
Citation: Vivekanandan, D.; Wirth, S.;

Karlbauer, P.; Klarmann, N. A

Reinforcement Learning Approach

for Scheduling Problems with

Improved Generalization through

Order Swapping. Mach. Learn. Knowl.

Extr. 2023, 5, 418–430. https://

doi.org/10.3390/make5020025

Academic Editors: Jaroslaw

Krzywanski, Yunfei Gao, Marcin

Sosnowski, Karolina Grabowska,

Dorian Skrobek, Ghulam Moeen

Uddin, Anna Kulakowska, Anna

Zylka and Bachil El Fil

Received: 3 April 2023

Revised: 25 April 2023

Accepted: 27 April 2023

Published: 29 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

A Reinforcement Learning Approach for Scheduling Problems
with Improved Generalization through Order Swapping
Deepak Vivekanandan 1 , Samuel Wirth 2 , Patrick Karlbauer 2 and Noah Klarmann 2,*

1 ScaliRo GmbH, Eduard-Rüber-Straße 7, 83022 Rosenheim, Germany
2 Faculty of Management and Engineering, Rosenheim Technical University of Applied Sciences,

Hochschulstraße 1, 83024 Rosenheim, Germany
* Correspondence: noah.klarmann@th-rosenheim.de

Abstract: The scheduling of production resources (such as associating jobs to machines) plays a vital
role for the manufacturing industry not only for saving energy, but also for increasing the overall
efficiency. Among the different job scheduling problems, the Job Shop Scheduling Problem (JSSP) is
addressed in this work. JSSP falls into the category of NP-hard Combinatorial Optimization Problem
(COP), in which solving the problem through exhaustive search becomes unfeasible. Simple heuristics
such as First-In, First-Out, Largest Processing Time First and metaheuristics such as taboo search
are often adopted to solve the problem by truncating the search space. The viability of the methods
becomes inefficient for large problem sizes as it is either far from the optimum or time consuming.
In recent years, the research towards using Deep Reinforcement Learning (DRL) to solve COPs has
gained interest and has shown promising results in terms of solution quality and computational
efficiency. In this work, we provide an novel approach to solve the JSSP examining the objectives
generalization and solution effectiveness using DRL. In particular, we employ the Proximal Policy
Optimization (PPO) algorithm that adopts the policy-gradient paradigm that is found to perform
well in the constrained dispatching of jobs. We incorporated a new method called Order Swapping
Mechanism (OSM) in the environment to achieve better generalized learning of the problem. The
performance of the presented approach is analyzed in depth by using a set of available benchmark
instances and comparing our results with the work of other groups.

Keywords: Job Shop Scheduling; Production Scheduling; Reinforcement Learning; Markov Decision
Process; generalization; Industry 4.0

1. Introduction

Scheduling problems in the field of manufacturing are usually distinguished in one
of the three categories: (1) JSSP, (2) flow shop, and (3) open shop. This work addresses
JSSPs, which are highly challenging, of significant industrial relevance, and often used as a
benchmark for testing/comparing new methodologies. In JSSPs, every job has a fixed ma-
chine sequence that has to be followed during the production of the particular product [1].
Moreover, the job shop has n jobs J0, J1, J2, . . . , Jn that must be processed on m machines
with every job-machine pair having a specific processing time that is given by the problem
formulation. As the number of jobs and machines increases, combinatorial possibilities
quickly explode and computation time of exhaustive searches become unfeasible even for
medium-sized problems. It is worth noting that many COPs are considered to fall into the
class of NP-hard problems, although this is not true for all instances. Moreover, conven-
tional COPs and JSSPs exhibit distinct characteristics in terms of their problem formulation,
solution space and constraints. This creates challenges when it comes to desgining effective
representations that can capture these differences efficiently [2].

DRL is a subfield of machine learning where an agent is trained based on experience
that is gathered from the interaction with an uncertain environment. The agent improves

Mach. Learn. Knowl. Extr. 2023, 5, 418–430. https://doi.org/10.3390/make5020025 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make5020025
https://doi.org/10.3390/make5020025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0009-0007-5345-5796
https://orcid.org/0009-0004-2238-767X
https://orcid.org/0009-0000-3992-4727
https://orcid.org/0009-0008-9157-9228
https://doi.org/10.3390/make5020025
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make5020025?type=check_update&version=2

Mach. Learn. Knowl. Extr. 2023, 5 419

its performance by maximizing a reward signal that characterizes the overall goal such as
reaching the shortest makespan in a production [3]. Lately, some remarkable milestones in
the field of AI have been reached by employing DRL, such as outperforming the human in
popular challenges such as the board game Go (AlphaGO [4]) or StarCraft II (AlphaStar [5]).
The implementation of DRL in the field of Operational Research has become quite signifi-
cant. Several studies incorporating DRL to solve COP have shown promising results [6–9].
Moreover, DRL provides a significantly faster approximation for COPs compared to ex-
haustive search, metaheuristics, or other conventional heuristics. In this paper, we propose
a DRL based approach to efficiently solve the JSSP. We developed an efficient, problem-
generic environment for arbitrary JSSP problems in OpenAI’s Gym framework. Along with
the optimal reward modelling and compact state representation of the JSSP environment,
the policy parameters of the policy network were trained to approach a deterministic
policy. Based on the proposed approach, the PPO algorithm was tested by solving classical
benchmark problems such as Taillard [10], and Demirkol et al. [11]. The performance of
our trained network is compared with state-of-the-art algorithms regarding their achieved
makespan (time to complete all operations).

