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Abstract: Forest fires are one of the world’s deadliest natural disasters. Early detection of forest fires 

can help minimize the damage to ecosystems and forest life. In this paper, we propose an improved 

fire detection method YOLOv5-IFFDM for YOLOv5. Firstly, the fire and smoke detection accuracy 

and the network perception accuracy of small targets are improved by adding an a�ention mecha-

nism to the backbone network. Secondly, the loss function is improved and the SoftPool pyramid 

pooling structure is used to improve the regression accuracy and detection performance of the 

model and the robustness of the model. In addition, a random mosaic augmentation technique is 

used to enhance the data to increase the generalization ability of the model, and re-clustering of 

flame and smoke detection a priori frames are used to improve the accuracy and speed. Finally, the 

parameters of the convolutional and normalization layers of the trained model are homogeneously 

merged to further reduce the model processing load and to improve the detection speed. Experi-

mental results on self-built forest-fire and smoke datasets show that this algorithm has high detec-

tion accuracy and fast detection speed, with average accuracy of fire up to 90.5% and smoke up to 

84.3%, and detection speed up to 75 FPS (frames per second transmission), which can meet the re-

quirements of real-time and efficient fire detection. 

Keywords: forest fire detection; a�ention mechanism; staged object detection; deep learning 

 

1. Introduction 

Fire has always been a major threat and disaster throughout the world, and early 

prevention and rapid detection of fire are the most important methods of reducing the 

serious harm caused by the occurrence and spread of fires [1,2], which is why it is partic-

ularly important to be able to warn of fire in a timely and accurate manner. It is well 

known that forests, grasslands, and wild slopes serve as nature’s best “seasoning” system, 

and they are gaining increased a�ention due to the benefits they provide for the natural 

carbon and water cycles as well as for maintaining the balance of an ecosystem and im-

proving its ecology. Although China has a vast land area, the proportion of stored forest, 

grassland and wild slope resources is tiny. For example, the per capita forest area is less 

than a quarter of the world average [1,3]. Fires are extremely destructive, not only burning 

large areas of trees and causing species extinction but also causing soil erosion and threat-

ening people’s lives and property [4]. Therefore, inspection technology for fire has re-

ceived more and more a�ention from scholars and related departments. Early detection 

of fires and an accurate grasp of the fire environment and posture allows the command 

center to take effective suppression measures for fire control and extinguishment. The task 

of fire detection can be divided into the task of detecting both fire and smoke targets [4]. 

Fire detection is initially performed using the response values of temperature and smoke 
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detectors as the detection results. However, the detection of temperature and smoke de-

tectors has a certain lag [5], which is insufficient to fulfill the purpose of early fire predic-

tion, is not resilient enough to environmental changes, and is susceptible to false alarms 

caused by electromagnetic interference [6]. 

Computer-vision-based fire detection has made significant progress in recent years 

[7–9], allowing the detection of both flame targets and smoke targets in images rather than 

just a single target. In early computer-vision-based fire detection methods, the task is de-

composed into two parts, flame detection and smoke detection, using static appearance 

information, such as color [10], texture [11], and shape [12]. Flames and smoke are exhib-

ited during a fire, and motion information of flames and smoke in time order [13–16] is 

used to construct discriminative features of flames or smoke targets, and these discrimi-

native features are then used to detect these targets. Most original flame and smoke de-

tection methods rely on hand-crafted features, achieving good results on early single-cat-

egory datasets with small amounts of data. However, in realistic scenes flames and smoke 

exhibit features such as color, texture, and shape that are unstable and have some varia-

bility, making hand-designed features more arduous [17]. In addition, hand-crafted fea-

tures rely mainly on a priori information about the target and do not have high abstraction 

and invariance; thus, their detection accuracy is limited. In addition, most flame and 

smoke detection methods are proposed for single fire types or fixed scenes, which are not 

robust, have significantly lower detection accuracy when lighting, scenes, and fire types 

change, and cannot meet the needs of practical scenarios. There is still a high rate of missed 

detection for tunnels, forests, dim light, long distances, and small targets, and the perfor-

mance needs to be further improved to cope with complex real-world scenarios. 

