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Abstract: An unbiased scene graph generation (SGG) algorithm referred to as Skew Class-Balanced
Re-Weighting (SCR) is proposed for considering the unbiased predicate prediction caused by the
long-tailed distribution. The prior works focus mainly on alleviating the deteriorating performances
of the minority predicate predictions, showing drastic dropping recall scores, i.e., losing the majority
predicate performances. It has not yet correctly analyzed the trade-off between majority and minority
predicate performances in the limited SGG datasets. In this paper, to alleviate the issue, the Skew Class-
Balanced Re-Weighting (SCR) loss function is considered for the unbiased SGG models. Leveraged
by the skewness of biased predicate predictions, the SCR estimates the target predicate weight
coefficient and then re-weights more to the biased predicates for better trading-off between the
majority predicates and the minority ones. Extensive experiments conducted on the standard Visual
Genome dataset and Open Image V4 and V6 show the performances and generality of the SCR with
the traditional SGG models.

Keywords: scene graph generation (SGG); skew class-balanced re-weighting (SCR); predicate sample
estimates; skew class-balanced effective number

1. Introduction

Currently, computer vision [1-6] has been prevalent in various fields: material [7],
chemical [8,9], and medical science [10]. Of great interest are tasks related to classifying and
detecting objects by classical neural networks [11-15]. With the development of computer
vision, graph neural networks [16-22] and multimodal text and image models [23-28]
have also been intensely investigated. However, there is less information on Scene Graph
Generation (SGG) models in the literature. For this reason, SGG has recently been receiving
increased attention for improving image comprehension, divided into two approaches:
one-stage [29,30] and two-stage [31-45]. The core building blocks of SGG are the objects in
the image. There can be diverse relationships among the objects [46,47]. All relationships
can be represented as triplets subject, relation, object, which can be used for generating
the scene graph. The precise interpretation of an image depends on the core relations
between the subject—object pairs. For example, given an image of dog, woman, kite objects, the
image can be interpreted in multiple ways such as (dog, has, leg), (dog, near, woman), and
(woman, holding, kite).

In general, however, the real-world large data sets often have shown long-tailed

predicate distributions as depicted in Figure 1a—the predicate proportion of the Visual
Genome [31], containing 51 predicates. One cause of long-tail distribution is the background
predicates. The background predicates account for more than 80% in total predicates since
it is not trivial to annotate all possible relationships, leading to possibly far more subject-
object pairs without annotating ground truth than ones with ground truth labels. Another
reason is the visual event frequency, as shown in Figure 1b. The majority predicates more
frequently occur than the minority ones given a visual subject—object pair in the real-world
4.0/). scene. For example, given a man-board pair, the possible predicates—backgrounds, on, holding,
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riding, etc. represents a long-tail distribution. The predicate on is more frequently observed

than holding and riding.
14 the predicates of all subject-object pairs
12
—
o'10
L
= 8
o
o 6
4
2
0
%] %] D~ o %) oY% oL P Y NS +~ Y 1%}
§58 5 pE PR YSLop oS 25 P ST LSRR BS CoR5PEe SHLE 55524 <
= S S35-8oUSS o 580 0pREQTETOVELEFLO oY Dop S5E 0oISF 2D
S o ST SSTS50ES £E8 S£5o5%0° 3855°E£80 glos £888 S
s 8 SR 5 £F 868 Sg Q5% 0290 Sz<o =Ew SSga
~ 3 c £ Lo BS5508 o g Sc O35 o%
o] = @ B3 L2 20qg It s =90 £8
I3 & o o £ S}
Q aRs]
(a) The long-tailed predicate distribution.
8
7 the predicates of man-board pair
6
_
o
95
=4
o
o3
2
1
0 o o~ o4 oo -~ S Y -~ Y
S FEFE I T S i T o
5 °F S 255298552 232 0225 203R 5857258 S5nsT 258548
S S¥w ST S £28 £3 o3 s £Lao T lo £ KCIEEN
s 8 25 &5 G S¥ 2ox¢ 0298 S5s8 TgR® Fgfa
~ @ c £ og L5558 o g2 Sc 85 or
v S o 53 L2 209 S s =0 =
© b4 © So IS [SRS)
o T
pair.

(b) The predicate distribution of the

Figure 1. The long-tailed predicate distribution: (a) the predicate proportion of the visual genome [31],
where backgrounds are possibly far more than others and (b) the possible predicates of a

pair.

This long-tailed label distribution causes the trained model to tend to be biased to-
ward the majority predicates. The SGG models [43,48-52] focus on increasing the minority
predicate performances for the unbiased scene graph generation, i.e., increasing mean
recall scores. However, these methods lead to deteriorating performances of the majority
predicates, drastically dropping recall scores, i.e., losing the majority predicate perfor-
mances. Recently, the issue has been alleviated through resampling images and object
instances [49]. However, this method needs more computing power and time to train the
model on the resampled samples. The current state-of-the-art models focus on re-balancing
biased loss [53] or correcting noisy labels [54] to acquire an unbiased SGG model. Nev-
ertheless, the prior works have not yet adequately described and analyzed the trade-off
performances between majority and minority predicates for learning SGG models based on

the given imbalanced datasets.