2. Background
2.1. Job Shop Constraints

JSSPs consist of n jobs that need be processed on m machines. Each job has a particular
processing scheme specifying the particular machining steps in a strict order. Moreover,
every job-to-machine combination has a particular processing time on each machine. The
total number of operations equals O→ n×m. Each operation is indicated by Oij and their
respective processing time is dij where i ∈ (1, m) and j ∈ (1, n). Conventionally, each job
has a predetermined processing order that has to be followed to complete all operations.
The order of a particular job can be represented as:

Jj = {Oj1dj1, Oj2dj2, . . . , Ojmdjm}, for j ∈ (1, n), m ∈ (1, m). (1)

based on the problem definition, the machining sequence is developed and the quality of the
solution is evaluated by the makespan value. The machine up-time can be calculated using

Ti =
n

∑
j=1

dij. (2)

The free time—or idling time— f for a machine correlates with the makespan as follows:

Cmax = max
i

(
n

∑
j=1

(dij) + fi). (3)

The difficulty in finding the global optimum solution (lower bound) increases expo-
nentially with the problem size n×m.

2.2. Proximal Policy Optimization (PPO)

PPO is a policy gradient method that uses sampled data obtained from environment
interaction in order to optimize the surrogate objective function using stochastic gradient
ascent [12]. In comparison to Q-learning or Trust Region Policy Optimization, PPO is more
data efficient, robust and less complex to implement. The surrogate objective function LCLIP

of PPO is given by

LCLIP(θ) = Êt

[
min (rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
. (4)

The PPO objective is a clipped surrogate function that balances the tradeoff be-
tween policy improvement and stability. Note that the term clipping denotes that large
gradients—and thus updates—are cut off to prevent catastrophic forgetting during the

Mach. Learn. Knowl. Extr. 2023, 5 420

training process, and hence effectively limits the stability and convergence of the training
process. The objective function is an expectation implying that we consider batches of
trajectories to assess the agent’s performance. The term rt(θ)Ât is the unclipped update (the
default term that is used in policy gradient methods) that steers the actions towards high
advantages over the baseline. The second term term clip(rt(θ), 1− ε, 1 + ε)Ât is a clipped
version of the normal policy gradient objective and is employed to control the magnitude
of policy updates by constraining the new policy to be close to the old policy. ε is a hyper-
parameter that controls the range of the update and is usually in the magnitude order of
0.2. The minimum of both terms is used to prevent that updates based on the improvement
of the objective function become too large. Finally, the objective function is optimized using
ordinary gradient-based optimization methods such as stochastic gradient descent.

3. Related Works

Although research adressing JSSPs is rather sparse, several different algorithms have
been employed to attain their specific optimization goals. Algorithms such as taboo
search [13], simulated annealing [14], genetic algorithms and particle swarm optimiza-
tion [15] have been frequently used by other groups to solve JSSPs. However, these
methodologies usually have a great tradeoff between computation time and problem size
and moreover, usually feature low generalization capabilities. Advancements in DRL
approaches in recent years have enabled considerable progress for the domain of COP
applications [16,17]. Some of the major COPs have been successfully solved using DRL
such as the Travelling Salesman Problem [18–20], the Knapsack Problem [7,16] and the
Steiner Tree Problem [6]. Zhang and Dietterich [21] were able to show the potential of Rein-
forcement Learning for JSSPs as far back as 1995, by improving the results of the scheduling
algorithm by Deale et al. [22] which used a temporal difference algorithm in combination
with simulated annealing. Manerba et al. [8] give a comprehensive overview of tradi-
tional reinforcement learning algorithms for scheduling problems. Further, the study from
Gabel and Riedmiller [23] on using a gradient descent policy search method for scheduling
problems demonstrated the feasibility of DRL in JSSPs. Despite the reduced computation
time, the solution found was not better than that of traditional solvers. This limitation was
partially overcome by Liu et al. [24], who designed an environment based on a Multi-Agent
Markov Decision Process and used a Deep Deterministic Policy Gradient for their approach.
The agent performed well on the smaller instances, producing a good scheduling score
of around 90% but eventually, the performance declined with the increase in size of the
instances. To deal with the increased complexity of the problem, an Adaptive Job Shop
Scheduling based on a Dueling Double Deep Q-Network with a prioritized reply was
proposed by Han and Yang [25]. The authors used a disjunctive graph-based model to
design the environment and transform it into a sequential decision-making problem. The al-
gorithm was tested for generalization ability by training the network with random events
in the existing environment to quickly adapt to new problems. However, the agent was
not tested with a completely new dataset, an issue which was overcome by Zhang et al. [2].
The authors developed a graph neural network which enabled them to solve size-agnostic
problems. Similar to the previous approach the authors used a disjunctive graph = (∂, C, D)
with ∂ being the chosen operation of the JSSP ∂ = {Oij|∀i,j} ∪ {S, T}, C the set of directed
arcs and D the set of undirected arcs, to represent the state space of the JSSP. The per-
formance of the agent was promising, although the generalized results were far off from
the optimum. To handle this, Tassel et al. [26] proposed a new DRL algorithm to solve
the JSSPs with compact state space representation and a simple dense reward function.
The action space was designed for n jobs along with an additional job called No-Op (No
Operation). The agent was tested with different benchmark instances where the agent
performed around 18% better than Zhang et al. [2] and 10% better than Han and Yang [25].
Even though they provide a near-optimum solution, the approach falls short of the general-
ization objective. The motive of our approach is to develop an efficient environment that
can perform better in both the objectives i.e., generalization and near-optimum solutions.

