN BiLSTM LSTM GRU sRNN BiLSTM LSTM GRU sRNN BiLSTM LSTM GRU

S = 1

18 0.721 0.742 0.706 0.729 0.171 0.164 0.175 0.168 130.9 262.3 220.9 258.7

20 0.709 0.746 0.716 0.736 0.161 0.151 0.160 0.154 104.5 233.4 207.0 255.1

23 0.673 0.724 0.686 0.706 0.150 0.138 0.148 0.143 127.2 261.7 235.8 270.2

25 0.657 0.723 0.676 0.699 0.146 0.131 0.142 0.137 128.6 266.3 265.6 265.4

28 0.652 0.731 0.666 0.699 0.141 0.125 0.138 0.132 115.1 226.8 215.7 231.1

30 0.641 0.730 0.646 0.685 0.141 0.122 0.140 0.132 134.5 284.0 226.4 271.5

33 0.601 0.690 0.616 0.650 0.136 0.120 0.133 0.127 124.0 240.9 209.8 246.3

35 0.534 0.670 0.605 0.644 0.138 0.116 0.127 0.121 127.1 252.0 213.6 260.2

S = 5

20 0.298 −0.117 0.519 0.532 0.248 0.314 0.206 0.203 34.4 70.4 62.4 79.1

25 0.282 −0.396 0.440 0.507 0.206 0.290 0.184 0.173 36.9 70.2 69.1 69.5

30 0.049 −0.217 0.436 0.461 0.234 0.264 0.180 0.176 32.9 76.2 60.4 69.3

Table 2. Performance results and training time for prediction of the Hurst parameter for the FN(d = 0)
simulated data using recurrent neural networks.

d = 0

R2 RMSE Training Time (s)

sRNN BiLSTM LSTM GRU sRNN BiLSTM LSTM GRU sRNN BiLSTM LSTM GRU

S = 1

18 0.771 0.833 0.776 0.782 0.167 0.142 0.166 0.163 119.0 271.3 228.0 288.6

20 0.767 0.813 0.761 0.779 0.158 0.141 0.159 0.154 116.2 220.5 209.8 241.7

23 0.730 0.807 0.721 0.754 0.144 0.122 0.147 0.138 122.8 226.1 190.7 237.7

25 0.713 0.800 0.700 0.747 0.142 0.118 0.145 0.133 168.5 329.7 303.2 344.3

28 0.721 0.815 0.697 0.737 0.132 0.108 0.138 0.128 144.3 316.6 264.3 298.5

30 0.686 0.812 0.672 0.720 0.124 0.104 0.137 0.127 113.3 214.8 197.0 232.3

33 0.654 0.781 0.650 0.689 0.125 0.099 0.126 0.118 119.9 212.5 188.4 221.3

35 0.670 0.782 0.611 0.673 0.114 0.093 0.124 0.114 131.6 213.0 183.4 216.8

S = 5
20 0.354 0.100 0.516 0.533 0.260 0.306 0.225 0.221 26.5 64.0 43.4 49.2

25 0.321 −0.060 0.481 0.497 0.215 0.269 0.188 0.186 32.4 51.4 42.5 49.0

30 0.128 0.125 0.499 0.526 0.232 0.233 0.176 0.171 31.9 52.7 44.0 61.6

For d = −0.3 and d = 0, the best results of the coefficient of determination R2 were
obtained for small window sizes, specifically, for N = 20 and N = 18, respectively. For
d = 0.3, the best result was obtained for N = 30. In addition, it can be observed that
the MAE and RMSE coefficients decrease as block size increases. As the value of the
fractional differentiation parameter, and consequently the Hurst exponent, increases within
the interval [−0.5; 0.5], the value of R2 improves, which indicates that a better prediction is
obtained for non-negative values of that parameter.

The same conclusion can be drawn concerning the MAE and RMSE performance
indicators, which decrease as the interval mentioned above progresses. Finally, it can be
observed that the values of all the indicators are significantly worse for S = 5, and even
yield results with little statistical meaning; thus, in this study, when using real data S = 1 is
considered for the analysis. Regarding the training time of the neural networks, the results

Mach. Learn. Knowl. Extr. 2023, 5 1354

of which can be seen in the tables, it can be seen that the BiLSTM network takes the longest
for all window sizes, which is clearly due to its architecture. However, this effectively
increases the amount of information available to the network, improving its coefficient
of determination.

