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Abstract: Numerous advancements in various fields, including pattern recognition and image
classification, have been made thanks to modern computer vision and machine learning methods.
The capsule network is one of the advanced machine learning algorithms that encodes features based
on their hierarchical relationships. Basically, a capsule network is a type of neural network that
performs inverse graphics to represent the object in different parts and view the existing relationship
between these parts, unlike CNNs, which lose most of the evidence related to spatial location and
requires lots of training data. So, we present a comparative review of various capsule network
architectures used in various applications. The paper’s main contribution is that it summarizes
and explains the significant current published capsule network architectures with their advantages,
limitations, modifications, and applications.
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1. Introduction

Computer vision is the field of artificial intelligence used in real-time applications
such as ECG classification [1], face recognition [2], tumor identification [3], object seg-
mentation [4], vehicle recognition [5], character recognition [6], and security. Symbolic
artificial intelligence is unable to resolve these complex real-time problems [7], result-
ing in the introduction of deep learning models such as convolutional neural networks
(CNNs) [8] and recurrent neural networks (RNNs) [9]. CNNs are the most efficient at solv-
ing and performing image classification [10] and image recognition [11], from basic items
to complicated objects. CNNs predominate in computer vision-related issues. Variants of
CNN have demonstrated successful results when used for classification across a variety
of domains [12]. However, CNNs fail due to their pooling process [13]. Lots of valuable
information, such as object pose and location, is discarded in the polling process [14].
Another drawback of CNNs is their lack of rotational invariance, which requires a lot of
training data [15]. Alternate techniques were used to overcome the limitations of CNNs,
such as reinforcement learning [16] and end-to-end connected layers [17]. However, the
proposed approaches did not show any improvement, which led to the introduction of cap-
sule networks (CapsNet) [18], which increased the model accuracy by 45% over CNN [19].
This paper highlighted the limitations of CNNs and reviewed the promising performance
of the capsule network in the literature. The main contributions of this paper are:

• To present state-of-the-art capsule models to motivate researchers.
• To explore possible future research areas.
• To present a comparative study of current state-of-the-art CapsNet architectures.
• To present a comparative study of current state-of-the-art CapsNet architecture rout-

ing algorithms.
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• To explore the factors affecting the performance of capsule neural network architec-
tures with their modifications and applications.

Since capsule networks are a new and hot research topic, this paper attempts to
explain the idea behind them. Secondly, we presented a comparative study of the CapsNet
architectures employed in various applications, overcoming the drawbacks of the CNN
with their strengths and drawbacks with possible future directions.

The paper is organized as follows: In Section 1, the objectives of the paper and the
background of the field under consideration are provided. In Section 2, an overview
of CNNs and their limitations are discussed. Sections 3–8 present a brief overview of
CapsNet algorithms with their performance, modifications, applications, advancements,
and limitations. A review of implementations, structure, and performance evaluation
methods is presented in Section 9. Section 10 presents the survey and comparative analysis
of different routing algorithms, while Section 11 gives future research directions, and
Section 12 concludes the paper. The table in the end presents the nomenclatures used in
each section.

2. Convolutional Neural Network (CNN)

Let us discuss the characteristics of an image to enable CNNs to identify features.
Suppose a grayscale, 2 × 2 pixel image. Computers display grayscale images as a two-
dimensional array with each pixel represented by 8 bits (from 0 to 255). The color intensity
is defined by the range 0 to 255, where 0 is black and 255 is white. The grayscale in-
tensity range between black and white is between 0 and 255. Figure 1a shows how a
computer interprets a 2 × 2 grayscale image, whereas Figure 1b shows how a computer
represents features.
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Figure 1. Image representation on a computer. (a) Interpretation of a 2 × 2 grayscale image, (b) com-
puter representation of features.

A deep learning (DL) algorithm for image categorization is called a CNN. In essence,
CNNs are made to scan picture data, prioritize different elements, and tell one class from
another. A fully linked layer with an activation function, a pooling layer, and a convolution
layer make up CNNs [20]. The input image is scanned to extract low-level features such
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as edges in the convolutional layer. To make the model more non-linear and to cut down
on computational complexity, the RELU [21] function is employed. A pooling layer, often
referred to as down-sampling, is used to reduce memory requirements and recognize the
same item in multiple images. Several types of pooling, including max pooling [22], min
pooling, average pooling, and sum pooling, are utilized depending on the requirements.
CNN’s basic organizational structure [23] is shown in Figure 2.
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Figure 2. Basic structure of CNN.

The major problem with CNNs is that the pooling operation loses lots of features in
an image. Therefore, CNNs are invariant, lack equivalence, and require lots of data and
computational time to train [24]. Moreover, CNNs result in the wrong classification in cases
of pixel perturbation [25].

3. Capsule Network (CapsNet)

The basic idea of CapsNet is to encrypt the relationship between various entities
(scales, location, pose, and orientation). For example, a non-face image containing a nose,
mouth, and eyes will be classified as a face by CNNs, despite the fact that a human clearly
recognizes it as not a face. However, the capsule network will learn the relationship
between features such as the nose and eyes located without a face and will successfully
recognize them as not a face image.

Basically, a capsule network is a type of neural network that performs inverse graphics.
For example, in object detection, the object is divided into subparts. To represent that
object, a hierarchical relationship is developed between all subparts. The implementation
of CapsNet is divided into three main parts. These parts are the input layer, hidden layer,
and output layer.

Initially, capsule networks were presented in 2017 by Sabour and Hinton. This network
involves two convolutional layers. The first convolutional layer includes 256 channels,
made up of 9 × 9 filters with a RELU function with a stride of 1. The second layer was a
convolutional capsule layer containing 6 × 6 × 32 capsules with a stride of 2. Each primary
capsule has eight convolutional units operating with a kernel of 9 × 9. The squashing
function has been used as an activation function. The fully connected layer is the last layer
of Capsnet with 16D capsules of size ten, known as DigitCaps. These capsules receive input
from all capsules and perform classification based on ten classes. Figure 3 presents the
structure of the capsule network.
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In terms of security, capsule networks have been shown to be more robust against
certain types of attacks compared to traditional CNNs [26]. One of the most common
attacks on neural networks is the adversarial attack, where an attacker perturbs the input
data in a way that is imperceptible to humans but causes the model to misclassify the input.
Capsule networks have been shown to be more robust against such attacks, as they are less
affected by small changes in the input data.

CapsNet capacity to gather data on the interactions between several features in an
input image accounts for its greater resilience. CapsNet employ “capsules”, which are
collectives of neurons that cooperate to represent particular aspects of a picture. These
capsules can then be utilized to produce an output image that is more faithful to the original
and less vulnerable to adversarial attacks.

In terms of security, tasks such as object recognition [27], vote assaults [28], intrusion
detection [29], and adversarial attacks [30] have the potential to be very helpful when using
capsule networks. Capsule networks are more effective at spotting odd or suspicious objects
or activities in a picture when they take into account the spatial relationships between
objects in an image [31].

Consider a security camera watching over a parking lot, for instance. A conventional
CNN might be able to recognize the presence of a car on the scene, but it might not be able
to tell if the automobile is parked in a permitted or prohibited place. On the other hand,
a capsule network might be able to identify the spatial relationships between the vehicle
and other items in the area and decide whether the vehicle is parked in a suspicious or
odd spot.