In this paper, the Skew Class-Balanced Re-Weighting (SCR) loss function is considered
for alleviating the issues and acquiring the best trade-off performances in the multiple
SGG tasks. Leveraged by the skewness of predicate predictions, the SCR estimates its
weight coefficients and then reweights more to biased predicate samples to adaptively be
unbiased SGG models. The extensive experimental results show that the SCR loss function
gives more generalized performances than priors in the multiple SGG tasks on the Visual

Genome dataset [55] and the Open Images datasets [56].
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Contributions of our SCR learning scheme to unbiased SGG models:

¢ Leveraged by the skewness of biased predicate predictions, the Skew Class-Balanced
Re-Weighting (SCR) loss function is firstly proposed for the unbiased scene graph
generation (SGG) models.

*  The SCRis applied to the current state-of-the-art SGG models to show its effectiveness,
leading to more generalized performances: the SCR outperforms the prior reweighted
methods on both mean recall and recall measurements in the multiple SGG tasks.

This paper is organized as follows. The Related Work section provides discussions
on unbiased scene graph generation. The unbiased SGG section presents scene graph
generation. In the Skew Class-Balanced Re-Weighting (SCR) section, the SCR loss function
is depicted in detail. In the experimental section, the results of scene graph generation
on the Visual Genome and Open Image V4 and V6 dataset are examined, along with
an analysis and ablation study on the SCR with the current state-of-the-art SGG models.
Finally, we conclude.

2. Related Works

Unbiased Scene Graph Generation (SGG). Predicate distribution is much more long-
tailed than object distribution. For N objects and R predicates, the model has to address the
fundamental challenge of learning O(N?R) relations with few [57,58]. To overcome the lim-
ited training dataset, the linguistic external knowledge [38,57,59] was used by Yu et al. [60],
regularizing the deep neural network; using linguistic knowledge, the probabilistic model
has also alleviated the semantical ambiguity of visual relationships [61]. Furthermore,
to alleviate the imbalanced relationship distribution, Yin et al. [38] reformulated the con-
ventional one-hot classification as a n-hot multiclass hierarchical recognition via novel
Intra-Hierarchical trees (IH-trees) for each label set in the triplet (subject, predicate, object).
Recently, unbiased SGG [43,47-54,62-71] has drawn unprecedented interest for more gener-
alized SGG models. Occurrence-based Node Priority Sensitive (NPS)-loss [47] was used for
balancing predictions; the Total Direct Effect (TDE) method has proposed firstly for unbi-
ased learning by Tang et al. [43], which directly separates the bias from biased predictions
through the counterfactual methodologies on causal graphs; CogTree [48] addressed the
debiasing issue based on the coarse-to-fine structure of the relationships from the cognition
viewpoint; Li et al. [49] improved the context modeling for tail categories by designing the
bipartite graph network and message propagation on resampled objects and images. Lastly,
the Predicate Probability Distribution based Loss (PPDL) [53] has proposed to train the
biased SGG models, which measure the semantic predicate representation to re-balance the
biased training loss. In this work, the Skew Class-Balanced Re-Weighting (SCR) loss function
is proposed for alleviating biased predicate predictions, leading to the most generalized
SGG models through the novel adaptive re-weighting learning scheme.

Re-Weighting Based Unbiased SGG. Overall unbiased SGG models can be catego-
rized into the re-balancing strategy of re-weighting [47,48,50,53] and re-sampling [49]
and biased model-based strategy [43,51,52]. For unbiased SGG modes, Tang et al. [43]
first investigated the re-weighting learning algorithm. However, they observed that the
performances of the majority predicates were drastically dropped, resulting in low recall
scores while with high mean recall scores. This shows the general tendency that there is
a trade-off performance between majority predicates and minority ones. To alleviate the
trade-off issue, Yu et al. [48] proposed CogTree based on the coarse-to-fine structure of the
relationships from the cognition viewpoint. Recently, the Predicate Probability Distribution
(PPD) [53] re-balances the biased training loss according to the similarity between the
predicted probability distribution and the estimated one. However, it has not yet correctly
analyzed the trade-off performances between the majority and minority classes in various
SGG tasks. In this paper, we measure the sample skew score based on the sample estimates
for bias toward the majority classes to assign the sample weight correctly. The sample
skewness is computed as the Fisher-Pearson coefficient of skewness on its sample mean
value [72]. However, since the mean value tends to be biased toward the majority predi-
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cates, we measure the sample skew score fairly on its target logit instead of its mean value.
Based on the sample skew score, the SCR assigns the sample weights adaptively—if there
is no bias, we assign fewer weights to the sample (majority). If it is biased to one side, we
assign larger weights to the samples (minority). Such that the SGG models with SCR show
superior performances and generality on the multiple SGG tasks.

3. Unbiased Scene Graph Generation

In this section, we discuss the general scene graph generation model of the object and
predicate predictions and depict the predicate sample estimates for measuring its skewness
of biased predictions.

3.1. Scene Graph Generations

Given an image I, a scene graph model generates a graph G = (V, ), where V and €
are the sets of nodes and edges, respectively. Each node 0; € V is represented by a bounding
box v°¥ € R* and a corresponding class label oy € Copj. Each edge r;; € & represents the
predicate between the subject node v; and the object node v;. The corresponding predicate
label is r,, € C,,;.