FU Tian-ju et al. [18] designed a 12-layer convolutional neural network for forest fire 

detection that is pre-trained with the ImageNet dataset before training and testing it with 

a self-built dataset (500 images for training and 100 images for testing). During the training 

process, a dropout operation is performed on the hidden layer of the network to reduce 

the probability of overfi�ing. However, its self-built dataset has only 600 images, and it is 

still possible to overfit when using iterative training. Moreover, the scenarios in the dataset 

are single and its robustness is not good in generic scenarios. Additionally, its final output 

is simply the probability of fire and no fire, and does not contain other information about 

fire and smoke targets. Frizzi et al. [19] proposed that the classical convolutional neural 

network combined with convolution and maximum pooling can be used to determine 

whether the image contains flame or smoke. The algorithm improves the speed of detec-

tion by moving a 12 × 12 sliding window over the feature map. Compared with the 

method of Zhang et al., it contains more datasets, covers a wider range of scenarios and 

has a lighter and faster network. However, it only includes three categories (flame, smoke, 

and normal), and it is not well-adapted to scenes with both smoke and fire. Similarly, the 

final output of this method does not contain the location information of the flame and 

smoke target, leading to an inaccurate perception of the fire state. Through global and 

local fire detection of the pictures, the method proposed by Sandler et al. [20] further im-

proves classification precision, but it only uses fire detection results as a basis for fire clas-

sification, and cannot identify smoke, leading to a poor performance when smoke is ob-

scuring the flames. Furthermore, it is just a categorization and does not contain the loca-

tion information of flame and smoke targets. 

2. Related Work 

2.1. Target Detection Algorithms 

The deep learning approach can extract target features from a large number of images 

and obtain generalized information with be�er learning ability and adaptability. Target 

detection is one of the main branches of computer vision based on deep learning, and 

YOLO, proposed by Redmon et al. [21], is an outstanding example of a target detection 

algorithm. Using a convolutional neural network, the method extracts and classifies the 
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features of the input image. The method frames the target on the original image and finds 

the categories with a good recognition performance but slightly poor accuracy. In order 

to improve accuracy, Redmon et al. [22] proposed YOLOv2 algorithm, which uses K-

means to cluster prior boxes. It improves detection accuracy by spli�ing the prior frames 

into three size categories, each of which is further subdivided into three categories, corre-

sponding to three sizes of targets, large and small, respectively. For small targets, how-

ever, this algorithm performs poorly. Redmon et al. [23] then proposed the YOLOv3 algo-

rithm. Based on YOLOv2, feature pyramid networks (FPN) [24] were used to improve 

detection performance by fusing features of different sizes. Detection performance was 

significantly improved in small target detection. Wang et al. [25] proposed a DSE-YOLO 

model with good results based on YOLOv3 for strawberry detection. However, the detec-

tion of YOLOv3 is not satisfactory for targets with complex features. Bochkovskiy et al. 

[26] proposed YOLOv4 based on the optimization of the YOLO series in various aspects 

and achieved be�er performance indexes in terms of applications. Jocher et al. [27] pro-

posed YOLOv5 based on YOLOv4 with a modified loss function, including a focus struc-

ture, adaptive anchor frame calculation at the input, and other optimization methods. 

Compared with the previous YOLO model, it has a lighter structure and more accurate 

precision. However, since it uses an anchor frame as the initial preset frame, the compu-

tational cost will increase, affecting the model performance. Although YOLOv5 has a rel-

atively good performance in target detection, it needs to be improved in the area of forest 

fire detection. Part of the fire area is very small and needs to be detected quickly, making 

it more important to ensure accuracy and real-time forest fire detection. This study pro-

poses a fire detection method, YOLOv5-IFFDM, to address the shortcomings of YOLOv5, 

and confirms its feasibility for detecting forest fires by experiments. 