Table 3. Performance results and training time for prediction of the Hurst parameter for the
FN(d = 0.3) simulated data using recurrent neural networks.

d = 0.3

R2 RMSE Training Time (s)

sRNN BiLSTM LSTM GRU sRNN BiLSTM LSTM GRU sRNN BiLSTM LSTM GRU

S = 1

18 0.814 0.852 0.801 0.801 0.155 0.138 0.160 0.160 128.3 293.8 237.6 278.0

20 0.769 0.860 0.791 0.804 0.157 0.123 0.150 0.145 100.8 221.7 173.6 202.0

23 0.748 0.869 0.759 0.778 0.142 0.102 0.139 0.133 124.1 239.5 208.3 261.8

25 0.756 0.877 0.753 0.773 0.135 0.096 0.135 0.130 125.2 249.9 200.1 240.1

28 0.748 0.882 0.744 0.768 0.129 0.088 0.131 0.124 129.2 281.7 245.7 273.4

30 0.716 0.884 0.721 0.751 0.129 0.083 0.128 0.121 120.7 260.9 197.2 247.7

33 0.685 0.859 0.676 0.714 0.121 0.081 0.122 0.115 117.6 229.1 193.3 230.4

35 0.681 0.845 0.654 0.680 0.114 0.079 0.119 0.114 124.0 223.2 203.8 243.2

S = 5

20 0.375 0.173 0.485 0.518 0.254 0.292 0.230 0.223 37.2 83.0 81.4 82.5

25 0.368 0.230 0.475 0.479 0.212 0.234 0.193 0.192 39.7 86.7 75.3 104.2

30 0.307 0.111 0.461 0.504 0.208 0.235 0.183 0.176 38.9 84.1 83.5 85.9

4.2.2. Real Datasets

From the results of the fractional-noise synthetic data in the previous section, the
BiLSTM neural network was used for the real dataset using different window sizes S = 1.
As in the case of the synthetic data, we ran ten simulations for each model and the results
were averaged, which are the results appearing in the tables below. From Tables 4 and 5,
it can be observed that for the IPSA dataset, the best indices with N = 20 were obtained
in the determination coefficient R2, while for the Tree Ring dataset the best results in the
determination coefficient were obtained when N = 25. It can observed that the MAE and
RMSE coefficients both decrease as the size of the window increases. Figure 10 shows
the prediction of the values of the Hurst exponent for the real data, reinforcing what was
observed in the previous tables. Furthermore, in the last column of Tables 4 and 5 it can be
seen that the training time of the BiLSTM network depends on the size of the dataset and the
assigned size of the window N. Table 6 indicates that, through the Kolmogorov-Smirnov
test, the predictions obtained by the BILSTM network fit the test set of the real data time
series. The idea of carrying out this test to check the goodness of fit of the predictions was
based, among other studies, on [15].

Table 4. Performance results for prediction of the Hurst parameter for the IPSA time series dataset
using the BiLSTM Network.

IPSA Dataset (BiLSTM)

Train Test

N R2 MAE RMSE R2 MAE RMSE Training Time (s)

18 0.912 0.072 0.097 0.679 0.133 0.184 147.659

20 0.922 0.062 0.083 0.716 0.115 0.153 136.575

23 0.936 0.048 0.064 0.651 0.106 0.145 111.459

Mach. Learn. Knowl. Extr. 2023, 5 1355

Table 4. Cont.

IPSA Dataset (BiLSTM)

Train Test

N R2 MAE RMSE R2 MAE RMSE Training Time (s)

25 0.938 0.044 0.058 0.621 0.105 0.140 131.349

28 0.944 0.038 0.050 0.437 0.106 0.148 122.480

30 0.948 0.034 0.045 0.396 0.103 0.141 112.823

33 0.952 0.029 0.039 0.398 0.099 0.133 133.320

35 0.955 0.027 0.036 0.348 0.098 0.132 109.261

Table 5. Performance results for prediction of the Hurst parameter for the Tree Ring time series
dataset using the BiLSTM Network.