We depict the proposed unbiased SGG framework as shown in Figure 2. Object
detector outputs its predictions (a): and . Given label prediction pair,
the traditional SGG model predicts (d) predicate predictions (R see Equation (3)) through
a fusion of (b) non-visual FREQ prior predicates and (c) visual predicate predictions (Ryis).
For unbiased SGG model training, our SCR estimates (e) a sample size of the possible
predicate candidates through FREQ (Re; or R, ) and measures (f) the target label skew
score and then calculates (g) the training target sample weight for the adaptive re-weighted
loss. In (f) and (g), red lines around the target label indicate predicate skew (S;kew see
Equation (9)) and re-weight scores (Wi see Equation (7)), respectively, where they have an
approximately inverse relationship.

4 Input & Label /" Object Predictions Predicate Predictions & Sample Estimates Sample Weight Estimates I\
(a) Object Model (b) FREQ Model (e) Sample Estimates (f) Skew Measures
> on near riding - on near riding .. » on near riding ..
man horse cat - r:% @
(c) Predicate Model (d) Predicate Predictions (g) Target Sample Weight
man horse cat - =
Label: < man, riding, horse > . . .
on_near riding - on_near riding ... on near riding .-
- AN J

Figure 2. Skew class-balanced re-weighting (SCR) for unbiased SGG models. Based on (a) object
detection, the SGG model predicts (d) predicates of (b) FREQ and (c) visual predictions; unbiased
SGG is trained by (g) target sample weight, which is estimated by (f) skew measures of (e) possible
sample estimates.

3.1.1. Object Predictions

Following [43], the node features are derived from the object detector. In particular,
for each bounding box vﬁ’b‘”‘ , the detector returns a Rol-Align feature x*°! and an object
label embedding I;. In general SGG model, the N’ number of node features are constructed
by vector concatenation X = {[x[°%; 1;; b;] }{\:/ 1» Where b; is the embedded box feature from
the box coordinate vf’b‘”‘.

X = feg(X) € RV *Pan, (1)
where all fc, denote a fully connected layer for linear transformations or logits, and the
object feature dimension D,;; depends on the SGG model. As depicted in Figure 2a, the
predicted object label of O € RV *ICa] i5 estimated by object logits fc(X) as follows:

A

0 = fc(X). 2
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3.1.2. Predicate Predictions

Inspired by Tang et al. [43], Zhu et al. [73], predicate predictions can be made by
employing multiple logits from visual and non-visual features. We follow the sum over
all outputs to generate the final predicate prediction. As illustrated in Figure 2d, the
combined predicate logit R is estimated based on the summation of the visual logits and
the non-visual logits as follows:

R= Rvis @ Rfreq @ Remb/ 3)

where R € RNV -1Dx[Cl; ¢ is an element-wise sum; as shown in Figure 2c, R, is the
predicate logits from visual feature F,; such as a D,;; dimensional union feature and
a subject-object pair feature, which also depends on the SGG model,

Rvis = vais(Pvis)/ Fs € RN(N_UXDWS’
Rfreq = Singid(Rfreq) c RN(N_UX\C,EH, @)
ﬁfmb = fcemb(Lemb)r Loy € RN(N_UX‘LOO.

The FREQ [74] as a non-visual feature, R freq (Figure 2b) looks up the empirical distri-
bution over relationships between subject 6; and object 6; as computed in the training set
where 0;,0; € O. However, since FREQ does not consider any image representations when
predicting predicates, it tends to lead to biased predicate predictions due to its imbalanced
predicate distribution. To minimize the biased effects, we use the Sigmoid-activated FREQ
predicate logits. In addition, for acquiring the more smoothness of the empirical distribu-
tion, the concatenated subject—object embedding R, is added to the predicate predictions
where L,,;, = {[1;; l]]}}/}][

3.2. Sample Estimates

Non-visual predicate features tend to be more biased than visual features due to an
imbalanced training set. If the degree of biased predictions can be measured, we can
leverage its value to learn the SGG models without bias. According to Brown [72], the
degree of bias prediction can generally be measured in a skew score. In general, if there is
no bias, the skew score is close to 0, and if it is biased to one side, the skew score is over
either —1 or +1.

In SCR, we need to estimate how many predicate samples are biased to measure the
predicate skew scores. To approximate the biased sample numbers, we use two non-visual
prior predicate distributions of FREQ, R freq and subject—object label embedding R, as
described in Figure 2e. Based on the two predicate distributions, at first, we define the
skew logit Rijerp With the Sigmoid activation function as follows:

Rskew = Singid(Rfreq @ Remh)- ®)

To estimate the predicate sample weights properly, the SCR approximates skewness
through the predicate sample estimates Ryt in Equation (5). We investigate the best
predicate sample estimates through several experiments with a combination of non-visual
predictions as follows:

e SCRof EMB: R, = Sigmoid(R,,;);
*  SCRof FREQ: Ry, = Sigmoid (R req);
*  SCR of FREQ+EMB: Ry, = Sigmoid(R freg & Rep)-

Then, the predicate sample estimates are acquired as follows:

M= Y # 6)
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where #; € Ryjy; the estimated my € M is the number of yth predicate sample size and
my € [0, N (N —1)). .

Moreover, the skew predicate Ry, serves to estimate the predicate candidates that
a subject—object pair can have fairly since the Sigmoid activation function suppresses the
more extensive biased predictions. For example, a Man-Horse pair may have predicates
such as riding, on, with, etc. The Sigmoid activation function amplifies the frequency of
the minority predicates while squeezing that of the majority ones, as shown in Figure 2b,e,
which is used to calculate Skew Class-Balanced Effective Number that we depict in the
following section.