Mach. Learn. Knowl. Extr. 2023, 5 421

4. Methodologies

The job shop environment is built with OpenAI Gym which provides modules to
develop a reinforcement learning environment. An agent learns to solve the environment
and optimize the parameters of the policy by interacting with it through actions.

4.1. Environment Outline

Along with the mathematical constraints explained before, the environment is de-
signed with further constraints [1,27]:

1. No pre-emption is allowed i.e., operations cannot be interrupted
2. Each machine can handle only one job at a time
3. No precedence constraints among operations of different jobs
4. Fixed machine sequences of each job

For example, when considering a JSSP with three machines and two jobs with a job
order J1 = {3, 1, 2}, J2 = {2, 3, 1} the environment treats each operation as an atomic
operation (cannot be interrupted). So once the job J0 is assigned on machine M3 at time
step 0 it cannot be interrupted till time step 10, as shown in Figure 1.

0

500

1000

1500

2000

2500

Ta01 Ta02 Ta03 Ta04 Ta05 Ta06 Ta07 Ta08 Ta09 Ta10
Instance

Performance over benchmark instances

Order Swap Mechanism
MWKR
SPT
Lower Bound

machine 3

machine 2

machine 1

10 20 32 37 51

time step

job 1

job 2

49

Figure 1. Job sequence on machines for a job shop problem with 3 machines and 2 jobs.

Based on the described problem definition, we consider the JSSP as a single agent
problem. Additionally, it has been shown by Tassel et al. [26] that the performance of the
single agent DRL outperforms existing state-of-the-art DRL methods. Unlike Tassel et al.’s
approach, our implementation of the environment has a different environmental design
with no additional action (No-Op) and no non-final prioritization technique.

4.2. Time Step Transition

For the efficient learning of the agent, the time step and machines to be assigned are
chosen based on the eligibility of operation. This enables the environment to provide the
agent with only the potential requests at which machines can be assigned. At each chosen
time step, the environment fetches all eligible operations O based on the provided job
order of the problem. The definition of an eligible operation relies on the job order and the
current state of the jobs and machines. For example, consider the previously discussed job
shop problem with three machines and two jobs, with total operations m× n = 6. The set
of operations can be expressed as

O = {O11 → J1M3, O12 → J1M1, O13 → J1M2, (5)

O21 → J2M2, O22 → J2M3, O23 → J2M1}

along with the set of processing times

d = {d11 → 10, d12 → 27, d13 → 14, d21 → 20, d22 → 12, d23 → 12}. (6)

Based on the predetermined job order, the eligible operations are O11 and O21 at time
step 0 and similarly, at time step 10, the eligible operation is limited to O12. Likewise,
the time step where the agent will be queried next in the environment is chosen based on

Mach. Learn. Knowl. Extr. 2023, 5 422

the minimum length of the operation which is currently active. This enables the program
to skip unnecessary checks for run time length in order to determine the next operation.
At time step 0, the active operations are O11, O21 with corresponding times d11, d21 of
length 10 and 20. The environment then directly jumps to time step 10 which is minimum
operation length of the currently running operations O11, O21. The transition is further
regulated by the availability of the machines and jobs at the future time step. For instance,
at time step 20, operations O12, O22 are active until time step 32 and 37. Even though the
operation O22 has the minimum processing time, jumping to time step 32 will not be useful,
since the next operation O23 which involves processing job J2 on machine M1 is not eligible
at time step 32 as the machine M1 is processing job J1 till 37. So the environment directly
jumps to the time step 37. With this mode of time step transition and querying mechanism,
the agent was able to solve the JSSP environment by taking steps approximately equal to
the total number of operations. To put this into perspective, the jobs of the Taillard [10] ta01
instance with 15 machines and 15 jobs was completed with 225 requests that is equivalent
to the total number of operations. Exploiting this mechanism, a significant improvement
can be reached. During the initial phase of training, the agent’s numerous action requests
to solve the problem are often ineffective, resulting in increased training time. To mitigate
this issue, a roll-out buffer is implemented, which incorporates episodic termination after a
certain number of time steps. The roll-out buffer is a manually chosen hyperparameter and
correlates with the complexity of the problem.

4.3. Action Space

The environment is controlled by a single discrete action space. With this action space,
the agent determines the suitable job to process for a particular machine at each step.
The agent is constrained to the set of jobs available

At = {J1, J2, J3, . . . , Jn}. (7)

4.4. States

At each time step, the state space is updated with the current status information of all
jobs and machines. We developed a dictionary state space which incorporates the follow-
ing information: (1) status of the machines—a boolean vector of size m indicating which
machines are busy and idling, (2) operation progression—a vector of size m holding infor-
mation on whether or not an operation is still running, (3) current remaining jobs—a vector
of size n that shows the remaining operations per job, (4) overall operation overview—a
two dimensional boolean array of size n× m that provides the status of the operations,
(5) availability of jobs—a vector of size n that indicates the next eligible operation, (6) cur-
rent machine processing information—a vector of size m that holds information regarding
the currently processed jobs on the machine.