Capsule networks are not completely impervious to security assaults, though. Recent
studies have demonstrated that capsule networks are susceptible to specific attacks, such as
the “black-box” attack, where the attacker has little understanding of the model and its pa-
rameters. This kind of approach still allows the attacker to produce adversarial examples by
exploiting the transferability across various models, which can result in misclassifications.

Overall, despite showing some promise in terms of security resilience, capsule net-
works are not completely impervious to attacks. It is crucial to carefully assess the security
of capsule networks and to use the proper defenses to mitigate any vulnerabilities, as with
any machine learning model.

3.1. Mathematical Model of Capsule Network

The mathematical model of a capsule network can be described as follows:
Input: The input to a capsule network is an image or a set of images.
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Convolutional layer: The output of the convolutional layer is given by:

zij,k = ∑L
l=1 Wi,j,k,lXi,j,l + bi,j,k (1)

where zij,k is the activation of the kth feature map at position (i, j) in the output, Wi,j,k,l

is the weight associated with the ith input channel at position (i, j) in the filter of the kth

feature map, Xi,j,l is the activation of the ith input channel at position (i, j) in the input, and
bi,j,k is the bias term associated with the kth feature map at position (i, j).

Primary capsule layer: The output of the primary capsule layer is given by:

Vi,j,k = Squash
(
∑L′

l=1 Wi,j,k,lui,j,l

)
(2)

where Vi,j,k is the output vector of the kth primary capsule at position (i, j) in the output,
ui,j,l is the input vector associated with the ith detected feature or part at position (i, j) in
the input, Wi,j,k,l is the weight matrix that connects the ith input vector to the kth primary
capsule, and Squash is a non-linear activation function that ensures that the output vector
has a length between 0 and 1.

Routing by agreement: The output of the higher-level capsule layer is given by:

Sj = ∑i cijûj|i (3)

where Sj is the output of the jth higher-level capsule, ûj|i is the predicted output vector of
the jth higher-level capsule based on the input from the ith primary capsule, and ci,j is the
coupling coefficient that represents the probability that the ith primary capsule should be
routed to the jth higher-level capsule.

Capsule output: The final output of the capsule network is given by:

yk = squash(sk) (4)

where yk is the output vector of the kth capsule, and sk is the input vector associated with
the kth capsule.

These equations explain how information spreads across a capsule network. Back-
propagation is used to optimize the network’s weights and biases during training in order
to reduce the loss function, which calculates the discrepancy between expected and actual
outputs. To fit particular tasks and datasets, the capsule network design can be altered
in a variety of ways. For instance, new routing algorithms can be utilized to better cap-
ture the interactions between capsules, or further layers can be added to the network to
increase speed.

3.2. Training and Inference Optimization Methods of CapsNet

Capsule networks are a type of neural network architecture that was introduced in
2017 as an improvement over CNNs. They use a different type of neuron called a capsule
to represent various properties of an object, such as orientation, color, and texture, and use
these capsules to form hierarchies that help to improve the network’s ability to recognize
objects in images. Training and inference optimization methods are crucial for improving
the performance of capsule networks. Some of the most popular methods for training and
inference optimization in capsule networks are:

Dynamic routing: Dynamic routing [18], a technique for sending data between cap-
sules, was first described in the capsule networks article. Each pair of capsules in the
same layer must have a scalar weight calculated for them in order to know how strongly
connected they are to one another. The output of the capsule is then updated using the
weight before being sent on to the next layer. Iterations of this method are carried out until
the network converges.
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Margin loss: A loss function used to train capsule networks is margin loss [32]. It aids
in ensuring that the capsules are correctly identified and that the network is resistant to
slight input perturbations. The margin loss enables the network to learn to distinguish
between diverse objects and their various attributes by computing it depending on the
distance between the capsule’s output and the desired output.

Reconstruction loss: Another loss function that is used to train capsule networks is
reconstruction loss [32]. It encourages the network to produce correct reconstructions of
the input images and helps to guarantee that the network is learning to recognize objects
and their features. Based on the difference between the input image and its reconstruction,
the reconstruction loss is calculated.

Dynamic routing with EM routing: An improvement to the first dynamic routing
algorithm is dynamic routing with EM routing [18]. It entails adding the expectation-
maximization (EM) algorithm to the routing process, which enhances the network’s stability
and ability to handle complicated inputs.

Capsule reconstruction: A method used to increase the interpretability and robustness
of capsule networks is capsule reconstruction [32]. It entails employing a decoder network
to train the network to reconstruct the input image from its learned capsule representations.
This can give the network a greater in-depth understanding of how to make predictions
while also assisting it in learning more discriminative and invariant characteristics. Utilizing
strategies such as reconstruction loss and adversarial training, capsule reconstruction can
be improved.

Adversarial training: Capsule networks can be trained via adversarial training [33]
to become resistant to adversarial attacks. It involves creating hostile instances or inputs
intended to lead the network to incorrectly classify the object. The adversarial samples
are then used to train the network, which enhances its capacity to identify and categorize
objects in the midst of noise and other sorts of disturbances.

Capsule dropout: Capsule dropout [33] is a regularization technique that can be used
to prevent overfitting in capsule networks. It involves randomly dropping out capsules
during training, forcing the network to learn more robust and generalizable representations.
Capsule dropout can be optimized using techniques such as the dropout algorithm.

Overall, these training and inference optimization methods are crucial for improving
the performance of capsule networks and ensuring that they are able to recognize objects
and their various properties accurately and robustly.

3.3. NASCaps

A framework for neural architecture search (NAS) called NASCaps [34] was created
primarily to enhance the precision and hardware effectiveness of CapsNets. Instead of
manually developing and fine-tuning the architecture, NAS is a method for automatically
determining the best neural network architecture for a given task [35].

The goal of NASCaps is to improve the performance of CapsNets by automatically
searching for the optimal architecture that maximizes accuracy while minimizing hard-
ware requirements, such as memory usage and computation time [36]. NASCaps uses
a combination of reinforcement learning and evolutionary algorithms to search for the
optimal architecture.

In summary, CapsNets and NASCaps are related concepts, with CapsNets being a
specific type of neural network architecture and NASCaps being a framework for opti-
mizing the performance of CapsNets. While both concepts are focused on improving the
accuracy and efficiency of neural networks, they are distinct in terms of their specific goals
and techniques.

4. Factors Affecting CapsNet’s Performance

Datasets play an essential role in the performance of an algorithm [37]. Initially,
CapsNet gave promising results on the MNIST dataset. But as compared to complex
datasets with varying backgrounds, sizes, colors, noise, and multiple objects in a single



Mach. Learn. Knowl. Extr. 2023, 5 897

sample, this dataset is quite simple. However, CapsNet performs better than CNN and
gives promising results on more complex datasets [38]. On SVHN [39] and CIFAR10 [40]
datasets with high intra-class variation and background noise, as compared to the advanced
algorithms such as VGG NET [41] and CNN [42], CapsNet’s performance was not efficient
but still gave a better result than CNN [43]. Moreover, in some situations, increasing or
decreasing the number of iterations will not affect accuracy. For a deep study, readers
should refer to [44].

The size of the training dataset can have an impact on how well capsule networks
(CapsNets) function. When developing deep learning models, such as CapsNets, the
quantity of the training dataset is extremely important. When discussing the performance
of CapsNets dependent on dataset size, keep the following considerations in mind:

4.1. Small Datasets

Overfitting is more likely to occur while training CapsNets on tiny datasets. Insuffi-
cient training samples may cause the model to memorize the training data rather than learn
useful representations. The performance on the training set may therefore be outstanding,
but the generalization to new data (validation and test sets) may not be.