Note in Equation (5), the Sigmoid activation function was applied to estimate the
predicate sample sizes (Equation (6)) and measure skewness (Equation (9)), given a subject—
object pair. The main reason was that it provides smoothly activated outputs from 0 to 1.
We assumed that an output value of 1 is regarded as one predicate.

4. Skew Class-Balanced Re-Weighting (SCR)

In this section, leveraged by the biased predictions deduced by the predicate sample
estimates, the Skew Class-Balanced Re-Weighting (SCR) performs sample weight estimates
for learning unbiased SGG models.

4.1. Skew Class-Balanced Effective Number

The Skew Class-Balanced Effective Number approximates the mini-batch class-balanced
re-weighting coefficients E;, based on the predicate skew logit Rgtewo in Equation (5). The

ith predicate sample Einy is defined as follows as [75,76]:

A
o=t )
v (1=Bi)
where B; = (m, —1)/my; the effective number satisfies the following properties that

E,iny =1if g; =0 (my =1); E,"ny — my as B; — 1 (m, — o) such that B; controls how fast
E,lny grows as the target predicate sample size m,, incrgases.

To estimate the ith predicate effective number E}, , we adaptively estimate the f; <
[0,1) by using the entropy Hi
Algorithm 1: if S, > Sy, then the B; € [0,1) that assigns more weights to the minority
predicate samples than the majority ones; otherwise, S', < Sy, then B; = 0 that re-
weights uniformly over the entire class sample loss, i.e., conventional cross-entropy loss.
The threshold Sy, is determined as follows:

and skew score function S;k - Of the Rjpry as shown in

Sth = S_skew -9, (8)

where Sy, and § = 0.7 are the mean value of Sy, and the hyper-parameter used,
respectively, in all experiments.

4.2. Skew Measures

In training, the predicate sample skewness depends on the predicate label. In other
words, according to Brown [72], some majority predicate skew values tend to be greater
than zero while others tend to be zero or negative. This is an unfair skew measure, leading
the SCR Algorithm 1 to more weights either in the majority predicates or in the minority
ones. In this paper, as portrayed in Figure 2f, to measure the skew value of all target labels
fairly, we use the target skew logit instead of the mean value. Therefore, the ith predicate
sample skew Si_is firstly measured by the following equation given the target label index

skew
y as follows:
1 52 )3
Loy (P —
i = ICrel Z:TA"JEREkew( H Z'y) (9)

skew 1 - . 373"
T o ~ 7o — 7
(|Crel\ Eri,jER;km( ij ~Tiy) )
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Then, we use the uniformness to determine the 8. The uniformness provides confi-
dence in the predicate sample estimates. To calculate the uniformness of the ith predicate
sample, we estimate the entropy H,, = as follows:

;kew = —Askew Z P(?i,j) log\cn,” p(?i,j)r (10)
Pij € Rt

where the number of predicates |C,,;| is used as the base of the logarithm, which Hékew €

[0,1]; the #; € Ry, have uniform distributions when H;k o 18 close to 1; otherwise, the

predicate sample may have either skew distributions or correct distributions and the

Askew = 0.06 is the coefficient of Sg,,,. The following section depicts the relationship

between skew and entropy in detail.

Algorithm 1 Skew Class-Balanced Effective Number.
Require: Dataset D, SGG Model fy

1: fort =0,1,2,...,T do

2: B <+ Minibatch(D)

3 Rger  Skew_Logits(R freq, Romp; B, fo) (Equation (5))
4 M « Sample_Estimates(Ryy) (Equation (6))
5: Setew < Skew(Ryip, R) (Equation (9))
6: Hgppop < Entropy(Rgpe) (Equation (10))
7 if Sgkery > Sy, then

8: ﬁ = 1.0 — Hyypp

9: else

10: B=0.0

11: end if oy

12: E,iny = %, m, € M,i € [0, N(N —1)) (Equation (7))
13: end for

4.3. Target Sample Weights

The interpretation of the relationship between skew and weight is depicted based on
biased predicate prediction as shown in Figure 3. In Figure 3a, to understand the sample
weight estimate from the predicate sample estimates, we assume that the predicate biased
predictions Ry, are given by the predicate sample frequency M1/3 (see Figure 1a) and
the predicate entropy Hgj,y, i-€., the more frequent sample is the more biased prediction
is; the more biased the prediction is the less entropy is. The skew Sg,,, measures not only
the degree of true/false prediction but also biased predictions as shown in Figure 3c. The
following simple equation summarizes the degree of true/false predictions:

S;kew >0 ifargmax;#;; # ry 1)
Shew <0 otherwise.
where Si, &~ —1 for the true prediction; SI,, = 0 for the uniform prediction and
S .o > 0 for the false and biased prediction. Moreover, the predicate target label-wise

skew has more discrete at high entropy. The final ith sample weight wly =1/ Eﬁm (Figure 2g)
is acquired by the criteria of skew and entropy as shown in Figure 3b. The minority
predicates have larger weights than the majority when S, > 0.

skew
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Softmax(Rskew)

1.004

1.003

Weight, W
=
o
o
N

——— Entorpy, Hskew = 0.984400
~—— Entorpy, Hskew = 0.996800
Entorpy, Hskew = 0.998700
Entorpy, Hskew = 0.999300
—— Entorpy, Hskew = 0.999600
——— Entorpy, Hskew = 0.999700
~— Entorpy, Hskew = 0.999800
——— Entorpy, Hskew = 0.999800