2.2. Methods of This Paper 

In order to detect both fire and smoke in fire detection tasks and to ensure the effec-

tiveness of small target detection, the following contributions are made in this paper. (1) 

Darknet-53 of YOLOv5 is used as the backbone feature extraction network, and the a�en-

tion mechanism is added to the backbone. The flame and smoke detection accuracy and 

the perception accuracy of small targets are improved. (2) An improved function is 

adopted to enhance the loss and gradient weights of high IoU, thus improving the regres-

sion accuracy and detection of the model. (3) The model adopts a spatial pyramidal pool-

ing structure and replaces all MaxPool pooling layers with more efficient SoftPool to im-

prove the robustness of the model to spatial layout and object variability. (4) The model is 

augmented using the stochastic mosaic augmentation technique to enhance the data and 

the model generalization. (5) The parameters of the convolutional and normalization lay-

ers of a trained model are merged to reduce model complexity, improve detection speed, 

and reduce hardware requirements. (6) We use the K-means algorithm for fire and smoke 

a priori frame clustering because the a priori frame is often relevant to the detection task, 

and the appropriate size of the a priori frame improves the accuracy and speed of detec-

tion. The overall block diagram of the model is shown in Figure 1. 
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Figure 1. The overall block diagram of the model. 

3. Materials and Algorithms 

3.1. Feature-Strengthening Structure Based on A�ention Mechanism 

A�entional mechanisms focus on obtaining local information, which works by imi-

tating the way humans pay a�ention. It devotes more a�entional resources to the target 

region to obtain more target information and suppresses background information. The 

main ones are squeeze-and-excitation networks (SE), proposed by Hu et al. [28], and the 

convolutional block a�ention module (CBAM) [29], which was advanced by Woo et al. 

The mechanism used in this paper is CBAM, which is a combination of channel and spatial 

a�ention mechanisms. It obtains more information about the channel where the target is 

located by performing an a�ention operation on the channel; it performs an a�ention op-

eration on the space to ensure that the target location information is be�er obtained and 

improves the accuracy of target detection. The CBAM a�ention mechanism is shown in 

Figure 2. 

 

Figure 2. Convolutional Block A�ention Module. 

It has been shown by Foggia et al. [12] that the feature information of fire differs on 

different channels, as well as the location information on each feature map. Therefore, 

CBAM, which combines channel a�ention and spatial a�ention mechanisms, can be used 

to process them, improve the interest of the model for the target, and enhance the effec-

tiveness of acquiring feature targets. 
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3.2. Improved α-IoU  

The CIoU loss function used in YOLOv5 is an improvement of the DIoU loss function. 

Because the DIoU increases the height and width loss of the prior frame, the prediction 

accuracy is higher. The Equations (1)–(4) are as follows. 

2 gt

2

ρ (b,b )
CIoU=IoU βU

c
  , (1)

gt
2

gt

4 w w
U= (arctan arctan )
π h h

 , (2)

U
β=
(1 IoU)+U

, (3)

CIoUL =1 CIoU , (4)

The three components in CIoU correspond to the calculation of the IoU, centroid dis-

tance, aspect ratio β, and aspect ratio, and the calculation procedure is shown above. Here, 

w, h and wgt, hgt denote the height and width of the predicted and real frames, respec-

tively. α-IoU  increases the loss and gradient weights of high IoU by performing a power 

operation on the IoU and its penalty term expression, thus improving the regression ac-

curacy of the model. Its Equation (5) is as follows. 

2α gt
2 α

α-CIoU 2α

ρ (b,b )
L =1 IOU + (βU)

c
  , (5)

In this paper, we define the value of α  as 3. The power operation focuses more on 

the high IOU target, which not only enhances the accuracy of the regression but also ac-

celerates the convergence of the network. Therefore, we use the α-IoU  loss function for 

boundary regression in this paper. 