4.2. Large Dataset

Large datasets tend to yield better results for CapsNets. More robust and generalizable
characteristics can be learned by the model with a significant amount of different training
data. The likelihood of overfitting is decreased, and the model can perform better on
untested data.

4.3. Transfer Learning

Transfer learning is a useful technique when working with tiny datasets. A CapsNet
can perform better if it is pre-trained on a large dataset with similar features before being
fine-tuned on the target dataset since the model can use the information learned from the
bigger dataset.

4.4. Data Augmentation

Data augmentation strategies can be used to lessen the effects of limited data. The
effective dataset size can be extended by using modifications such as rotation, flipping,
or cropping to produce more training examples, which enables the model to learn more
robust features.

4.5. CapsNet Architecture

The architecture of the network can affect how well CapsNet perform. To prevent over-
fitting, it is crucial to create a simpler architecture with fewer parameters for tiny datasets.

4.6. Capsule Routing

Another factor that might affect the speed in CapsNet is the number of routing
iterations. To avoid the model becoming extremely sensitive to changes in the data, it may
be advantageous to employ fewer routing iterations for small datasets.

4.7. Class Balancing

Class imbalances can be impacted by dataset size. If there are few samples available
for particular classes, the model might find it difficult to learn those classes efficiently. Class
imbalances can be addressed using strategies such as oversampling or class re-weighting.

4.8. Model Complexity

For smaller datasets, shallower CapsNet designs with fewer capsules and lower
complexity are typically preferable. Larger datasets might be needed for Deep CapsNets in
order to prevent overfitting and achieve adequate generalization.
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In summary, the dataset size significantly impacts the performance of CapsNets.
Larger datasets tend to lead to better generalization, while small datasets require careful
handling through techniques such as transfer learning, data augmentation, and model
simplification to achieve satisfactory results. When working with limited data, it is crucial
to consider these strategies to optimize the performance of CapsNets on the target task.

Moreover, in terms of robustness to affine transformation, CNNs with a global average
pooling layer perform better than CapsNet [45]. Furthermore, the dynamic routing and
transformation processes can harm the robustness of this algorithm. The squashing function
and conditional reconstruction are beneficial for learning semantic representation. But they
are applied beyond CapsNet and are considered auxiliary components.

5. Modification in CapsNet

In a review of CapsNet’s routing-by-agreement method, ref. [46] found that it does
not always ensure that a higher-level capsule is linked to numerous lower-level capsules
to construct a parse tree. An alternative method allows a lower-level capsule to choose
a single parent instead of the original routing-by-agreement technique, which requires
lower-level capsules to send their outputs to all higher-level capsules. This improvement
increases the network’s depth and resistance against white-box adversarial attacks [47].

Some researchers have looked into using a generative adversarial network (GAN)
with a high-performing capsule-based discriminator to detect whether an image is real
or artificially created (fake) [48]. According to [49], CapsNets have the potential to be
superior to CNNs as GAN discriminators by maintaining important information without
the requirement for pooling.

According to [50], the dynamic routing algorithm in CapsNet may be described as
an optimization problem that involves minimizing an objective function. This stabilizes
the training process by preventing the activation probabilities from falling severely out of
balance during iterations. By doing regularization on the weight matrix with a margin loss,
ref. [18] addressed the issue. According to [50], a more general method entails rescaling the
weight matrix to guarantee that the inner product between input and the weighted sum (sj)
of all individual primary capsule predictions for capsule j is less than 1 for each iteration.

Equal-weight initialization routing in the original CapsNet has a tendency to impede
convergence and lower accuracy. An improved option is to train the initial routing weights
via backpropagation by modeling them as trainable parameters [51]. The performance of
multi-label classification problems can also be enhanced by taking into account the fact that
primary capsule predictions are not independent.

Focusing on the length of a capsule rather than the individual capsule outputs has
proven to be a more successful strategy for entity detection [52]. The presence of an entity
can be denoted by the length of the capsule, and the pose attributes such as position,
size, orientation, deformation, velocity, albedo, hue, and texture are represented by the
orientation of the capsule.

Although a promising strategy for neural networks, capsules have certain implemen-
tation and performance issues. When determining the assignment probabilities between
capsules in adjacent layers, SoftMax is frequently utilized; however, it has the drawback
of convergent to uniform probability during routing iterations. The MaxMin function,
which enables scale-invariant normalization and allows lower-level capsules to assume
independent values, was suggested by [53] as a solution to this problem. This function
enhances performance.

Densely connected convolutional layers can improve the learning of discriminative
feature maps for CapsNets; however, doing so may cause the vanishing gradient problem
when network depth is increased. Feature concatenations or ResNet-style skip connections
can be used to add dense connections between layers to alleviate this issue [54,55].

The current CapsNet routing technique has a flaw in that the training process is not
properly included in it. It is necessary to manually calculate the ideal number of routing
iterations, which may not ensure convergence [56]. With further settings, such as higher
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Conv and FC layers, CapsNets have shown potential on datasets other than MNIST or
smallNORB [57].

However, due to the fact that the averaging of votes in a vector space does not result
in equivariant mean estimates on the manifold of poses, dynamic routing-based CapsNets
do not ensure equivariance or invariance. For this reason, ref. [58] developed group
equivariant capsule layers, in which pose vectors are limited as components of a group,
enabling guaranteed equivariance and invariance under specific circumstances in a general
routing-by-agreement algorithm skip.

Numerous trials and academic studies have proven CapsNet’s resistance to affine trans-
formations. It can recognize objects despite changes in position, rotation, and scale thanks
to the capsules’ capacity to encode spatial relationships and the dynamic routing mech-
anism’s consensus-building capabilities. In tasks such as object recognition and posture
estimation, where the input photos can have different orientations and positions, CapsNet
has demonstrated encouraging results. The original CapsNet design has undergone a
number of changes and enhancements to increase its resistance to affine transformations.
Table 1 presents several significant CapsNet changes and how they affect the system’s
robustness to affine transformation.

Table 1. Various CapsNet modifications to enhance affine transformation.

CapsNet Modification Description Impact on Robustness to Affine Transformations

Dynamic routing with RBA Routing-by-agreement (RBA)
variation of dynamic routing.

Enhances capsule consensus and adaptability to
variations in position, rotation, and scale.

Aff-CapsNets Affine CapsNets. Significantly increases affine resilience with fewer
parameters.

Transformation-aware capsules Capsules explicitly designed to
handle affine transformations.

Learns to detect and apply appropriate transformations
to input features, improving invariance to affine
transformations.

Capsule-capsule transformation
(CCT)

Adaptive transformation between
capsules.

Allows the network to handle varying degrees of affine
transformations effectively.

Margin loss regularization Adds margin loss terms during
training.

Incentivizes larger margins between capsules, increasing
resistance to affine transformations.

Capsule routing with EM routing Utilizes an EM-like algorithm for
capsule routing.

Improves capsule agreement process and feature
learning for better robustness to affine transformations.

Self-routing A supervised, non-iterative
routing method.

Each capsule’s secondary routing network routes it in a
separate manner. As a result, the agreement between
capsules is no longer necessary, but upper-level capsule
activations and postures are still obtained in a manner
similar to mixture of experts (MoE).

Adversarial capsule networks Combines CapsNet with
adversarial training techniques.

Helps the network learn robust features by training
against adversarial affine transformations.