Entorpy, Hskew = 0.999900

0 10

20 30 40 50
Predicates

(a) The predicate biased logits, softmax(Rjeq)-

Hskew = 0.984400
Hskew = 0.996800
Hskew = 0.998700
Hskew = 0.999300
Hskew = 0.999600
Hskew = 0.999700
Hskew = 0.999800
Hskew = 0.999800
Hskew = 0.999900

1.001
1.000
0 10 20 30 40 50
Predicates
(b) The predicate weights, W = 1/Ey,, .
3.0
2.5 E————_—_—_—_—_——
2.0
15
E —— Target Label,r,=0
W 1] — TargetLabel,r,=6
H —— Target Label,r, =12
# 0.5{ — Target Label,r,=18
—— Target Label, r, =24
0.01 Target Label, r, = 30
_05i Target Label, r, = 36
| — Target Label, ry=42
-1.0 Target Label,r, =48

0.96

0.97 0.98 0.99 1.00
Entropy, Hskew

(c) The predicate target label-wise skew, Sgk,q,

Figure 3. The biased predicate weights: (a) the predicate biased logits R, of label frequency M1/5,
depending on entropy Hgy,,, (b) the sensitivity of sample weights W, according to entropy Hgyep,
and (c) the skew measures S, of a target label 7.

4.4. Learning with SCR

Except for object loss, all traditional SGG models are learned by the skew class-
balanced re-weighting cross-entropy loss functions. The conventional cross-entropy loss
for the objects is computed, given object predictions O and the object ground-truth o; €O
as follows:
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) N . exp(dy)
L£0j(0,0) = ¥ —yapy - w0} log [ =W ___) (12
00 (0,0) =} —7op; - wy log < Yo,c0,exP(6))

. . . . Cojl
where, given V' of objects, ith object sample weight is w), = 1s.t. [Copj| = ZJ. d w;; here,
the sample weight denominator 7,,; = 1/ Z{v wly is used for the mean object cross-entropy
loss. The skew class-balanced cross-entropy loss computes the skew predicate-balanced

. PR A . i .
cross-entropy, based on the predicate predictions R and the predicate ground-truth r, € R:

NN -1) ) N
£rel (Rz R) = Z —Yrel wly 10g <Z:e>q7(%> ’ (13)

i f]'ER,' eXp

where, given N (N — 1) of object-subject pairs, the ith predicate sample weight is wly =

E} = 11_/3% st. [Crt| = Z]‘-C’dl w;, here, we set the predicate sample normalizer as
"y “Pi
Veel =1/ Z?\[(N_l) wly for mean predicate loss. In summary, the total objective loss function

Lota1 for unbiased SGG learning can be formulated as follows:
Liotal = Eobj + Lpel- (14)

5. Experiments

The proposed SCR is evaluated with the traditional SGG models on the Visual Genome
benchmark datasets [55], and the performances of the SCR are compared with others in
the multiple SGG tasks. The source code is available at https://github.com/ihaeyong/
Unbiased-SGG (accessed on 26 January 2023).

5.1. Visual Genome

We used Visual Genome (VG) [55] dataset to train and evaluate our models, which is
composed of 108k images across 75k object categories and 37k predicate categories. We
followed the widely adopted VG split [31,42,74] containing the most frequent 150 object
categories and 50 predicate categories. The original split only has a training set (70%) and
a test set (30%). We followed Zellers et al. [74] to sample a 5k validation set from the
training set for parameter tuning.

5.2. Open Images

The Open Images dataset [56] is a large-scale dataset proposed by Google recently.
Compared with the Visual Genome dataset, it has a superior annotation quality for the
scene graph generation. In this work, we conduct experiments on Open Images V4&V6,
following similar data processing and evaluation protocols in [47,56,77]. The Open Images
V4 is introduced as a benchmark for scene graph generation by Zhang et al. [77] and
Lin et al. [47], which has 53,953 and 3234 images for the train and validation sets, 57 objects
categories, and 9 predicate categories in total. The Open Images V6 has 126,368 images used
for training, 1813, and 5322 images for validation and testing, respectively, with 301 object
categories and 31 predicate categories. This dataset has a comparable amount of semantics
categories with the VG.

5.3. Experiments Configurations

State-of-the-Art Comparisons. For fair comparisons, all the compared SGG models
should use the FREQ [74], which looks up the empirical distribution over relationships
between subject prediction §; and object ones 6;. To evaluate the effectiveness of the SCR
learning algorithm, we follow the same experimental settings as the CogTree [48]. We
also set the current state-of-the-art SGG models as the baseline: MOTIFS [74], VCTree [41]
and SG-Transformer [48] which contains 3 O20 blocks and 2 R20 blocks with 12 attention
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heads, and Bipartite-Graph [49] without resampling layers and compare the performance
with the state-of-the-art debiasing approach TDE [43], CogTree [48], PCPL [50], DLFE [51],
BPL-SA [52], PPDL [53], and NICE [54].

Implementation. Following the previous works [43,48,49], the object detector is the
pre-trained Faster R-CNN [78] with ResNeXt-101-FPN [79]. In bi-level resampling [49], we
also set the repeat factor t = 0.07, instances drop rate y; = 0.7, and weight of fusion the
entities features p = —5. The «, § are initialized as 2.2 and 0.025, respectively.