4.5. Reward

The reward function must closely correspond to the scheduling goal, e.g., guiding the
suitable assignment of jobs to the appropriate machines and reducing the makespan of the
schedule. It has been clearly shown in several studies that the performance of an agent
with dense rewards is better than the performance of an agent with sparse rewards [28].
In this work, we have designed a simple dense reward function R to provide a feedback
regarding the operation assignment and a final reward R f to express the viability of the
achieved goal. Therefore the cumulative reward equals

Rcumulative = ∑
a

R + R f (8)

R(at, st) =

{
1, if O is a valid assignments
0, else

(9)

Mach. Learn. Knowl. Extr. 2023, 5 423

The final reward R f is only given when the agent is successful in assigning all opera-
tions before the roll-out buffer is full. We employed the following equation:

R f = (roll-out buffer + α− C∗max) · C0. (10)

The equation can be easily interpreted by considering that the hyperparameter α is
zero and C0 is unity; in this case, the equation simply states that the final reward starts
at zero when the makespan is exactly the roll-out buffer. However, this is not a good
scenario as the agent is not rewarded for solving the problem when the roll-out buffer and
the makespan are in the same order of magnitude. We hence decided to introduce α that
increases the final reward by a base value that is always given when the agent achieves to
complete all jobs before the upper limit (given by the roll-out buffer) is reached. Hence, α
can be seen as constant reward for completing the environment. Beyond this base reward,
the agent gets higher rewards a lower the achieved makespan gets. Moreover, C0 serves as
a factor to scale the final reward to increase/decrease it’s importance in comparison to the
cumulative dense reward.

4.6. Markov Decision Process Formulation

The JSSP can be modelled as a Markov Decision Process (MDP) since the assignment
of the job sequentially changes the environment in terms of states and rewards, therefore
the Markov property is fulfilled. JSSPs have been formulated as MDPs in several previous
studies [2,25,26,29,30] with different approaches based on the type of algorithm used to
solve the problem. The agent assigns a job through an action at at time step t and retrieves
the next state st+1. Unlike single assignment at a time step t, there can also be multiple
assignments based on the number of eligible operations k at time step t. The actions
at time step t are given by at0 , at1 , . . . , atk extending the state space at t by st0 , st1 , . . . , stk .
The probability of the next state is modified based on the sub actions taken at the time step.
This can be expressed by

p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s, At−1 = a}. (11)

4.7. Generalization

In order to increase the agents generalization capability, we introduce an OSM to our
environment. The agent is trained on particular instance along with the OSM and then
evaluated with another instance of the same size.

Order Swapping Mechanism (OSM)

The objective of this methodology is to progressively increase the number of swaps—or
anomalies—in the processing order as the training progresses, with the aim of improving
the generalization capability of the agent.

of swaps = Tp ·
m× n

100
· τ. (12)

The training phase, denoted as Tp, reflects the current progress of the training process
and is determined by keeping track of the number of episodic terminations that have
occurred so far. Tp represents the number of episodes that the agent has gone through.
The parameter τ is an empirically determined value that controls the frequency of swaps
during the training phase, constraining their occurrence. To provide some context, when
τ is set to 0.01 for a problem size of 15× 15, the number of swaps increments by 1.575 at
Tp = 70, resulting in a total of 2 swaps throughout the entire problem. The next increment
in the number of swaps occurs at around Tp = 115. On the other hand, if τ is set to
0.005, the number of swaps increments for each Tp = 85. The magnitude of swaps is also
restricted based on the total number of operations m × n, where m is the total number
of machines and n is the total number of jobs. It is worth noting that every two swaps,

Mach. Learn. Knowl. Extr. 2023, 5 424

which corresponds to approximately 1% of the problem size, results in four changes in the
processing order, accounting for approximately 2% of the problem size.

This implementation implicitly includes a shallow phase at the beginning of the
training process, during which the agent learns the scheduling objective, as the number
of swaps until Tp = 50 is zero. During this phase, the behavior of the environment with
OSM and without OSM is similar. However, this behavior changes abruptly as the Tp
increases, as clearly observed during the training step around 100 K. After 100 K training
steps, the environment consistently swaps the processing order for each episode of the
training process. The agent converges with OSM after 1 million steps, while the agent
on the environment without OSM was able to converge within 500 k training steps. This
phenomena can clearly be observed in Figures 2 and 3 in which the performance/episode
length decays with increasing training steps.

env with OSM
env without OSM

1.6 · 103

1.4 · 103

1.2 · 103

1 · 103

training steps

pe
rf

or
m

an
ce

800

600

400

200

0 500k 1M 1.5M 2M 2.5M 3M 3.5M 4M

Figure 2. Comparison between the environment with the OSM implementation (red) and environ-
ment without the OSM (blue)—performance of the agent vs. training steps.