Capsule dropouts Applies dropouts to capsules
during training.

Enhances generalization and robustness by reducing
capsule co-adaptations.

Capsule reconstruction Augments CapsNet with a
reconstruction loss term.

Encourages the network to preserve spatial information,
improving robustness to affine transformations.

Capsule attention mechanism Incorporates attention
mechanisms into capsules.

Improves focus on informative features, aiding
robustness against affine transformations.

6. Applications of CapsNet

By introducing “capsules” to better capture hierarchical relationships between fea-
tures in data, CapsNets are a kind of neural network architecture designed to address
some of the drawbacks of conventional convolutional neural networks (CNNs). Here is
a thorough note on some of the most important applications for which CapsNets have
demonstrated promise:
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6.1. Image Classification and Recognition

Image identification and classification tasks are one of the main uses of capsule net-
works. CapsNets’ superior ability to accurately describe part-whole connections and record
spatial hierarchies enables them to recognize things with many components or different
orientations. This makes them particularly effective for jobs where objects have distinct
sections, such as classifying photographs of items taken from various angles or identifying
handwritten numerals with varied writing styles.

6.2. Object Pose Estimation

In computer vision applications, CapsNets can be used for estimating object poses.
CapsNets can estimate the 3D posture of things in photos by learning capsules that represent
different object pieces and their associated spatial relationships. Due to the fact that it
enables robots to comprehend the spatial orientation of objects in the environment, this
capacity is extremely significant in robotics and augmented reality.

6.3. Image Generation

For image synthesis applications, generative models based on capsule networks can
be used. CapsNets can produce coherent and realistic visuals with meaningful structures
by modeling part-whole relationships. They can transform images while maintaining
the underlying structures, which makes them helpful in applications such as image-to-
image translation.

6.4. Medical Image Interpretation

Capsule networks have demonstrated promising outcomes in the interpretation of
medical images. CapsNets’ capacity to capture hierarchical relationships is helpful in
segmenting organs, detecting anomalies, or even diagnosing diseases based on medical
scans. Medical imaging frequently contains complicated structures. CapsNets can improve
the precision of automated systems for analyzing medical images, which may help doctors
make diagnoses.

6.5. Natural Language Processing (NLP)

Although CapsNets were primarily developed for computer vision tasks, researchers
have also looked into their potential use in NLP. They can capture hierarchical links between
words and phrases in sentences by modifying CapsNets to analyze sequential data. This
could lead to better machine translation, text production, sentiment analysis, and other text
analysis activities.

6.6. Video Analysis

CapsNets can be used for tasks such as activity tracking and recognition in video analysis.
Since they can model temporal hierarchies, they are able to recognize complicated events and
track objects through time in video sequences by capturing long-range dependencies.

6.7. Few-Shot Learning

With a limited amount of labeled data, a model must recognize and generalize to
new classes in a few-shot learning scenario. In such cases, CapsNets’ capacity to record
part-whole interactions can be useful. Even if there are only a few instances given during
training, they might be able to generalize more effectively to new classes.

Capsule networks are one of the newest additions to the field of machine learning.
The capsule network is still in its infant, research, and development phases; as a result,
there are no commercial applications that are based on it yet. Still, they can be used to solve
real-life problems such as machine translation [59], autonomous cars [60], handwritten
and text recognition [61], mood and emotion detection [62], intent detection [63], abnormal
driving [64] on a complex road, predicting traffic speed [65], adversarial attacks [66],
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self-driving cars [67], facial recognition systems [68], classifying brain tumors [69], and
so on.

7. Why CapsNet Is Superior to CNN in Most Cases

Capsule networks (CapsNets) and convolutional neural networks (CNNs) are both
deep learning architectures used for image recognition and classification tasks. CapsNets
were introduced as an improvement over CNNs, particularly in terms of their ability to
recognize and classify images with variations in orientation, scale, and deformation. One
of the advantages that CapsNets have over CNNs is their ability to capture hierarchical
relationships between features, which can be particularly useful in tasks such as object
recognition. However, this does not necessarily mean that CapsNets are more robust than
CNNs in all scenarios.

In fact, some research studies have shown that CNNs can outperform CapsNets in
certain situations, such as when dealing with small datasets, when faced with adversarial
attacks [66], or when having fewer parameters. Adversarial attacks are a type of cyberattack
where small, carefully crafted perturbations are added to an input data point to fool the
model into making the wrong prediction. Furthermore, CNNs have been used extensively
in many real-world applications, such as self-driving cars [67] and facial recognition
systems [68], and have proven to be highly effective and robust.

However, whether CapsNets are superior to CNNs in most cases is still an area of
active research and debate. Here are some reasons why CapsNets might be superior to
CNNs in some cases:

7.1. Better Understanding of the Spatial Relationship between Features

CapsNets can preserve spatial relationships between features better than CNNs. In
CNNs, each filter considers only a small region of the input image, and the relationship
between different features is lost. CapsNets, on the other hand, maintain the relative spatial
relationships between features in the input image, which is important for recognizing
complex objects.

7.2. Handling Variations

CapsNets use capsules (groups of neurons) to represent parts of an image and their
properties, such as orientation and position. These capsules can capture variations in the
image that CNNs might miss, especially in cases where the object of interest can appear in
different positions, orientations, or scales.

7.3. Better Generalization

CapsNets have shown better generalization ability than CNNs, especially when the
training data are limited or noisy. CapsNets can learn to recognize features in images that
are not present in the training set, which can lead to better performance on unseen images.

Additionally, CapsNets are still a relatively new architecture, and there is limited
research and practical experience with them compared to CNNs. Therefore, whether
CapsNets are superior to CNNs in most cases is still an open question and depends on the
specific task and dataset.

7.4. Hierarchical Representation

Both CNNs and CapsNets are capable of capturing hierarchical representations of
feature representations, but CapsNets provide a more explicit mechanism for retaining
spatial hierarchies, which can be useful for problems involving different points of view.

7.5. Translation Invariance

While CNNs are by themselves translation invariant, CapsNets require dynamic
routing in addition to pooling to achieve invariance and manage spatial changes.
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1. Viewpoint variations: CapsNets are made to be more resilient to changes in view-
point and pose, which can be a problem for regular CNNs, particularly when dealing with
3D objects or objects in 3D scenarios.

7.6. Performance

While there is ongoing research into CapsNets’ performance and they have shown
promise, CNNs continue to be the most popular architecture for a variety of computer
vision tasks because of their longevity, depth of research, and usability.

CNNs have received a lot of attention and are frequently used for a variety of image-
related tasks, whereas CapsNets provide an alternate strategy that may be more effective
for issues requiring improved handling of spatial hierarchy and viewpoint variations. Cap-
sNets are still undergoing investigation; therefore, how well they perform in comparison to
CNNs will depend on the task at hand and the dataset.

8. Limitation/Challenges of Capsule Network

Capsule networks are a relatively new type of neural network architecture that was
proposed as an improvement over traditional convolutional neural networks (CNNs).
Although CapsNets show promising results in certain applications, they also have some
limitations/challenges. Here are a few:

8.1. Limited Understanding

CapsNets are a relatively new concept, and researchers are still working to understand
how they work and how to optimize their performance. There are still many open questions
about how CapsNets represent and process information and how they can be improved.

8.2. Computational Cost

CapsNets are more computationally expensive than CNNs due to the added complex-
ity of the routing-by-agreement algorithm used to compute the activations of the capsules.
This can make training CapsNets slower and more resource intensive.