5.4. Evaluations

Our SCR has the following two evaluations:

Relationship Retrieval (RR) contains three sub-task: (1) Predicate Classification (Pred-
Cls): taking ground truth bounding boxes and labels as inputs, (2) Scene Graph Classifica-
tion (SGCls): using ground truth bounding boxes without labels, (3) Scene Graph Detection
(SGDet): detecting SGs from scratch. The conventional metric of RR is Recall@K (R@K),
included in this paper even though the biased prediction is reported by Misra et al. [80] for
the performance of the SCR. Moreover, to evaluate the general performances, we adopted
mean Recall@ K (mR@K) that retrieves each predicate separately and then averages R@K
for all predicates.

Zero-Shot Relationship Retrieval (ZSRR). The Zero-Shot Recall@K was firstly eval-
uated on the VG dataset in [43], which reports the R@K of those subject-predicate-object
triplets that have never been observed in the training set. ZSRR also has three sub-tasks
as RR.

5.5. Quantitative Results

Visual Genome. The SCR is compared with others on the two evaluation tasks: RR
and ZSRR, which are the same as shown in Tables 1 and 2. The SCR achieves the best and
second best performances over the previous methods: TDE, PCPL, Cogtree, DLFE, BPL-SA
PPDL, and NICE, demonstrating its generality and effectiveness on the two measures of
RR task. Moreover, the SCR shows the best trade-off performances on the ZSRR task as
shown in Figure 2.

The Best Trade-off performances. To analyze the trade-off between majority and
minority predicate performances, firstly, we need to understand the two measurements,
mRR and RR. The mRR was introduced to calculate the recall on each predicate category
independently and then to average the results by Tang et al. [41]. This is because of RR’s
bias, which was reported by Misra et al. [80]. The higher the recall scores (RR) are, the more
biased the majority categories are. Therefore, a higher mRR is a more unbiased SGG model;
a higher RR is a more biased SGG model. Traditional SGG models show the tendency
that if mRR is higher than RR, RR performances are low, i.e., MOTIFS, VCTREE, and SG-
Transformer show the best Recall but low mRR@100 in Table 1. However, our SCR shows
the best trade-off in terms of mRR and RR measurements; MOTIFS with SCR shows the best
performances in mRR and the second-best performances in RR except for MOTIFS. So do
the other models’ results. Figure 4 supports our analysis of the best trade-off since overall
predicate performances were better than the traditional SGG model (SG-Transformer).

Open Image V4 and V6. To show the effectiveness of SCR, we set BGNN as the
baseline, as shown in Table 3. On Open Images Dataset V4, SCR outperformed BGNN
except for score,,,; measurement. Mainly, SCR shows outstanding performance in terms of
phrase evaluation. Moreover, on Open Images Dataset V6, SCR outperformed all baselines
such as BGNN, GPS-Net, Etc., showing a good trade-off between mean recall@50 and
recall@50. These results proved that we could have a good trade-off performance in
long-tailed predicated distributions if properly assigning weights in training.
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Table 1. The SGG performances of relationship retrieval on mean Recall@K and Recall@K. SCR*
denotes SCR of FREQ+EMB. Note the best and second best methods under each setting are marked
according to format.