3.3. Improved Spatial Pyramidal Pooling Structure 

Spatial pyramid pooling is a multi-scale feature fusion pooling method that can pre-

serve object features well [30,31], maintain feature map shape, and output fixed-size fea-

tures with any feature image size as input. The pooling operation, as one of the most basic 

algorithms for image processing in the field of deep learning, can reduce the size of the 

feature map of the model by retaining some features while reducing the computational 

cost, preventing overfi�ing, and improving the model’s generalization ability. In CNN, 

the common pooling methods are average pooling and maximum pooling. Average pool-

ing is an averaging operation on the neighborhood feature points, which can preserve the 

background information well and make the image smoother. However, it will cause fea-

ture information loss. Maximum pooling obtains the maximum value of neighboring fea-

ture points, which can extract obvious texture feature information well. Thus, it is more 

suitable for a convolutional neural network to retain prominent features and speed up the 

model response. It is also easy to ignore some detailed feature information. SoftPool is a 

variant of a pooling structure with the original pooling layer function while retaining 

more feature information. The SoftPool method can reduce the risk of losing detailed fea-

tures during pooling and has good feature retention for small targets. Thus, we propose 

using SoftPool instead of MaxPool in spatial pyramid pooling to be�er preserve the de-

tailed features of the fire and enhance its detection [32–34]. The calculation process of 

SoftPool is shown in Figure 3. 
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Figure 3. SoftPool calculation flowchart. 

The local feature region is defined as m . R  is a pooling kernel of size k k , and 

the dimension is denoted as C H W  , where C  denotes the number of channels, H
denotes the height of the feature map, and W  denotes the width of the feature map. The 

corresponding feature weights are calculated nonlinearly based on the values of each fea-

ture point, and Equation (6) is shown as follows. 

i =
i

j

a

a

j R

e

e





, 
(6)

where i  denotes the weight, ia  represents the eigenvalue of a point, and iae  denotes 

the activation value. Calculating the weights ensures that the feature texture information 

can be passed and activates the feature values in the region m  to be passed backwards. 

After obtaining the weights, they are summed with the region’s feature values m  to ob-

tain the output results, as shown in Equation (7). 

i i
i R

a a


  , (7)

where a  denotes the output value of feature points after SoftPool, obtained by the stand-

ard summation of all weighted activations in the kernel neighborhood R, as shown in Fig-

ure 4. 

 

Figure 4. SoftPool transfer process diagram. 
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3.4. Mosaic Random Data Enhancement Method 

Mosaic enhancement technology takes 4 or 6 images, first zooms, pans, flips, per-

forms color gamut transformation, etc., and then performs the stitching operation. Each 

image has a corresponding target frame. After stitching by the mosaic method, a picture 

containing 4 or 6 target frames is obtained, which not only greatly enriches the environ-

ment in which the target appears but also implicitly increases the pre-trained batch. This 

is helpful for improving detection accuracy. The implementation process is shown in Fig-

ure 5. 

  
(a) (b) 

Figure 5. Mosaic random image processing. (a) Processed images; (b) Stitched image. 

3.5. Merge BN Layers to Convolutional Layers to Improve Network Detection Speed 

In the training of deep network models, the BN (Batch Normalization) layer acceler-

ates the convergence of the network and prevents overfi�ing. It is usually placed after the 

convolutional layer. The BN layer normalizes the data and can effectively solve the gradi-

ent disappearance and gradient explosion problems. Although the BN layer plays a posi-

tive role in training, the extra layers of operations in the network’s forward inference affect 

the model’s performance and take up more memory or video memory space. BN (Batch 

Normalization) layer parameters are merged into the convolutional layer to improve 

model forward inference speed. Therefore, after training, it is merged with the convolu-

tional layer to improve the speed of forward inference. 

The principle of merging is as follows. 

Given batch data 1 2, , , nx x x , we perform the normalization operation on them, as 

shown in Equation (8). 


2

i
i

x
x


 

 


 


, (8)

where   is the data mean and   is the data variance. Mean and variance are calculated 

separately for each channel.   and   are the parameters that can be learned for each 

different batch of data:   is the scaling factor, and   is the translation factor.   is a 

very small number, approximately 10−6, which is intended to prevent the denominator 

from being zero. The above Equation (8) can be transformed as follows Equation (9). 