8.3. Limited Real-World Applications

CapsNets have shown promising results on certain image recognition tasks, but
their performance on other real-world problems is yet to be explored. There are still
many open research questions about how CapsNets could be used in more complex and
varied domains.

8.4. Model Complexity

CapsNets have a more complex architecture compared to traditional convolutional
neural networks (CNNs). This increased complexity makes them more difficult to train
and optimize.

8.5. Limited Interpretability

While the idea of capsules is to capture different properties of an object, the interpre-
tation of these properties is difficult. Understanding how different capsules contribute
to the final output of the network is not straightforward, which can make CapsNets less
interpretable than CNNs.

8.6. Sensitive to Small Variations

CapsNets can be sensitive to small variations in the input, which can cause them to
produce different output predictions for visually similar objects. This can be problematic
for tasks that require high levels of precision and consistency.
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8.7. Limited Availability of Pre-Trained Models

Pre-trained models for CapsNets are still not as widely available as those for CNNs,
which can make it difficult for researchers and practitioners to use CapsNets in their work.

9. Literature Survey

Hinton et al., in 2017, presented a new method called capsule network (CapsNet) to
overcome the limitations of CNNs. The CapsNet does not just extract and learn information
about the image features; it also learns the relationship between these features, which
results in a more accurate model. The proposed method was tested on the MNIST digit
dataset, where the CapsNet model outclassed the state-of-the-art CNN models.

The researchers in [69] presented an investigative analysis of capsule networks for
classifying brain tumors. According to researchers, CapsNet is truly becoming a trend in the
field of image classification and gives promising results as compared to the other mentioned
algorithms. The authors proposed that accuracy can be increased by changing the number
of feature maps. Figure 4 shows the proposed architecture for brain tumor classification.
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Figure 4. Capsule neural network for brain tumor detection.

The authors in [70] presented a comparative analysis of CapsNet with Fisherfaces,
LeNet, and ResNet. These algorithms were tested on four datasets, including faces, traffic
signs, and other objects. The authors claim that the CapsNet algorithm gives promising
results on a small dataset. While achieving a lower error rate, CapsNet requires more sample
images per class. The CapsNet architecture used in this paper is presented in Figure 5.

In [71], the authors presented a new algorithm, CapsGAN, by demonstrating the
weakness of CNN-based GAN architecture in generating 3D images. The authors claim
that CapsGAN accomplishes better results than CNN-GAN in generating 3D images with
high geometric transformation. However, the proposed algorithm was tested on a simple
dataset (MNIST), and additional experiments will be needed using complex datasets. The
proposed architecture is presented in Figure 6.
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Figure 6. Proposed CapsGAN architecture for generating 3D images.

The authors in [72] proposed CapsNet to classify object height using ultrasonic data
taken from automotive ultrasonic sensors. In preprocessing, the signal quality was im-
proved, and the classification performance was improved to allow easy data interpretation
by a human. A dataset of 21,600 measurements was collected for training and testing
the proposed approach. The proposed approach achieved 99.6% accuracy using complex
CapsNet as compared to complex CNNs (98.9%). Moreover, the authors suggested that
lots of research is needed to make ultrasonic technology appropriate for self-driving ve-
hicles. Figure 7 shows the proposed CapsNet used for ultrasonic data classification in
self-driving vehicles.
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After producing better results on the MNIST dataset, the authors in [73] extended
their work by using CapsNet for face recognition. A three-layer capsule network with
two convolutional and one fully connected layer was used in their work. They used the
LFW dataset and achieved 93.7% accuracy, beating the performance of traditional CNNs.
Figure 8 presents the proposed three-layer CapsNet architecture.
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Teto et al. [74] presented a comparative study of the C-CapsNet and CNN operations
to identify animals in the wilderness. The authors discuss the ability of the capsule to
rebuild any size and resolution image and the efficient learning efforts of the capsules from
their convolutional layer, which achieved 96.48% accuracy.

The authors in [75] presented a CapsNet architecture with a smaller number of param-
eters. Moreover, dynamic routing was replaced with a non-iterative, parallelizable routing
algorithm to handle a reduced number of capsules. The proposed methodology was tested
by MNIST, MultiMNIST, and smallNORB. On these three datasets, the capsule network
achieved higher accuracy with a lower number of parameters.

Pan et al. [76] presented a new version of the capsule network named the prediction-
tuning (PT) capsule network. He also introduces fully connected PT capsules and locally
connected PT capsules. The proposed model is different from the existing CapsNet ar-
chitecture and can be used for more complex vision tasks. The proposed model provides
better performance than CNN-based architectures on complex tasks. The results present an
improvement in performance and considerable parameter reduction as compared to others.
Figure 9 shows the proposed architecture of PT-CapsNet.

The researchers in [77] performed the classification of hierarchical multi-label text with
a simple CapsNet approach. To determine its superior performance, they compared the
proposed algorithm with SVM, LSTM, ANN, and CNN. For experimental purposes, the
BGC and WOS datasets were used. The proposed algorithm correctly classified multi-label
text as compared to other baseline algorithms. The presented structure of CapsNet is shown
in Figure 10.

The authors in [78] proposed a CapsNet-based framework to diagnose COVID-19
disease in chest CT scan images. They referred to the algorithm as COVID-FACT. The
classification of chest images was performed in two steps, each containing several convo-
lutional and capsule layers. Based on their experiment, the authors claim that COVID-
FACT achieved high accuracy with far fewer trainable parameters. The proposed approach
achieved 90.82% accuracy with 94.55 sensitivity and a specificity of 86.04. Figure 11 presents
the proposed COVID-FACT architecture.
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Figure 10. Proposed CapsNet architecture.

A three-in-one deep neural model architecture named CapsNet-ConvNet has been
presented in [79]. The researcher used the CapsNet network with dynamic routing to pre-
dict the textual bullying content and a CNN to predict the graphical bullying content. The
authors tested the proposed approach on a dataset containing 10,000 posts and comments
taken from YouTube, Twitter, and Instagram and achieved an accuracy of 0.9705.

The authors in [80] presented two new deep learning models, CNN, CapsNet, and
VGG, CapsNet, to detect COVID-19 disease using radiography images. The proposed
model was tested on 2905 images with 219 COVID-19 patients, 1345 pneumonia patients,
and 1341 normal patients. Based on experimental results, the authors claim that the VGG-
CapsNet model outperforms the CNN-CapsNet model by achieving an accuracy of 97%
for classifying COVID-19 and non-COVID-19 patients and 92% for classifying COVID-19,
normal, and pneumonia samples. The proposed architecture is presented in Figure 12.
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Figure 12. VGG-CapsNet architecture.

The researchers in [81] proposed a capsule network called MIXCAPS. The proposed
model is based on a mixture of experts, automatically splits the dataset through a gating
network based on convolution, and does not require fine annotation. The proposed ap-
proach is independent of pre-defined hand-shaped features, with an accuracy of 92.88%, a
sensitivity of 93.2%, and a specificity of 92.3%. The MIXCAPs model is shown in Figure 13.

Based on its promising performance in other applications, the authors presented the
CapsNet model for drowsiness detection using spectrogram images [82]. The proposed
model was compared with a CNN, which was outperformed by the proposed model,
which obtained an accuracy of 86.44% against an accuracy of 75.86% by the CNN. Figure 14
presents the proposed CapsNet approach.
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The authors in [83] proposed a disease-related compound identification model-based
five-layer capsule network to correctly identify the disease-related compound. The perfor-
mance of CapsNet was compared with that of SVM, gcForest, RF, and forgeNet. Based on
their results, the authors claim that CapsNet gets better ROC curves as compared to other
techniques and makes an improvement of 1.7–12.9% in terms of AUC.