PredCls SGCls SGDet
Model mR@20/50/100 R@20/50/100 mR@20/50/100 R@20/50/100 mR@20/50/100 R@20/50/100
IMP+ [31] --/ 9.8/10.5 52.7/59.3/61.3 --/ 5.8/ 6.0 31.7/34.6/35.4 --/3.8/48 14.6/20.7/24.5
FREQ [74] 8.3/13.0/16.0 53.6/60.6/62.2 51/7.2/85 29.3/32.3/32.9 45/61/7.1 20.1/26.2/30.1
KERN [46] --/17.7/19.2 --/65.8/67.6 --/9.4/10.0 --/36.7/37.4 --/64/73 --/27.1/29.8
MOTIFS [74] 10.8/14.0/15.3 58.5/65.2/67.1 6.3/77/82 32.9/35.8/36.5 42/57/ 6.6 21.4/27.2/30.3
VCTree [41] 14.0/17.9/194 60.1/66.4/68.1 8.2/10.1/10.8  35.2/38.1/38.8 52/69/8.0 22.0/27.9/31.3
MSDN [33] --/159/17.5 --/64.6/66.6 --/ 93/ 9.7 --/38.4/39.8 --/ 61/ 72 --/31.9/36.6
G-RCNN [37] --/16.4/17.2 --/64.8/66.7 --/ 9.0/ 95 -.-/38.5/37.0 --/ 5.8/ 6.6 --/29.7/32.8
BGNN [49] --/30.4/32.9 --/59.2/61.3 --/14.3/16.5 --/37.4/38.5 --/10.7/12.6 --/31.0/35.8
DT2-ACBS [44] --/35.9/39.7 --/23.3/25.6 -.-/24.8/27.5 --/16.2/17.6 --/22.0/24.4 --/15.0/16.3
MOTIFS [74] 11.5/14.6/15.8 59.5/66.0/67.9 6.5/ 8.0/ 85 35.8/39.1/39.9 41/55/ 6.8 25.1/32.1/36.9
+ TDE [43] 18.5/255/29.1 33.6/46.2/51.4 9.8/13.1/149  21.7/27.7/29.9 5.8/82/9.8 12.4/16.9/20.3
+ PCPL [50] --/24.3/26.1 -.-/54.7/56.5 --/12.0/12.7 -.-/35.3/36.1 --/10.7/12.6 --/27.8/31.7
+ CogTree [48] 209/26.4/29.0 31.1/35.6/36.8 12.1/149/16.1 19.4/21.6/22.2 7.9/10.4/11.8 15.7/20.0/22.1
+ DLFE [51] 22.1/26.9/28.8 --/52.5/54.2 12.8/15.2/159 --/32.3/33.1 8.6/11.7/13.8 --/25.4/29.4
+ BPL-SA [52] 24.8/29.7/31.7 --/50.7/52.5 14.0/16.5/17.5 --/30.1/31.0 10.7/13.5/15.6 --/23.0/26.9
+ PPDL [53] --/32.2/33.3 --/47.2/47.6 --/17.5/18.2 --/28.4/29.3 --/11.4/13.5 --/21.2/23.9
+ NICE [54] --/29.9/32.3 --/55.1/57.2 --/16.6/17.9 --/33.1/34.0 --/12.2/14.4 --/27.8/31.8
+ SCRY (ours) 25.9/31.5/33.6 51.0/57.9/60.1 14.2/17.1/18.2 27.1/31.0/32.3 9.6/13.5/15.9 18.1/25.1/29.5
VCTree [41] 11.7/149/16.1  59.8/66.2/68.1 6.2/75/79 37.0/40.5/41.4 42/57/69 24.7/31.5/36.2
+ TDE [43] 18.4/25.4/28.7 36.2/47.2/51.6 8.9/12.2/14.0 19.9/25.4/27.9 6.9/93/11.1 14.0/19.4/23.2
+ PCPL [50] --/22.8/24.5 --/56.9/58.7 --/15.2/16.1 --/40.6/41.7 --/10.8/12.6 --/26.6/30.3
+ CogTree [48] 22.0/27.6/29.7 39.0/44.0/454 15.4/18.8/199 27.8/30.9/31.7 7.8/10.4/12.1 14.0/18.2/20.4
+ DLFE [51] 20.8/25.3/27.1 --/51.8/53.5 15.8/18.9/20.0 --/33.5/34.6 8.6/11.8/13.8 --/22.7/26.3
+ BPL-SA [52] 26.2/30.6/32.6 --/50.0/51.8 17.2/20.1/21.2 --/34.0/35.0 10.6/13.5/15.7 --/21.7/25.5
+ PPDL [53] --/33.3/33.8 --/47.6/48.0 --/14.3/15.7 --/32.1/33.0 --/11.3/13.3 --/20.1/22.9
+ NICE [54] --/30.7/33.0 -.-/55.0/56.9 --/19.9/21.3 --/37.8/39.0 --/11.9/14.1 --/27.0/30.8
+ SCR' (ours) 27.7/33.5/35.5 49.7/56.4/583 15.4/18.9/20.1 26.7/30.6/31.9 10.3/13.8/16.3  18.1/25.0/29.4
SG-Transformer [48] 14.8/19.2/20.5 58.5/65.0/66.7 89/11.6/12.6  35.6/38.9/39.8 5.6/7.7/9.0 24.0/30.3/33.3
+ CogTree[48] 229/284/31.0 34.1/38.4/39.7 13.0/15.7/16.7 20.8/22.9/23.4 79/11.1/12.7 15.1/19.5/21.7
+ SCR (ours) 27.0/32.2/345 45.3/52.7/55.0 14.9/17.7/18.7 25.1/289/30.2 10.4 /13.4/15.0 17.7/23.2/26.2

Table 2. The SGG Performances of zero-shot relationship retrieval on Recall@K. SCR' denotes SCR of
FREQ+EMB. The SGG models re-implemented under our codebase are denoted by the superscript *.

Zero-Shot Relationship Retrieval PredCls SGCls SGDet
Model Method R@50 R@100 R@50 R@100 R@50 R@100

baseline [43] 10.9 14.5 2.2 3.0 0.1 0.2
Reweight [43] 0.7 0.9 0.1 0.1 0.0 0.0
MOTIFS [43] TDE [43] 14.4 18.2 3.4 4.5 2.3 2.9
CogTree [48] * 24 4.0 0.9 15 0.3 0.6
SCR* (ours) 18.0 21.1 5.1 5.9 2.4 3.8
Baseline [43] 10.8 14.3 19 2.6 0.2 0.7
TDE [43] 14.3 17.6 3.2 4.0 2.6 3.2

VCTi 43
ree [43] CogTree [48] * 33 5.0 21 26 0.4 0.6
SCR' (ours) 17.6 20.4 4.5 5.2 2.5 3.5
Baseline * 4.1 6.3 1.6 2.3 0.2 0.5
SG-Transformer [48] * CogTree [48] * 5.2 7.3 2.3 3.0 0.3 0.5
SCR* (ours) 16.4 19.6 4.6 5.3 2.0 3.2
BGNN * 15.0 18.0 4.5 5.4 4.5 5.3
BGNN [49] CogTree [48] * 13.4 16.1 5.0 5.7 0.5 0.8
SCR (ours) 16.3 19.5 4.9 5.9 1.9 3.0
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Figure 4. The Recall@100 on PredCls: we compare the SCR of FREQ+EMB with CogTree using the
SG-Transformer [48].