Tree ring Dataset (BiLSTM)

Train Test

N R2 MAE RMSE R2 MAE RMSE Training (s)

18 0.912 0.076 0.102 0.799 0.109 0.150 169.029

20 0.925 0.066 0.087 0.818 0.097 0.133 149.533

23 0.937 0.052 0.068 0.822 0.084 0.115 251.819

25 0.943 0.046 0.061 0.830 0.080 0.106 259.888

28 0.949 0.042 0.054 0.828 0.074 0.098 259.807

30 0.949 0.039 0.051 0.819 0.073 0.095 224.713

33 0.953 0.035 0.045 0.790 0.071 0.094 247.332

35 0.956 0.032 0.042 0.786 0.069 0.090 245.959

Table 6. KS test for prediction of the real time series using the BILSTM Network.

KS Test

Data N Opt Statistic Value p-Value

IPSA 20 0.0663 0.2244

Treering 25 0.0289 0.8937

(a) IPSA dataset

Figure 10. Cont.

Mach. Learn. Knowl. Extr. 2023, 5 1356

(b) Tree Ring dataset

Figure 10. Predictions obtained with the BiLSTM network for the real dataset.

5. Conclusions

In this work, we have presented a new approach for predicting the Hurst exponent
using recurrent neural networks. By applying Whittle’s method using a sliding time
window, a new time series corresponding to the estimation of long memory is constructed.
Different recurrent neural network models were trained which received data blocks from
the original time series as input and generated one-step-ahead predictions of the long
memory parameter as output. Our results show that it is possible to have good predictions
one step ahead of the long memory parameter; in particular, the BiLSTM network obtained
the best results when using the proposed methodology. Additionally, these predictions can
be made in real time due to the computational speed of the neural network models.

Further work could include a new procedure that incorporates more complex models
with a long memory, and could even involve heteroscedastic behaviors. One of the limi-
tations of our proposed method is that it relies on a fixed size block length, meaning that
the RNN cannot successfully capture points located very distant from the signal. Further
work is required to enhance prediction when the size of the overlapping blocks changes
dynamically, together with a rehearsal mechanism for incremental learning. In our future
work, we expect to correlate the temporal estimation of long-term memory in order to
improve prediction of the volatility of GARCH models.

Author Contributions: Conceptualization, C.U., J.E.C.-R. and R.S.; Methodology, C.U., G.D.-G. and R.S.;
Software, C.U., G.D.-G. and R.S.; Validation, C.U. and R.S.; Investigation, C.U., G.D.-G., J.E.C.-R. and R.S.;
Resources, R.S.; Writing—original draft, C.U. and R.S.; Writing—review and editing, C.U., J.E.C.-R. and
R.S.; Supervision, R.S. All authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge the support provided by the ANID-Millennium Science Initia-
tive Program ICN2021_004, ANID FONDECYT research grant number 1221938, and FONDECYT
initiation research grant number 11190116. The work of C. Ubal was supported by the Universidad
de Valparaiso scholarship.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data used in this article are publicly available.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Di Giorgi, G.; Salas, R.; Avaria, R.; Ubal, C.; Rosas, H.; Torres, R. Volatility Forecasting using Deep Recurrent Neural Networks as

GARCH models. Comput. Stat. 2023 , 1–27. [CrossRef]
2. Cordova, C.H.; Portocarrero, M.N.L.; Salas, R.; Torres, R.; Rodrigues, P.C.; López-Gonzales, J.L. Air quality assessment and

pollution forecasting using artificial neural networks in Metropolitan Lima-Peru. Sci. Rep. 2021, 11, 24232. [CrossRef]
3. Leite Coelho da Silva, F.; da Costa, K.; Canas Rodrigues, P.; Salas, R.; López-Gonzales, J.L. Statistical and artificial neural networks

models for electricity consumption forecasting in the Brazilian industrial sector. Energies 2022, 15, 588. [CrossRef]

http://doi.org/10.1007/s00180-023-01349-1
http://dx.doi.org/10.1038/s41598-021-03650-9
http://dx.doi.org/10.3390/en15020588

Mach. Learn. Knowl. Extr. 2023, 5 1357

4. Vivas, E.; de Guenni, L.B.; Allende-Cid, H.; Salas, R. Deep Lagged-Wavelet for monthly rainfall forecasting in a tropical region.
Stoch. Environ. Res. Risk Assess. 2023, 37 , 831–848 . [CrossRef]