The performance of generalization in training an agent is influenced by the amount of
randomness, such as the level of OSM, provided during the training process. When a very
high OSM level (e.g., 20%, 25%) is used during training, it can cause the agent to fail in
learning the general scheduling objective. On the other hand, when a very low OSM level
(e.g., 2.5%, 5%) is employed, it may result in better performance in the specific problem that
the agent was trained on. However, using a very low OSM level may lead to limitations in
the agent’s generalization capabilities, meaning it may struggle to perform well in tasks or
environments that differ from the specific problem it was trained on.

We experimented τ with 0.01, 0.00667, 0.005 which implicitly provides approximately
15%, 10%, 5% OSM in the 15 × 15 problem running over 6 million steps respectively.

The performance of the agent during the training with the environment of τ = 0.00667
is lower than the τ = 0.005 (5% change to the true instance). This performance discrepancy
can be observed in Figures 4 and 5. On the other hand, when τ is set to a value of 0.01, it
results in more swaps compared to previous values, which can lead to late convergence
of the agent. The τ parameter is highly sensitive, such that increasing the randomness
by more than 15% can result in non-converging training. It is worth noting that as the
complexity of the problem increases, the amount of swaps may need to be configured
accordingly. This phenomenon occurs because the agent may require more training phases
in the beginning to learn the base schedule objectives effectively.

Mach. Learn. Knowl. Extr. 2023, 5 425

100

200

300

400

500

600

700

800

900

0 500k 1M 1.5M 2M 2.5M 3M 3.5M 4M

env with OSM
env without OSM

training steps

ep
is

od
e

le
ng

th

Figure 3. Comparison between the environment with the OSM implementation (red) and environ-
ment without the OSM (blue)—episode length vs. training steps.

1.8 · 103

1.6 · 103

1.4 · 103

1.2 · 103

1 · 103

800

600

τ = 0.00667
τ = 0.01

Tp

0 500k 1.5M 2.5M 3.5M 4.5M 5.5M

τ = 0.005
400

200

Training Steps

Pe
rf

or
m

an
ce

Figure 4. Performance with different execution rates—agent performance vs. time steps (green: τ = 0.01,
blue: τ = 0.00667, red: τ = 0.005, black—Tp).

Mach. Learn. Knowl. Extr. 2023, 5 426

800
700

900

600
500

400

300

200

100
90

0 500k 1M 1.5M 2M 2.5M 3M

Training Steps

Ep
is

od
e

le
ng

th

3.5M 4M 4.5M 5M 5.5M 6M

τ = 0.01
τ = 0.00667

τ = 0.005

Figure 5. Performance with different execution rates—episode length vs. training steps (green: τ = 0.01,
blue: τ = 0.00667, red: τ = 0.005.

5. Experiments

Our proposed strategy was implemented using OpenAI Gym toolkit [31] and Stable-
Baselines3 [32] which provide reinforcement learning environment APIs and reliable rein-
forcement learning algorithms.

5.1. Model Configuration

The policy network is designed as an actor network with two hidden layers and a value
network that also has two hidden layers, both of size 256. The hyperparameter optimization
was carried out using the optuna optimizer [33]. We set the clipping parameter to 0.2 and
the discount factor γ to 966× 10−3. In order to avoid major updates in the network at the
end, we introduced a linear scheduler for the learning rate which decays from 1× 10−4 to
1× 10−8. The policy update step is set based on the size of the problem. This parameter is
sensitive towards the number of steps taken to solve the environment which is dependent
on the size of the problem. For example, in the 15× 15 instance, it was set to 448. Finally,
we developed a roll out parameter for the environment which is also dependent on the
problem size which helps to reduce the training time. The roll out parameter indicates
when to terminate the current training phase.

5.2. Training

Training without considering OSM was carried out for each specified instance. Train-
ing with OSM was only done for a single instance of a each problem size to then determine
the agent’s performance on instances of the same size. The efficiency of the solution is
analyzed by using the previously obtained upper bounds for these instances. Additionally,
to analyze the performance of the agent, the environment provides an occupancy cumula-
tive average value for the job assignments. Through this, we were also able to speed up
the training process by setting an occupancy threshold value which needs to be satisfied
by the agent to achieve its goal, if it doesn’t, the environment terminates. By implement-
ing this technique, the network was able to converge quicker and required less training
time to reach an efficient solution. Training was stopped when the agent’s cumulative
discounted reward ceased to improve. The most successful model from the training phase
was employed to determine the final make span.

Mach. Learn. Knowl. Extr. 2023, 5 427

5.3. Benchmark Instances

To evaluate the performance, we have used the commonly used benchmark instances
in this field of study. Tables 1 and 2 present an overview of the instances that were used
for training and evaluation. We mainly compared our performance using Taillard [10] and
Demirkol et al. [11] instances with Han and Yang [25], Zhang et al. [2] and Tassel et al. [26],
as they used same benchmark instances. For our generalized approach, we compare our
results with Zhang et al. [2], even though we are not size agnostic, we achieved partial
generalization in terms of problem size.

Table 1. Benchmark instances.

Authors Instance Size Used (Jobs ×Machines)

Adams, Balas, and Zawack [34] 10 × 10, 20 × 15
Demirkol, Mehta, and Uzsoy [11] 20 × 15 to 50 × 20

Fisher [35] 6 × 6, 10 × 10, 20 × 5
Lawrence [36] 10 × 10 to 15 × 5

Applegate and Cook [37] 10 × 10
Taillard [10] 15 × 15 to 20 × 100

Yamada and Nakano [38] 20 × 20
Storer, Wu, and Vaccari [39] 20 × 10 to 50 × 10

Table 2. Performance comparison of the conventional env model, * indicates the solution is optimal.