2 2

i
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, (9)
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In order to combine BN and convolution, following the normalization Equation (9) 

above, the image feature map normalization matrix can be wri�en as Equation(10). 
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The feature map F, after normalization, is also the result equivalent to a 1 × 1 × C 

convolution. 
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b  , (12) 

BNW  is the matrix of C × C and BNb  is the matrix of C × 1. Therefore, the BN pro-

cess can be wri�en as Equation (13): 


BN BN F W F b , (13)
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In addition, 
( ) conv convconv   F X W X b

 

So: 

 ( )BN conv conv BN BN conv BN conv BN     F W W X b b W W X W b b  , (14)

Therefore new BN convW W W , new BN conv BN b W b b , and the fusion of the con-

volutional and BN layers is achieved. 

3.6. Re-Clustering Anchor 

The YOLOv5 network still uses the anchor boxes mechanism to preset three initial 

boxes with different areas and aspect ratio sizes for each feature point. According to the 

K-means clustering algorithm, these are the a priori boxes. For the target detection algo-

rithm, a suitable set of prior frames will reduce the tuning of the network to obtain the 

prediction frames faster. Flame and smoke detection can only be achieved with high ac-

curacy and speed when the a priori frame of YOLOv5 is optimized to fit the dataset and 

scenarios of the detection task [35–39]. In this paper, we decided to analyze the true boxes 

of labeled flames and smoke by an improved K-means clustering algorithm so that the 

dimensions of the a priori boxes be�er match the dimensions of the forest flame and 

smoke dataset used in this paper. The number of clusters K is the number of a priori boxes 

to be selected, and the width and height of the central box of the clusters give the width 

and height of the a priori boxes. 

4. Experiment 

4.1. Experimental Environment 

To implement the training and testing of the proposed method and other target de-

tection methods in this paper, an 11th Gen Intel(R) Core(TM) i5-11260H@ 2.60 GHz CPU 

with 8 GB of RAM is used as the experimental device and an NVIDIA GeForce RTX 3090 

24G GPU as the graphics device. The training parameters are as follows: the Adam opti-

mizer is used, and a total of 100 iteration cycles are set. We performed 1–50 cycles of freeze 

training on the backbone network with an initial learning rate of 0.001, weight decay of 

0.0005, and batches of 8. 51–100 cycles were trained for thawing, with an initial learning 

rate of 0.0001, a weight decay of 0.0005, and a batch size of 2. The experiment conditions 

in this paper are shown in Table 1. 

Table 1. Experimental conditions. 

Experimental Environment Details 

Operating System Windows 10 

CPU 11th Gen Intel(R) Core(TM) i5-11260H@ 2.60 GHz 

Deep Learning Framework PyTorch 1.12.1 

Programming Language Python 3.9 

GPU NVIDIA GeForce RTX 3090 

CUDA Version CUDA 10.2 

Initial learning rate 0.001 

Epochs 200 

batch-size 8 

Img-size 640 × 640 
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4.2. Dataset 

The dataset used is the fire and smoke dataset (h�p://www.yongxu.org/data-

bases.html, accessed on 18 February 2023) as well as images downloaded from the web 

and taken in reality. The acquired images are annotated by the dataset annotation tool 

LabelMe. The VOC2007 dataset format is used as the dataset format. The dataset includes 

a total of 13,688 images of flames and smoke from various scenes, some of which are 

shown in Figure 6. Details of the dataset are shown in Table 2. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6. Partial images of the dataset. (a,b) Typical forest fire and (c,d) forest fire from the UAV 

view. (a) Typical canopy forest fire; (b) Typical surface forest fire; (c) Canopy Forest fire from UAV 

view; (d) Surface forest fire from the UAV view. 

Table 2. Details of dataset. 