5. Querales, M.; Salas, R.; Morales, Y.; Allende-Cid, H.; Rosas, H. A stacking neuro-fuzzy framework to forecast runoff from
distributed meteorological stations. Appl. Soft Comput. 2022, 118, 108535. [CrossRef]

6. Kovantsev, A.; Gladilin, P. Analysis of multivariate time series predictability based on their features. In Proceedings of the 2020
International Conference on Data Mining Workshops (ICDMW), Sorrento, Italy, 17–20 November 2020; IEEE: Piscataway, NJ,
USA, 2020; pp. 348–355.

7. Qian, B.; Rasheed, K. Hurst exponent and financial market predictability. In Proceedings of the IASTED Conference on Financial
Engineering and Applications, IASTED International Conference, Cambridge, MA, USA, 9–11 November 2004; pp. 203–209.

8. Siriopoulos, C.; Markellos, R. Neural Network Model Development and Optimization. J. Comput. Intell. Financ. (Former. Neurovest J.)
1996, 7–13.

9. Siriopoulos, C.; Markellos, R.; Sirlantzis, K. Applications of Artificial Neural Networks in Emerging Financial Markets; World Scientific:
Singapore, 1996; pp. 284–302

10. Lin, T.; Horne, B.G.; Tino, P.; Giles, C.L. Learning long-term dependencies in NARX recurrent neural networks. IEEE Trans.
Neural Netw. 1996, 7, 1329–1338.

11. Ledesma-Orozco, S.; Ruiz-Pinales, J.; García-Hernández, G.; Cerda-Villafaña, G.; Hernández-Fusilier, D. Hurst parameter
estimation using artificial neural networks. J. Appl. Res. Technol. 2011, 9, 227–241. [CrossRef]

12. Menezes Jr, J.M.P.; Barreto, G.A. Long-term time series prediction with the NARX network: An empirical evaluation. Neurocom-
puting 2008, 71, 3335–3343. [CrossRef]

13. Hua, Y.; Zhao, Z.; Li, R.; Chen, X.; Liu, Z.; Zhang, H. Deep learning with long short-term memory for time series prediction. IEEE
Commun. Mag. 2019, 57, 114–119. [CrossRef]

14. Li, X.; Yu, J.; Xu, L.; Zhang, G. Time Series Classification with Deep Neural Networks Based on Hurst Exponent Analysis.
In Proceedings of the ICONIP 2017: Neural Information Processing, Guangzhou, China, 14–18 November 2017; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 194–204.

15. Hassani, H.; Silva, E.S. A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts.
Econometrics 2015, 3, 590–609. [CrossRef]

16. Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [CrossRef]
17. Mandelbrot, B.B.; Van Ness, J.W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10, 422–437.

[CrossRef]
18. Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys.

Rev. E 1994, 49, 1685. [CrossRef]
19. Geweke, J.; Porter-Hudak, S. The estimation and application of long memory time series models. J. Time Ser. Anal. 1983,

4, 221–238. [CrossRef]
20. Whittle, P. Hypothesis Testing in Time Series Analysis; Almqvist & Wiksells: Upsala, Sweeden, 1951; Volume 4.
21. Veitch, D.; Abry, P. A wavelet-based joint estimator of the parameters of long-range dependence. IEEE Trans. Inf. Theory 1999,

45, 878–897. [CrossRef]
22. Taqqu, M.S.; Teverovsky, V.; Willinger, W. Estimators for long-range dependence: An empirical study. Fractals 1995, 3, 785–798.

[CrossRef]
23. Palma, W.; Chan, N.H. Estimation and forecasting of long-memory processes with missing values. J. Forecast. 1997, 16, 395–410.

[CrossRef]
24. Hosking, J.R.M. Fractional differencing. Biometrika 1981, 68, 165–176. [CrossRef]
25. Fox, R.; Taqqu, M.S. Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series.

Ann. Stat. 1986, 14, 517–532. [CrossRef]
26. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
27. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 1989, 2, 303–314. [CrossRef]
28. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,

2, 359–366. [CrossRef]
29. Salehinejad, H.; Sankar, S.; Barfett, J.; Colak, E.; Valaee, S. Recent advances in recurrent neural networks. arXiv 2017,

arXiv:1801.01078.
30. Schäfer, A.M.; Zimmermann, H.G. Recurrent neural networks are universal approximators. Int. J. Neural Syst. 2007, 17, 253–263.