The authors in [84] presented a framework of capsule networks for Urdu handwritten
digit recognition. The authors collected their own dataset of handwritten digits from
900 people, with 6086 training images and 1301 images for testing. The proposed framework
achieves promising results (98.5% accuracy) as compared to deep auto-encoder (97.3%
accuracy) and CNN (96% accuracy).

The authors in [85] proposed a variant of capsule networks (multi-level capsule
networks) for five different types of military object recognition. The proposed approach
outclasses CNNs based on its performance and achieved an accuracy of 96.54%. Proposed
approaches are presented in Figure 15. Table 2 presents the performance summary of
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proposed capsule networks with their architecture, dataset used, comparison with state-of-
the-art algorithms, accuracy, and limitations.
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Table 2. Performance summary of numerous capsule networks.

Ref No Application/Problem
Definition

Architecture and
Parameters Dataset Compared with Accuracy (%) Recommendation/

Limitation

[69] Brain tumor type
classification.

Primary layer: 64 × 9 × 9
convolution filters and

stride of 1.
Primary capsule layer:

256 × 9 × 9 convolutions
with strides of 2. Decoder:

Fully connected layers
with 512 × 1024 × 4096

neurons.

Dataset used
in [86].

CNN presented
by [87]. 86.56.

Accuracy can be increased
by varying the number of

feature maps.

[70]

Comparative
analysis of CapsNet

with Fisherfaces,
LeNet, and ResNet.

256 feature maps, using a
9 × 9 kernel and valid

padding.

Yale Face
database B, MIT

CBCL Face
dataset, Belgium
TS Traffic Sign

dataset and
CIFAR-100.

Fisherfaces,
LeNet, and

ResNet.

95.3% on Yale
dataset, 99.87% on
MIT CBCl, 92% on
Belgium TS Traffic
Sign dataset, and
18% accuracy on

CIFAR-100.

With more training
iterations, CapsNet may

have better results.

[71]

3D image
generation to find

improved
discriminators for

generative
adversarial network

(GAN).

Dynamic routing:
Convolution 1 layer:

32 × 32 input, with 9 × 9
kernel of stride 1

Primary capsule layer:
32 channels each 8 × 8 × 8,
8D. Output capsule layer:

16 × 1.

MNIST and Small
NORB. DCGAN [88].

The MNIST used in this
paper is a simplistic image,

and additional
experiments are needed
using complex datasets.

CapsGAN has the ability
to capture geometric

transformations.

[65]
To classify

ultrasonic data for
self-driving cars.

Dynamic routing by
agreement.

Convolution: 256 kernels
of 6 × 6 size,

Activation function: ReLU.
Primary Capsule:

32 channels of 6 × 6 × 8.
Digit Caps: 16 × 4.

A dataset of
21,600

measurements.
Complex CNN.

99.6% using
complex CapsNet

as compared to
CNN (98.9).

A lot of research is needed
to make ultrasonic

technology appropriate for
self-driving vehicles.

[73] Face recognition.

A 3-layer capsule network
having two convolutional
and one fully connected
layer. Primary capsules:

32 channels of
convolutional

8-dimensional capsules.
Final layer: 16 dimensional

capsules per class.

LFW dataset. Deep CNN. 93.7.

Due to their unique
equivariance properties,
CapsNets can perform

better than CNN on
unseen transformed data.

Experimenting with larger
training set size and fewer

epochs could avoid
overfitting and improve

accuracy.
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Table 2. Cont.

Ref No Application/Problem
Definition

Architecture and
Parameters Dataset Compared with Accuracy (%) Recommendation/

Limitation

[74]
To identify the
animals in the

wilderness.
C-CapsNet. Serengeti dataset. CNN. 96.48. -

[75]
Capsule network

with self-attention
routing.

Non-iterative,
parallelizable routing
algorithm instead of

dynamic routing.

MNIST,
smallNORB, and

MultiMNIST.
CNN. -

Achieved higher accuracy
with a considerably lower

number of parameters.

[76]

PT-CapsNet for
semantic

segmentation,
classification, and

detection tasks.

Prediction-tuning capsule
network (PT-CapsNet)

with connected PT
capsules and locally

connected PT capsules.

CIFAR-10,
CIFAR-100,

Fashion-MNIST,
DenseNet-100,

ResNet-110.

DenseNet,
ResNet, and

CNN.
-

PT-CapsNet can perform
better than CNN-based

models with challenging
datasets, higher image

sizes, with a smaller
number of network

parameters.

[77]
Hierarchical

multi-label text
classification.

The features encoded in
capsules and routing

algorithm are combined.

BGC and WOS
datasets.

SVM, LSTM,
ANN, and CNN

architectures.
-

Proposed algorithm
performs efficiently.
Future work should

involve cascading capsule
layers.

[78]

COVID-19 patient
detection through

chest CT scan
images.

U-net-based segmentation
model, capsule network. COVID-CT-MD. - 90.82.

Proposed algorithm has
been tested using a simple

dataset of 171 images of
COVID-19 positive

patients, 60 patients with
pneumonia, and 76 normal

patients.

[79] Cyberbullying
detection.

CapsNet with dynamic
routing and CNN.

10,000 comments
taken from

YouTube, Twitter,
and Instagram.

KNN, SVM, and
NB. 97.05.

High-dimensional, skewed,
cross-lingual, and

heterogeneous data are the
limitations of proposed

approach.
Future work can be

directed toward detecting
and recognizing wordplay,

creative spellings, and
slang words.

[80]

To detect COVID-19
disease by means of

radiography
images.

VGG-CapsNet.

2905 images
having 219, 1345,
and 1341 images

of COVID-19
patients available

at [89].

CNN-CapsNet.

VGG-CapsNet has
97% for classifying

COVID-19,
non-COVID
samples, and

pneumonia with
92% accuracy.

Proposed approach can be
used for clinical practices.

[81]
Lung nodule
malignancy
prediction.

MIXCAPS.
LIDC dataset [90]

and IDRI
dataset [91].

-

92.88%, with
sensitivity of 93.2%
and specificity of

92.3%.

The proposed approach is
independent of

pre-defined hand-shaped
features and does not

require fine annotation.

[82] Drowsiness
detection. Generic CapsNet. EEG signals. CNN. 86.44.

To improve drowsiness
detection, a proper dataset

will be required in the
future.

[83]
To identify

pneumonia-related
compounds.

Five-layer capsule
network.

88 positive
samples and
264 negative

samples.

SVM, gcForest,
RF, and forgeNet.

An improvement of
1.7–12.9% in terms

of AU.
-

[84] Urdu digit
recognition.

Primary capsule layer:
8 convolutional units with
two strides, 32 channels,

and 9 × 9 kernel.
Batch size = 100.

Epochs = 50.

Own collected
dataset of

handwritten
characters and

digits of
900 people with

6086 training
images and

1301 images for
testing.

Autoencoder [92]
and CNN. 97.3.

The assumption that one
pixel of an image has at

most one instance type is a
challenging task. So that it

can be accurately
represented by capsule.

[85] Military vehicle
recognition.

Multi-level CapsNet with
class capsule layer.