Instance Size
(n ×m) MWKR SPT Tassel

et al. [26]
Han and
Yang [25]

Zhang
et al. [2] Ours LB

Ft06 6 × 6 - - - - - 55 * 55
La05 10 × 5 787 827 - 593 * - 593 * 593
La10 15 × 5 1136 1345 - 958 * - 958 * 958
La16 10 × 10 1238 1588 - 980 - 974 945
Ta01 15 × 15 1786 1872 - 1315 1443 1352 1231
Ta02 15 × 15 1944 1709 - 1336 1544 1354 1244

dmu16 [11] 30 × 20 5837 6241 4188 4414 4953 4632 3751
dmu17 [11] 30 × 20 6610 6487 4274 - 5579 5104 3814

Ta41 30 × 20 2632 3067 2208 2450 2667 2583 2005
Ta42 30 × 20 2401 3640 2168 2351 2664 2457 1937
Ta43 30 × 20 3162 2843 2086 - 2431 2422 1846

5.4. Results

We compare our results with the existing state-of-the-art algorithms and with common
heuristics. Table 2 provides an overview of the corresponding performances. The agent
was able to perform better for small size instances and achieved comparable performance
for large scale instances. Even though the agent was not able to perform better than the
state-of-the-art DRL approach by Tassel et al. [26], the goal of this study was to develop a
generalized agent which could achieve a good performance without having trained on an
instance of the same size.

5.5. Generalized Result

Based on the generalization research, Zhang et al. [2]’s approach using graph neural
networks has produced promising results. The training time for larger instances is dras-
tically reduced using their size-agnostic network. Although we are not size agnostic, we
developed our generalization approach with respect to the problem size. Through this
approach, we were able to produce better results with reduced execution time since the
training is necessary only once with a particular problem size. We have compared our
results based on different problem sizes with Taillard [10] and Demirkol et al. [11]. We tried
three different execution rates τ = 0.01, τ = 0.00667, τ = 0.005 which impose 15%, 10%,
5% swaps in the original 15× 15 dataset, while 10%, 7.5%, 5% for the 30× 20 dataset.

Mach. Learn. Knowl. Extr. 2023, 5 428

For the problem size 15 × 15, the agent was trained with Taillard’s 01 and tested
with other 15× 15 instances of Taillard’s. It can be clearly observed from Tables 3–5 that,
with constrained randomness, the agent was able to generalize better and produce near
optimum solutions.

Table 3. Generalized Taillard’s 15× 15 instance results with various OSM execution rate.

Instance
Ta01-
OSM

with 5%

Ta01-
OSM

with 10%

Ta01-
OSM

with 15%
MWKR SPT Ours Zhang

et al. [2] LB

Ta02 1491 1486 1546 1944 1709 1354 1544 1244
Ta03 1443 1437 1525 1947 2009 1388 1440 1218
Ta04 1568 1502 1614 1694 1825 1513 1637 1175
Ta05 1599 1481 1483 1892 2044 1443 1619 1224
Ta06 1776 1507 1552 1976 1771 1360 1601 1238
Ta07 1526 1500 1605 1961 2016 1354 1568 1227
Ta08 1631 1540 1524 1803 1654 1377 1468 1217
Ta09 1662 1664 1597 2215 1962 1401 1627 1274
Ta10 1573 1524 1659 2057 2164 1370 1527 1241

Table 4. Generalized Taillard’s 30× 20 instance results with various OSM.

Instance
Ta41-
OSM

with 5%

Ta41-
OSM

with 7.5%

Ta41-
OSM

with 10%
MWKR SPT Ours Zhang

et al. [2] LB

Ta42 2903 2831 2572 3394 3640 2457 2664 1937
Ta43 2800 2651 2614 3162 2843 2422 2431 1846
Ta44 2991 2751 2745 3388 3281 2598 2714 1979
Ta45 2851 2812 2692 3390 3238 2587 2637 2000
Ta46 2986 2842 2674 3268 3352 2606 2776 2006
Ta47 2854 2807 2677 2986 3197 2538 2476 1889
Ta48 2758 2753 2638 3050 3445 2461 2490 1937
Ta49 2800 2646 2566 3172 3201 2501 2556 1961
Ta50 2887 2654 2616 2978 3083 2550 2628 1923

Table 5. Generalized Demikrol 30× 20 instance results with various OSM (MWKR refers to Most
Work Remaining, SPT refers to Shortest Processing Time).

Instance
Ta41-
OSM

with 5%

Ta41-
OSM

with 7.5%

Ta41-
OSM

with 10%
MWKR SPT Ours Zhang

et al. [2] LB

Dmu16 5413 5560 4907 5837 6241 4632 4953 3751
Dmu17 5926 5911 5646 6610 6487 5104 5379 3814
Dmu18 5380 5773 5287 6363 6978 4998 5100 3844
Dmu19 5236 5136 4993 6385 5767 4759 4889 3768
Dmu20 5263 5318 5131 6472 6910 4697 4859 3710

The agent’s performance in the environment without OSM is better than its perfor-
mance in a OSM-environment. However the training time required to train 10 instances of
the same size is reduced by a factor of 10 when using the OSM-environment. This is due
to the fact that the training results of the first instance can be transferred to the remaining
nine instances.