Dataset Train Val Test 

forest 11,090 1238 1360 

forest fire 6892 679 978 

forest smoke 873 128 212 

forest fire and smoke 3325 431 170 

Dataset Widening 

a) Flip to Increase the Width 

Image flip simulation can be used to obtain images collected from different flight 

directions due to the limited dataset material. In this way, we use image flipping to obtain 

the image as captured when flying from different directions, thus achieving the purpose 

of data widening [40]. The image flip effect is shown in Figure 7. 
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Figure 7. Flip effect example. 

b) Mixing and Widening 

Since the acquired image scenes are limited, to enrich the scenes, the images are aug-

mented by the method of blending backgrounds. Firstly, a forest image is randomly se-

lected as the background. Secondly, a fire image is obtained by keying out the flames on 

the image and then fusing the flames with the background image using an image fusion 

technique [41]. 

c) Image Mosaic Stitching Enhancement Technology 

When processing the dataset with the mosaic stitching enhancement technique, 4 or 

6 images are randomly selected to be stitched together into one image. By using this 

method, the pre-trained batch is implicitly increased, and the complexity of the image is 

increased, which affects the accuracy of image detection. 

In addition, the dataset was partitioned in the ratio of 9:1 for training and testing, 

respectively. The training dataset part is further divided into training and validation sets 

with a ratio of 9:1 to prevent the occurrence of overfi�ing during the training process. 

4.3. Evaluation Indicators 

To evaluate the YOLOv5-IFFDM network as well as other network performance, we 

use the following performance metrics as comprehensive evaluation metrics [42]: Preci-

sion, recall, F1 score, and mean average precision (mAP). We use size to measure the 

model’s size and FPS to measure the model in real time. Some of its Formulas (15)–(21) 

are defined as follows. 

TP
P

TP FP



, (15)

TP
R

TP FN



, (16)

1 2
P R

F
P R


 


, (17)
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  , (19)

Time Pre process Inference NMS    , (20)

1
FPS

Time
 , (21)

where TP  denotes true positive samples, FP  denotes false positive samples, and FN  

denotes false negative samples. The 1F  score is the summed average of the precision 

and recall rates. The higher the F1 score, the higher the precision and recall. AP  indi-

cates the performance of each target object class. The mAP  metric is the average of the 

mean accuracy, which is used to measure the overall detection accuracy of the target de-

tection algorithm model. Time represents the time spent for the whole training, consisting 

of three parts. FPS indicates how many forest fire images can be processed in one second. 

Taking forest fire detection as an example, TP indicates how many forest fire images 

are correctly predicted, i.e., the detection object and the model detection result are both 

forest fires. FP means the detection object is a non-forest fire, and the model detection 

result is a non-forest fire. FN indicates that the detection object is a forest fire, and the 

model detection result is a non-forest fire. NMS, also known as non-maximum suppres-

sion, is the post-frame processing time. 

The experimental procedure is as follows. First, the original YOLOv5 detection model 

is trained using a self-built forest fire classification dataset and evaluated using a test set. 

The CBAM a�ention mechanism is then added for experimental comparison. Again, the 

MaxPool layer in YOLOv5 was replaced with SoftPool for evaluation. The fourth experi-

ment is to modify the loss function to α-IoU based on experiment III. The fifth experiment 

is to add mosaic data enhancement for experimental comparison based on experiment IV. 

Following is a table that shows the experimental test results for the sixth and seventh ex-

periments, which add the frame re-clustering and convolutional layer merging again in 

turn. The experimental results are shown in Table 3. 

Table 3. Model experimental results. 

Model Forest Fire Forest Smoke FPS Time 

YOLOv5 0.820 0.790 59 16.9 

YOLOv5 + CBAM 0.852 0.805 62 16.1 

YOLOv5 + CBAM + SoftPool 0.870 0.823 63 15.9 

YOLOv5 + CBAM + SoftPool + α-IoU 0.885 0.822 63 15.9 

YOLOv5 + CBAM + SoftPool + α-IoU + 

Mosaic 
0.896 0.835 63 15.9 

YOLOv5 + CBAM + SoftPool + α-IoU + 

Mosaic + Re-clustering class anchor 
0.906 0.842 62 16.1 

YOLOv5 + CBAM + SoftPool + α-IoU + 

Mosaic + Re-clustering class anchor + 

Convolution, BN merge (YOLOv5-

IFFDM, ours) 