3500 images
collected from the

Internet.
CNN. 96.54%. -
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Table 2. Cont.

Ref No Application/Problem
Definition

Architecture and
Parameters Dataset Compared with Accuracy (%) Recommendation/

Limitation

[93] Emotion
recognition.

Features: Feature matrix
Convolution 1 layer:

16 × 16 × 256 channels.
Primary capsule layer:
7 × 7 × 256D vector.
Class capsule layer:

2 × 49 × 32D.
Dynamic routing.

DEAP
dataset [94].

Compared with
five versions of

capsule networks,
SVM, Bayes

classifier and
Gaussian naive

Bayes.

Arousal = 0.6828
valence = 0.6673

dominance = 0.6725.

To verify its
comprehensiveness, the

proposed method will be
tested on more datasets of

emotion recognition.

[95] Emotion of tweets
prediction.

Embedding layer, Bi-GRU
layer with capsule

network. Flattening with
SoftMax layer.

Dynamic routing by
agreement.

WASSA 2018.

GRU with
hierarchical

attention,
GRU with CNN.

GRU with
CapsNet.

F1 score = 0.692.

[96] Brain tumor
classification.

Same as traditional
CapsNet. Instead of
256 feature maps in

convolutional layer, they
used 64.

Dataset used in
[97]. CNN.

[98] Lung cancer
screening.

Encoder: 32 × 32 image to
24 × 24 with 256 channels.

Primary capsule: 8 × 8
NoduleCapsule:

64 × 256 × 16 each.
Decoder: 8 × 8 × 16.

226 unique CT
scan images. CNN.

Three times faster
with the same

accuracy.

In the future, unsupervised
learning will be explored

with CNN.

[99]
Biometric

recognition system
(face and iris).

Fuzzified image filter is
used as preprocessing step

to remove background
noise.

Before the capsule network,
Gabor wavelet transform is
used to detect and extract
the vascular pattern of eye

retinal images.
Max pooling enabled with

dynamic routing.

Face 95 [100] and
CASIA-Iris-
Thousand

[101].

CNN.
99% accuracy with

an error rate of 0.3%
to 0.5%.

To implement the
proposed method in public

sector for biometric
recognition.

[102] Low-resolution
image recognition.

DirectCapsNet with
targeted reconstruction

loss and HR-anchor loss.

CMU multi-PIE
dataset [103],

SVHN dataset,
and UCCS

dataset.

Robust partially
coupled nets,
LMSoftmax,

L2Softmax, and
Centerloss for

VLR.

95.81%.

In the future, VLR FR can
be performed in the
presence of aging,

adversarial attacks, and
spectral variations.

[104] Audio classification.

Agreement-based dynamic
routing, flattening capsule

network, Bi-GRU layer,
SoftMax function, and

embedding layer.

WASSA implicit
emotion shared

task [105].

GRU + CNN.
GRU +

hierarchical
attention.

50%. -

[106]
Image classification
of gastrointestinal

endoscopy.

Combination of CapsNet
and midlevel CNN

features
(L-DenseNetCaps).

HyperKvasir
dataset [107] and

Kvasir v2
dataset [108].

VGG16,
DenseNet121,

DenseNetCaps,
and

L-VGG16Caps.

94.83.
This model can also be

applied to the diagnosis of
skin cancer, etc.

[109] Hate speech
detection.

HCovBi-Caps
(convolutional, BiGRU,
and capsule network).

DS1 dataset and
DS2.

DNN, BiGRU,
GRU, CNN,
LSTM, etc.

Training
accuracy = 0.93, and

validation
accuracy = 0.90.

The proposed model
detects date propagation in

speech only.

[110] Object detection. NASGC-CapANet. MS COCO Val
2017 dataset. Faster R-CNN. 43.8% box mAP.

When compared to the
present attention

mechanism, performance
is improved by

incorporating the capsule
attention module into the

highest level of FPN.

10. Routing Algorithms

Capsule networks, a type of neural network design, aim to get around some of the
drawbacks of conventional convolutional neural networks (CNNs) in applications such
as object recognition and natural language processing. Routing algorithms are a key
component of capsule networks. Routing methods are employed in capsule networks to
compute the coupling coefficients, which control how much data is transported between
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capsules in different layers. Table 3 presents some common routing algorithms used in
capsule networks.

Table 3. Routing algorithms.

Ref Routing
Algorithms Description Advantages Applications Limitation

[18] Dynamic routing

A routing algorithm where
the weighting of each
capsule’s output depends
on how well its prediction
matches the output of the
layer above. The network
can learn to send
information from
lower-level capsules to
higher-level capsules thanks
to this weighting.

Better performance
in complex tasks
than static routing,
ability to handle
input
transformations,
translation
equivariance, and
viewpoint
invariance.

Object recognition,
speech recognition,
natural language
processing.

Computational
complexity,
sensitivity to
initialization, and
potential for
overfitting.

[111] EM routing

A routing technique that
iteratively updates the
coupling coefficients
between capsules using the
expectation-maximization
(EM) algorithm. The
coupling coefficients are
changed at each iteration by
maximizing a lower
constraint on the data’s
logarithmic likelihood.

Better performance
than dynamic
routing, more
stable convergence,
and improved
generalization.

Object recognition,
speech recognition,
natural language
processing.

Computationally
expensive, high
memory
requirements, and
potential for
getting stuck in
local optima.

[112] Sparse routing

A routing algorithm that
selects a small subset of
capsules to route
information to the next layer
based on a sparsity
constraint. The selected
capsules are those with the
highest activations, and the
remaining capsules are
discarded.

Reduced
computational
complexity,
improved
scalability, and
increased
robustness to
adversarial attacks.

Object recognition,
speech recognition,
natural language
processing.

Information loss
due to discarding
capsules, reduced
expressiveness,
and potential for
overfitting.

[113] Deterministic
routing

A routing algorithm where
each capsule in the lower
layer is deterministically
assigned to a specific
capsule in the layer above
based on the maximum
activation.

Simple and
computationally
efficient, easy to
implement.

Object recognition,
speech recognition,
natural language
processing.

Lack of robustness
to input
transformations
and viewpoint
changes.

[114]
Routing by
agreement or
competition (RAC)

A routing algorithm where
each capsule sends its
output to multiple capsules
in the layer above, and the
coupling coefficients are
computed based on either
the agreement or the
competition between the
outputs.

Increased
flexibility and
performance
compared to other
routing algorithms.

Object recognition,
speech recognition,
natural language
processing.

Requires
additional
parameters to
compute the
agreement or
competition,
computationally
expensive.
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Table 3. Cont.

Ref Routing
Algorithms Description Advantages Applications Limitation

[115] K-means routing

A routing algorithm where
each capsule in the lower
layer is assigned to the
closest cluster center in the
layer above, which is
learned using K-means
clustering.

Simple and
computationally
efficient, captures
higher-level
concepts in a more
structured way.

Speech recognition,
natural language
processing, and
object recognition.

Requires setting
the number of
cluster centers in
advance, sensitive
to the initialization
of the cluster
centers.

[116] Routing with
temporal dynamics

A routing algorithm that
uses recurrent neural
networks to capture the
temporal dynamics of the
capsule activations over
time.

Ability to handle
sequential data,
improved
performance in
video recognition
tasks.

Video recognition,
action recognition,
speech recognition.

Higher
computational
complexity,
potential for
overfitting,
requires careful
initialization.