6. Conclusions

In this paper, we have developed a reinforcement learning environment that solves
JSSPs. Moreover we showed the increased generalization capability when employing
our OSM implementation. The main motive of our work was to develop a generalized

Mach. Learn. Knowl. Extr. 2023, 5 429

model that can provide near optimum solutions. Even though, our approach is not fully
generalized like Zhang et al. [2] we provide a size dependent generalization which is of
high relevance for the industry. Based on the generalized result, it is clear that our approach
outperforms the Priority Dispatching Rule based DRL approach by Zhang et al. [2]. Based
on single instance training, our results show that our agent performed similarly to the state
of the art DRL algorithms. For our future work, we plan to modify this approach to be
size-agnostic which can be used by the industry to obtain more reliable scheduling results.

Author Contributions: Conceptualization, P.K., D.V. and N.K.; methodology, D.V., S.W. and N.K.;
software, P.K., D.V. and S.W.; validation, P.K., D.V. and S.W.; formal analysis, D.V.; writing, all authors;
supervision, N.K.; project administration, N.K.; All authors have read and agreed to the published
version of the manuscript.

Funding: This project is supported by the Federal Ministry for Economic Affairs and Climate Action
(BMWK) on the basis of a decision by the German Bundestag (KK5213903LB1).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

COP Combinatorial Optimization Problem
DRL Deep Reinforcement Learning
JSSP Job Shop Scheduling Problem
LB Lower Bound
MDP Markov Decision Process
OSM Order Swapping Mechanism
PPO Proximal Policy Optimization

References
1. Pinedo, M.L. Scheduling; Springer: New York, NY, USA, 2012; pp. 183–215.
2. Zhang, C.; Song, W.; Cao, Z.; Zhang, J.; Tan, P.S.; Chi, X. Learning to dispatch for job shop scheduling via deep reinforcement

learning. Adv. Neural Inf. Process. Syst. 2020, 33, 1621–1632.
3. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
4. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.

Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv 2017, arXiv:1712.01815.
5. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev, P.;

et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [CrossRef] [PubMed]
6. Du, H.; Yan, Z.; Xiang, Q.; Zhan, Q. Vulcan: Solving the Steiner Tree Problem with Graph Neural Networks and Deep

Reinforcement Learning. arXiv 2021, arXiv:2111.10810.
7. Afshar, R.R.; Zhang, Y.; Firat, M.; Kaymak, U. A state aggregation approach for solving knapsack problem with deep reinforcement

learning. In Proceedings of the Asian Conference on Machine Learning, PMLR, Bangkok, Thailand, 18–20 November 2020;
pp. 81–96.

8. Manerba, D.; Li, Y.; Fadda, E.; Terzo, O.; Tadei, R. Reinforcement Learning Algorithms for Online Single-Machine Scheduling. In
Proceedings of the 2020 15th Conference on Computer Science and Information Systems (FedCSIS), Sofia, Bulgaria, 6–9 September
2020. [CrossRef]

9. Li, Y.; Carabelli, S.; Fadda, E.; Manerba, D.; Tadei, R.; Terzo, O. Machine learning and optimization for production rescheduling in
Industry 4.0. Int. J. Adv. Manuf. Technol. 2020, 110, 2445–2463. [CrossRef]

10. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [CrossRef]
11. Demirkol, E.; Mehta, S.; Uzsoy, R. Benchmarks for shop scheduling problems. Eur. J. Oper. Res. 1998, 109, 137–141. [CrossRef]
12. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347.
13. Taillard, E.D. Parallel taboo search techniques for the job shop scheduling problem. ORSA J. Comput. 1994, 6, 108–117. [CrossRef]
14. Van Laarhoven, P.J.; Aarts, E.H.; Lenstra, J.K. Job shop scheduling by simulated annealing. Oper. Res. 1992, 40, 113–125.

[CrossRef]
15. Pezzella, F.; Morganti, G.; Ciaschetti, G. A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res.

2008, 35, 3202–3212. [CrossRef]

http://doi.org/10.1038/s41586-019-1724-z
http://www.ncbi.nlm.nih.gov/pubmed/31666705
http://dx.doi.org/10.15439/2020F100
http://dx.doi.org/10.1007/s00170-020-05850-5
http://dx.doi.org/10.1016/0377-2217(93)90182-M
http://dx.doi.org/10.1016/S0377-2217(97)00019-2
http://dx.doi.org/10.1287/ijoc.6.2.108
http://dx.doi.org/10.1287/opre.40.1.113
http://dx.doi.org/10.1016/j.cor.2007.02.014

Mach. Learn. Knowl. Extr. 2023, 5 430

16. Cappart, Q.; Moisan, T.; Rousseau, L.M.; Prémont-Schwarz, I.; Cire, A.A. Combining reinforcement learning and constraint
programming for combinatorial optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, virtually, 2–9
February 2021; Volume 35, pp. 3677–3687.