Table 3. The performances of open images dataset. * denotes results reproduced by Li et al. [49].
SCR* denotes SCR of FREQ+EMB.

wmAP
Dataset Models mR@50 R@50 SCoreyq
rel phr
RelDN [77] * 70.40 75.66 36.13 39.91 4521
GPS-Net [47] * 69.50 74.65 35.02 39.40 44.70
V4 BGNN [49] 72.11 75.46 37.76 41.70 46.87
BGNN+SCR' (ours) 72.20 75.48 38.64 45.01 45.01
RelDN [77] * 33.98 73.08 32.16 33.39 40.84
VCTree [41] * 3391 74.08 34.16 33.11 40.21
MOTIFS [74] * 32.68 71.63 29.91 31.59 38.93
V6 TDE [43] * 35.47 69.30 30.74 32.80 39.27
GPS-Net [47] * 35.26 74.81 32.85 33.98 41.69
BGNN [49] 40.45 74.98 33.51 34.15 42.06
BGNN+SCR' (ours) 42.43 75.21 33.98 35.13 42.66

5.6. Ablation Study

We investigate the predicate-biased prediction and the best hyper-parameter settings
of the SCR loss function for the better generalized SGG models.

Predicate Bias. To estimate the predlcate bias and assign the proper sample weights,
we define the predicate sample estimates Rg,y of R freq and R, in Equation (5). To
investigate the proper predicate sample estimates, we examined the effectiveness of the
predicate sample estimates-SCR of EMB, SCR of FREQ, and SCR of FREQ+EMB with the
fixed predicate predictions (Equation (3)) as shown in Table 4. In the experiments, the
SCR of FREQ+EMB leads to more generalized performances over others. In summary, the
previous Re-Weight methods worsen the recall performances, while the SCR does not.

Table 4. The ablation study for the predicate sample estimates on Recall@100. The underbar represents
the predicate sample estimates for better generality.

Relationship Retrieval PredCls SGCls SGDet

Model Method mRR ZSRR RR mRR ZSRR RR mRR ZSRR RR
SCR of FREQ 31.6 222 60.0 169 6.2 354 133 3.5 31.6

VCTree SCR of EMB 33.3 211 601 179 59 352 154 35 30.0

SCR of FREQ+EMB  33.7 201 600 18.0 6.1 333 144 3.5 319

Hyper-parameters. The hyper-parameters of SCR control the weight of the SGG loss.
We investigate the best hyper-parameter settings as shown in Table 5. The best hyper-
parameter settings 6 = 0.7 and Ay, = 0.06 show the generalized performances of the
SGG tasks. The smaller Ay, is, the higher mean Recall scores are, while the higher A,
is, the higher Recall scores are, i.e., the A, controls the trade-off between the majority
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predicates and the minority ones since the smaller Hg,,, tend to assign more weights to the
minority predicates in the SCR. The § = 0.7 shows the best proportion of Re-weighting the

predicate samples.

Table 5. The ablation study for the scr hyper-parameters on Recall@100. The underbar represents the
best trade-off performances between mRecall and Recall. SCRt denotes SCR of FREQ+EMB.

Relationship Retrieval PredCls SGCls SGDet
Model Askew 1) mRR RR mRR RR mRR RR
0.03 0.7 35.5 58.3 20.1 31.9 16.3 29.4
0.06 0.7 337 60.0 18.0 33.3 144 319
VCTree 0.08 0.7 32.8 60.4 17.2 34.2 13.5 32.6
+
+SCR 0.06 06 335 60.6 178 343 142 32.0
0.06 0.7 337 60.0 18.0 333 144 319
0.06 0.8 33.3 59.3 17.6 33.0 14.0 30.6

5.7. Qualitative Examples

To demonstrate the effectiveness of the sample-wise SCR Re-weighting, we show the
comparison of Recall @100 on PredCls of all predicates based on the SG-Transformer [48]
as shown in Figure 4. The SCR of FREQ+EMB achieves a significant performance gain on
the overall predicate categories. Moreover, the skew predicate R, serves to estimate not
only the predicate candidates that a subject—object pair can have but also the target skew
Sckew Which determines the sample weight. Figure 5 includes a subject—object pair which
have possible predicates, its predicate prediction R;, and the target skew Sék », deduced by

the predicate sample estimate R!, . The higher the sample estimate is, the lower the target

skew is. To be specific, when one pair have possible predicates such
as backgrounds, has, wearing, in, etc., we show predicate predictions ﬁ,- with its
deduced by its sample estimates R}, . The larger R, € R}, tends to be a smaller

s skew* skew
i .. .
St er» When compared to another pair in a SCR-trained SGG model.
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Figure 5. The predicate predictions and sample estimates: in a SCR-trained SGG model, the larger

Rék . tends to be a smaller Sék o 1€ (upper) < (lower).
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6. Conclusions

In this paper, the unbiased Scene Graph Generation (SGG) algorithm, referred to as
Skew Class-Balanced Re-Weighting (SCR), was proposed for considering the unbiased
predicate prediction caused by the long-tailed distribution. The prior works focus mainly on
alleviating the deteriorating performances of the minority predicate predictions, showing
drastic dropping recall scores, i.e., forgetting the majority predicate class. It has not yet
properly analyzed the trade-off performances between majority and minority predicates in
the given SGG datasets. In this paper, to address the issues leveraged by the skewness of
biased predicate predictions, firstly, the SCR estimated the predicate re-weighting coefficient
and then re-weighted more to the biased predicates for the better trading-off performances
between the majority and the minority predicates. Extensive experiments conducted
on the standard Visual Genome dataset and Open Image V4 and V6 showed the SCR’s
effectiveness and generality with the traditional SGG models.
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