0.905 0.843 75 13.3 
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4.4. Detection Performance Analysis 

From the above results in Table 3, we found that YOLOv5, one of the more advanced 

single-stage target detection models, has a good mAP@0.5 for forest fire classification and 

recognition, but there is still room for improvement. YOLOv5 has a detection accuracy of 

0.820 and 0.729 for forest fire and forest smoke, respectively, which is slightly lower, but 

there is still room for improvement. In addition, the FPS value of YOLOv5 is 59, and the 

detection time is 16.9 ms, which is slow in real-time detection. In experiment II, we added 

the a�ention mechanism CBAM in YOLOv5, and both forest fire and forest smoke were 

improved by 3.2% and 1.5%, respectively, showing the effectiveness of the CBAM a�en-

tion mechanism in the detection process. 

Experiment III further improves detection accuracy by replacing the spatial pyrami-

dal MaxPool pooling structure with SoftPool. In experiment IV, the loss function in 

YOLOv5 is changed to α-IoU, the forest fire accuracy is improved, and the forest smoke 

detection accuracy is basically unchanged. The detection accuracy of forest fires and forest 

smoke was improved after adding dataset mosaic preprocessing and re-clustering anchors 

to experiments V and VI. The merging of the convolution and BN layers was performed 

in experiment VII, and the detection accuracy did not improve, but the detection speed 

increased substantially, indicating that the prediction speed is indeed affected when the 

convolution and BN layers are separated, as expected. The model’s accuracy in this paper 

is 90.5% and 84.3% for forest fire and forest smoke, respectively. Compared with the 

YOLOv5 model, the mAP of this model is improved by 8.5% and 5.3%, respectively, sug-

gesting that the model has be�er results in forest fire classification detection. 

The results of the YOLOv5 model and the YOLOv5-IFFDM forest fire classification 

and detection model are shown in Figures 8 and 9. Figure 8 shows the detection of a sam-

ple of forest fire training images with typicality, and Figure 9 shows the detection of forest 

fire image samples from the UAV camera view. From the detection result, the YOLOv5 

model detects that the rectangular box of the forest fire is not located in the same place as 

the real box. As a result, the missing detection problem will occur, and the detection per-

formance will be poor. YOLOv5-IFFDM model detection aligns more with the real forest 

fire target frame. The model has be�er detection of forest fire types and fewer false detec-

tions of leakage. Experiments show that the model YOLOv5-IFFDM proposed in this pa-

per is more suitable for forest fire classification detection. 

 
(a) 
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(c) 
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(d) 

Figure 8. The detection results of the YOLOv5 and YOLOv5-IFFDM models for forest fire and smoke 

image. (a,b) Surface fire and smoke, (c,d) Canopy fire and smoke. (a) Surface fire and smoke detec-

tion using YOLOv5; (b) Surface fire and smoke detection using YOLOv5-IFFDM; (c) Canopy fire 

and smoke using YOLOv5; (d) Canopy fire and smoke using YOLOv5-IFFDM. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 9. The detection results of the YOLOv5 and YOLOv5-IFFDM models for forest fire and smoke 

from the UAV camera view. (a) Fire and smoke detection using YOLOv5; (b) Fire and smoke 

detection using YOLOv5-IFFDM; (c) Fire and smoke detection using YOLOv5; (d) Fire 

and smoke detection using YOLOv5-IFFDM. 

5. Discussion 

Forests are a valuable ecological resource on Earth, and forest fires pose a serious 

threat to forests and the Earth’s ecology, and can have far-reaching effects. Over the past 

fifty years, the area of forests burned by forest fires has increased by as much as 10 times 

per year. If forest fires are not detected and extinguished in time, they may cause serious 

ecological damage. With the continuous development and maturity of target detection 

technologies, it is of practical importance to use them to detect and identify forest fires 

and take timely and appropriate measures to extinguish them. 