17. Oren, J.; Ross, C.; Lefarov, M.; Richter, F.; Taitler, A.; Feldman, Z.; Di Castro, D.; Daniel, C. SOLO: Search online, learn offline for
combinatorial optimization problems. In Proceedings of the International Symposium on Combinatorial Search, Guangzhou,
China, 26–30 July 2021; Volume 12, pp. 97–105.

18. Zhang, Z.; Liu, H.; Zhou, M.; Wang, J. Solving dynamic traveling salesman problems with deep reinforcement learning. IEEE
Trans. Neural Netw. Learn. Syst. 2021, 34, 2119–2132. [CrossRef]

19. d O Costa, P.R.; Rhuggenaath, J.; Zhang, Y.; Akcay, A. Learning 2-opt heuristics for the traveling salesman problem via deep
reinforcement learning. In Proceedings of the Asian Conference on Machine Learning, Bangkok, Thailand, 18–20 November 2020;
pp. 465–480.

20. Zhang, R.; Prokhorchuk, A.; Dauwels, J. Deep reinforcement learning for traveling salesman problem with time windows and
rejections. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020;
pp. 1–8.

21. Zhang, W.; Dietterich, T.G. A reinforcement learning approach to job-shop scheduling. IJCAI 1995, 95, 1114–1120.
22. Deale, M.; Yvanovich, M.; Schnitzuius, D.; Kautz, D.; Carpenter, M.; Zweben, M.; Davis, G.; Daun, B. The space shuttle ground

processing scheduling system. Intell. Sched. 1994, 423–449.
23. Gabel, T.; Riedmiller, M. Distributed policy search reinforcement learning for job-shop scheduling tasks. Int. J. Prod. Res. 2012,

50, 41–61. [CrossRef]
24. Liu, C.L.; Chang, C.C.; Tseng, C.J. Actor-critic deep reinforcement learning for solving job shop scheduling problems. IEEE Access

2020, 8, 71752–71762. [CrossRef]
25. Han, B.A.; Yang, J.J. Research on adaptive job shop scheduling problems based on dueling double DQN. IEEE Access 2020,

8, 186474–186495. [CrossRef]
26. Tassel, P.; Gebser, M.; Schekotihin, K. A reinforcement learning environment for job-shop scheduling. arXiv 2021, arXiv:2104.03760.
27. Błażewicz, J.; Ecker, K.H.; Pesch, E.; Schmidt, G.; Weglarz, J. Scheduling Computer and Manufacturing Processes; Springer Science &

Business Media: Cham, Switzerland, 2001; pp. 273–315.
28. Mohtasib, A.; Neumann, G.; Cuayáhuitl, H. A study on dense and sparse (visual) rewards in robot policy learning. In Proceedings

of the Annual Conference towards Autonomous Robotic Systems; Springer: Cham, Switzerland, 2021; pp. 3–13.
29. Singh, S.; Cohn, D. How to dynamically merge Markov decision processes. In Proceedings of the 1997 Conference on Advances in

Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1997; p. 10.
30. Zhang, T.; Xie, S.; Rose, O. Real-time job shop scheduling based on simulation and Markov decision processes. In Proceedings of

the 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017; pp. 3899–3907.
31. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai gym. arXiv 2016, arXiv:1606.01540.
32. Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus, M.; Dormann, N. Stable-baselines3: Reliable reinforcement learning

implementations. J. Mach. Learn. Res. 2021, 22, 12348–12355.
33. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework.

arXiv 2019, arXiv:1907.10902.
34. Adams, J.; Balas, E.; Zawack, D. The shifting bottleneck procedure for job shop scheduling. Manag. Sci. 1988, 34, 391–401.

[CrossRef]
35. Fisher, H. Probabilistic learning combinations of local job-shop scheduling rules. Ind. Sched. 1963, 225–251.
36. Lawrence, S. Resouce Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques (Supplement);

Graduate School of Industrial Administration, Carnegie-Mellon University: Pittsburgh, PA, USA, 1984.
37. Applegate, D.; Cook, W. A computational study of the job-shop scheduling problem. ORSA J. Comput. 1991, 3, 149–156. [CrossRef]
38. Yamada, T.; Nakano, R. A genetic algorithm applicable to large-scale job-shop problems. In Proceedings of the Second Conference

on Parallel Problem Solving from Nature, Brussels, Belguim, 28–30 September 1992; pp. 281–290.
39. Storer, R.; Wu, S.; Vaccari, R. New search spaces for sequencing instances with application to job shop. Manag. Sci. 1992,

38, 1495–1509. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNNLS.2021.3105905
http://dx.doi.org/10.1080/00207543.2011.571443
http://dx.doi.org/10.1109/ACCESS.2020.2987820
http://dx.doi.org/10.1109/ACCESS.2020.3029868
http://dx.doi.org/10.1287/mnsc.34.3.391
http://dx.doi.org/10.1287/ijoc.3.2.149
http://dx.doi.org/10.1287/mnsc.38.10.1495

	Introduction
	Background
	Job Shop Constraints
	Proximal Policy Optimization (PPO)

	Related Works
	Methodologies
	Environment Outline
	Time Step Transition
	Action Space
	States
	Reward
	Markov Decision Process Formulation
	Generalization

	Experiments
	Model Configuration
	Training
	Benchmark Instances
	Results
	Generalized Result

	Conclusions
	References