[CrossRef]
31. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
32. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.

1994, 5, 157–166. [CrossRef] [PubMed]
33. Hochreiter, S.; Bengio, Y.; Frasconi, P.; Schmidhuber, J. Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term

Dependencies; IEEE Press: Hoboken, NJ, USA, 2001.
34. Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.

Neural Netw. 2005, 18, 602–610. [CrossRef]

http://dx.doi.org/10.1007/s00477-022-02323-x
http://dx.doi.org/10.1016/j.asoc.2022.108535
http://dx.doi.org/10.22201/icat.16656423.2011.9.02.457
http://dx.doi.org/10.1016/j.neucom.2008.01.030
http://dx.doi.org/10.1109/MCOM.2019.1800155
http://dx.doi.org/10.3390/econometrics3030590
http://dx.doi.org/10.1061/TACEAT.0006518
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1103/PhysRevE.49.1685
http://dx.doi.org/10.1111/j.1467-9892.1983.tb00371.x
http://dx.doi.org/10.1109/18.761330
http://dx.doi.org/10.1142/S0218348X95000692
http://dx.doi.org/10.1002/(SICI)1099-131X(199711)16:6<395::AID-FOR660>3.0.CO;2-P
http://dx.doi.org/10.1093/biomet/68.1.165
http://dx.doi.org/10.1214/aos/1176349936
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1142/S0129065707001111
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
http://dx.doi.org/10.1016/j.neunet.2005.06.042

Mach. Learn. Knowl. Extr. 2023, 5 1358

35. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.

36. Chen, L. Deep Learning and Practice with MindSpore; Springer Nature: Berlin/Heidelberg, Germany, 2021.
37. Contreras-Reyes, J.E.; Palma, W. Statistical analysis of autoregressive fractionally integrated moving average models in R. Comput.

Stat. 2013, 28, 2309–2331. [CrossRef]
38. Palma, W.; Olea, R. An efficient estimator for locally stationary Gaussian long-memory processes. Ann. Stat. 2010, 38, 2958–2997.

[CrossRef]
39. Singleton, R. Mixed Radix Fast Fourier Transform; Technical Report; Stanford Research Inst.: Menlo Park, CA, USA, 1972.
40. Whittle, P. Estimation and information in stationary time series. Ark. Mat. 1953, 2, 423–434. [CrossRef]
41. Bisaglia, L.; Guegan, D. A comparison of techniques of estimation in long-memory processes. Comput. Stat. Data Anal. 1998,

27, 61–81. [CrossRef]
42. Dahlhaus, R. Efficient parameter estimation for self-similar processes. Ann. Stat. 1989, 1749–1766. [CrossRef]
43. Ferreira, G.; Olea Ortega, R.A.; Palma, W. Statistical analysis of locally stationary processes. Chil. J. Stat. 2013, 4 , 133–149
44. Beran, J.; Feng, Y.; Ghosh, S.; Kulik, R. Long-Memory Processes; Springer, Berlin/Heidelberg, Germany, 2013.
45. Armstrong, J.S. Evaluating forecasting methods. Principles of Forecasting; Springer: Berlin/Heidelberg, Germany, 2001; pp. 443–472.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00180-013-0408-7
http://dx.doi.org/10.1214/10-AOS812
http://dx.doi.org/10.1007/BF02590998
http://dx.doi.org/10.1016/S0167-9473(97)00045-5
http://dx.doi.org/10.1214/aos/1176347393

	Introduction
	Theoretical Framework
	ARFIMA Model for Long Memory Processes
	Long Memory Parameter Estimation Methods
	Periodogram Regression Method
	Whittle Estimator Method
	Detrended Fluctuation Analysis
	Rescaled Range Method
	Wavelet-Based Method

	Recurrent Artificial Neural Networks

	Materials and Methods
	Dataset Description
	Methodology

	Results
	Comparative Study of Estimation Methods
	Hurst Parameter Prediction Using Recurrent Neural Networks
	Synthetic Data
	Real Datasets

	Conclusions
	References