Therefore, based on the above reasons, forest fire detection techniques need further 

research and development to improve detection accuracy. Through experiments, it is 

found that the YOLOv5 neural network model has good detection performance in identi-

fying forest fires. However, in the early stage of fire, its detection accuracy is low, and it is 

difficult to detect the fire in time and accurately. The main reason is the low number of 

pixels in the picture and the small scope of the fire. Therefore, in order to improve the 
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accuracy and speed of detection of forest fires, we introduce the CBAM a�ention mecha-

nism into the network to improve the accuracy of fire detection. We improve the loss func-

tion to improve the training and inference of the detection algorithm. We use a pyramid 

pooling structure to improve the robustness of the model. We also employ random mosaic 

enhancement techniques, merging convolutional and normalization layers, and re-clus-

tering prior frames to improve detection accuracy and speed. 

To further validate the specific performance of our model for forest fire and smoke 

detection, we compare it with methods commonly used in the literature in recent years. 

These detection methods are relatively classical and open-source. The performance of dif-

ferent detection methods can only be compared if they are tested on the same dataset; 

references [33,37–39,42,43] and others cannot be compared for specific performance be-

cause they are not open source. We put the classical and open-source methods to the test 

on our self-built forest fire dataset. The test results are shown in Table 4. These results 

show that our model has more advantages in terms of speed and accuracy. 

Table 4. Comparison of different methods. 

Model 
Number of Model 

Parameters (M) 
mAP (%) mAP@0.5 (%) FPS 

Faster-RCNN [42] 107.98 84.32 67.02 13 

SSD [44] 90.58 85.28 68.86 52 

YOLO V3 [23] 234.71 84.51 70.28 45 

YOLO V4 [26] 243.92 86.02 71.06 47 

YOLO V4-tiny [45] 22.58 77.60 62.53 90 

YOLO V5m [27] 21.2 86.05 71.23 59 

YOLO V5-IFFDM(ours) 20.3 86.92 71.66 75 

The forest fire detection model proposed in this paper has been improved compared 

with YOLOv5 regarding detection accuracy and detection speed, but the model still has 

room for improvement. For example, in low illumination, some small fire areas may be 

missed, and some fire points may only be a few dozen pixels in size when taken from a 

high altitude and distance, which may result in their misdetection as well. Further re-

search is needed to improve the detection accuracy and speed up the detection of small 

fire spots. 

The experimental results show that the forest fire detection model proposed in this 

paper has good application prospects. The model can be fi�ed to drones or watchtowers 

for forest image acquisition to detect quickly if a forest fire occurs. Compared with the 

traditional method of arranging sensors to detect forest fires or manual inspection, this 

method has a larger detection range, lower cost, be�er, more timely and more efficient 

detection, and has a positive effect on protecting forests from the threat of forest fires. 

In addition, other types of data can be considered to train the neural model, for ex-

ample, satellite image data and remote sensing data, so that the detection range of forest 

fires can be greatly improved. The high precision satellite data can be�er guarantee the 

timely detection of forest fires, which is of great significance for forest protection. Using 

satellite image data or remote sensing data for fire detection will be our further research 

direction. 

6. Conclusions and Outlook 

This paper focuses on improving the feature extraction network to address the short-

comings of YOLOv5 in fire detection applications by improving the a�ention mechanism, 

prior frame, loss function, convolutional layer and BN layer merging to make YOLOv5 

more efficient in fire detection. The algorithm has experimented with a self-designed and 

labeled fire-detection dataset. The experimental results show that the improved method 
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in this paper has be�er fire-detection robustness than the original YOLOv5 detection al-

gorithm, both in terms of accuracy and speed. Based on the dataset, the detection algo-

rithm achieved 91.6% accuracy, 83.2% recall, 84.5% mAP, and an average detection speed 

of 13.3 ms. In the future, in addition to optimizing and improving the network, we will 

expand the existing fire dataset to increase sample diversity and improve the sample qual-

ity of the training set, as well as expand the existing fire dataset. 
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