[117] Localized routing

A routing algorithm that
uses a localized attention
mechanism to route
information from
lower-level capsules to
nearby higher-level
capsules.

Better performance
than global
routing, more
robust to input
transformations
and viewpoint
changes.

Object recognition,
speech recognition,
natural language
processing.

Higher
computational
complexity,
requires additional
parameters to
compute the
attention.

[118] Attention-based
routing

A routing algorithm that
uses an attention
mechanism to weigh the
contributions of each
capsule in the lower layer to
each capsule in the layer
above.

Improved
performance
compared to other
routing algorithms,
can capture
complex
relationships
between capsules.

Object recognition,
speech recognition,
natural language
processing.

Higher
computational
complexity,
requires additional
parameters to
compute the
attention.

[119] Graph-based
routing

A routing algorithm that
models the relationships
between capsules in the
lower layer and the layer
above as a graph and
performs message passing
between the nodes in the
graph to compute the
coupling coefficients.

Better performance
in capturing
hierarchical
relationships
between objects,
more robust to
input
transformations
and viewpoint
changes.

Object recognition,
natural language
processing.

Higher
computational
complexity,
requires additional
parameters to
model the graph
structure.

[120]
Dynamic routing
with routing
signals

A routing algorithm that
uses a dynamic routing
approach combined with
routing signals to adjust the
coupling coefficients during
the inference stage.

Improved
performance
compared to other
routing algorithms,
can capture more
complex
relationships
between capsules.

Object recognition,
speech recognition,
natural language
processing.

Higher
computational
complexity,
requires additional
parameters to
compute the
routing signals.

Table 4 lists the various routing algorithms used in capsule networks, discusses their
benefits and limits, and ranks them according to how well they perform in various areas.
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Table 4. Comparison of different routing algorithms.

Routing Algorithm Advantages Limitations Best Aspect Worst Aspect

Dynamic routing Allows dynamic
learning of activations

Computationally
expensive with long
sequences

General performance Computational
complexity

EM routing Improved convergence
and stability

Can still be
computationally expensive Convergence stability Potential Local

Optima

MaxMin routing Reduces uniform
probabilities

Parameter tuning for
optimal balance

Probabilities
distribution Parameter Tuning

Routing by greement Simplifies routing
process

Suboptimal results without
correct iteration choice Simplicity Suboptimal iteration

choice

Orthogonal Routing Improved stability and
generalization

Additional regularization
for orthogonality

Stability and
invariance

Computational
overhead

Group Equivariant
capsules

Equivariance and
invariance guarantees

Complex implementation
and group choice

Equivariance and
invariance

Complex
implementation

Sparse routing Efficient utilization of
computation

Complex selection process
for active capsules

Computation
efficiency Selection complexity

Deterministic routing Deterministic routing
for stable output

Restricted to deterministic
assignment of capsules Deterministic outputs Limited capsule

interaction

K-mean routing Efficient use of
clustering

May not handle complex
data distributions Efficient clustering Limited data

distributions

Routing with temporal
dynamics

Considers temporal
information

Increased complexity in
modeling temporal
relationships

Temporal information Increased model
complexity

Graph-based routing Captures spatial
relationships

Computational overhead
in graph-based operations Spatial relationships Computational

overhead

Attention-based
routing

Focuses on informative
capsules

May require careful tuning
and be sensitive to
hyperparameters

Attention
mechanisms

Hyperparameter
sensitivity

11. Future Research Directions

Although Geoff Hinton and his team’s CapsNet architecture has demonstrated poten-
tial in a number of tasks, further effort and advancements are still needed. Following are a
few suggested directions for further study on capsule networks:

11.1. Better Routing Mechanisms

CapsNets’ existing routing-by-agreement mechanism has some drawbacks. Alterna-
tive routing techniques may be investigated in the future to increase CapsNets’ training
effectiveness and convergence.

11.2. Handling Big Data

The performance of CapsNets on big data could be investigated and improved. To
properly manage massive datasets, methods such as distributed training and parallel
processing may be researched.

11.3. Task Adaptation

CapsNets have mainly been investigated for image-related tasks. Future studies can
look into how well they work and whether they can be applied to different fields such as
video analysis and natural language processing.
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11.4. CapsNets in Transfer Learning

It may be investigated to better understand and utilize CapsNets in transfer learning
scenarios. Pre-training on big datasets and fine-tuning on smaller target datasets are
possible research areas.

11.5. Interpretability and Explainability

An area of study is the interpretability of capsule networks. Future research can
concentrate on approaches to improving the interpretability of CapsNets predictions,
allowing users to comprehend how the model makes judgments.

11.6. CapsNets for Few-Shot Learning

Examine the suitability of CapsNets for jobs requiring the model to generalize from a
small number of samples per class.

11.7. Dynamic Routing Improvements

Look for ways to make the dynamic routing algorithm more effective at handling
longer sequences of capsules while retaining pertinent spatial data.

11.8. CapsNets in Reinforcement Learning

Examine CapsNets’ potential in tasks requiring reinforcement learning, in which the
model interacts with its surroundings and gains knowledge through trial and error.

11.9. CapsNets with Attention Mechanisms

Examine the use of attention mechanisms in combination with CapsNets to concen-
trate on pertinent capsules or portions of the input, potentially enhancing performance
and efficacy.

11.10. Capsule Networks for 3D Data

Learn how to use the CapsNets extension to work with 3D data, such as point clouds
or volumetric data, for applications such as 3D object detection and reconstruction.

11.11. CapsNets in Generative Models

Examine CapsNets’ potential for image synthesis and data production tasks in genera-
tive models.

Future research on capsule networks should concentrate on overcoming existing
constraints, expanding their applicability to diverse domains, and investigating fresh ways
to enhance their performance, interpretability, and scalability for real-time problems such
as object segmentation [121], biometric identification [122,123], and so on. In the upcoming
years, there will be many opportunities for ground-breaking research and fascinating
developments because the subject of capsule networks is so new.

12. Conclusions

To eliminate the challenges faced by the traditional CNN algorithms, capsule networks
were introduced, which have performed creditably well so far. However, to realize its full
potential, the mentioned approach requires further understanding. This paper, therefore,
presents a study comparing the efficiency of different algorithms in the literature that are
impactful in the field. We have reviewed the implementation of existing capsule network
architectures and shed light on their implementation results, limitations, and modifications.
We have also reviewed several routing algorithms published in the literature. This survey
will be helpful for the computer vision community to influence the failures and successes
of capsule networks to design a robust machine vision algorithm through further research.
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Nomenclatures
Notation Description
CapsNet Capsule network
CNN Convolutional neural network

MNIST dataset
Modified National Institute of Standards and
Technology dataset.

CIFAR Canadian Institute for Advanced Research
RNN Recurrent neural network
SVHN dataset Street View House Number dataset
SVM Support vector machine
ANN Artificial neural network
KNN K-nearest neighbor
CapsGAN Capsule GAN
PT-CapsNet Prediction-tuning capsule network
FC Layers Fully connected layers
LSTM Long short-term memory
GAN Generative adversarial network
WOS Web of Science
ResNet Residual neural network
FR Face recognition
SVM Support vector machine
NB Naïve Bayesian
GRU Gated recurrent unit
DirectCapsNet Dual-directed capsule network model
NN Neural network
VLR Very low resolution
ReLU Rectified linear unit
BGC Blurb genre collection
LFW Labeled faces in the wild
NAS Neural architecture search
NASCaps NAS capsule
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