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Abstract: Today, the chemical corrosion of metals is one of the main problems of large productions,
especially in the oil and gas industries. Due to massive downtime connected to corrosion failures,
pipeline corrosion is a central issue in many oil and gas industries. Therefore, the determination of
the corrosion progress of oil and gas pipelines is crucial for monitoring the reliability and alleviation
of failures that can positively impact health, safety, and the environment. Gas transmission and distri-
bution pipes and other structures buried (or immersed) in an electrolyte, by the existing conditions
and due to the metallurgical structure, are corroded. After some time, this disrupts an active system
and process by causing damage. The worst corrosion for metals implanted in the soil is in areas
where electrical currents are lost. Therefore, cathodic protection (CP) is the most effective method to
prevent the corrosion of structures buried in the soil. Our aim in this paper is first to investigate the
effect of stray currents on failure rate using the condition index, and then to estimate the remaining
useful life of CP gas pipelines using an artificial neural network (ANN). Predicting future values
using previous data based on the time series feature is also possible. Therefore, this paper first uses
the general equipment condition monitoring method to detect failures. The time series model of
data is then measured and operated by neural networks. Finally, the amount of failure over time
is determined.

Keywords: stray currents; remaining useful life estimation; condition monitoring; cathodic protection;
artificial neural networks

1. Introduction

Realizing the remaining useful life of equipment helps managers and decision-makers
estimate, plan, cost, budget, etc. This is very effective in planning missions, purchasing
planning, annual budgets, and direct budgets. It is considered that estimating the remain-
ing useful life of equipment is especially important in deciding critical industrial areas,
especially in oil and gas. In addition, early replacement involves additional costs, and
late replacement also causes loss of life and money and increases maintenance costs. The
management of apparatuses and equipment can be facilitated by knowing the useful life
of the equipment. The primary purpose of this paper is to provide a model for estimating
the remaining useful life of gas pipes under CP in operating conditions, which is a suitable
tool for operation management.

Wandering currents are classified into direct, alternating, and telluric currents. Sources
of stray currents include the presence of a CP system in the pipes adjacent to the attacked
pipe, the use of the direct current in drilling operations, and welding processes using direct
current. Underground electric train systems, similar systems, and the Earth’s magnetic
field around the attack tube affect and disrupt.

A system typically operates under different operating conditions which may affect
the destruction path of the system differently, thereby reducing the accuracy of estimating
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the remaining useful life. As the oil and gas industry becomes more economical and
changeable, companies are keenly looking for advanced methods to become more effective
by simplifying production, decreasing costs, and developing worker protection, among
other things. Many managers are looking to digitize themselves from market shocks,
remain beneficial at lower oil prices, and create a reasonable benefit during improvement.

The structure of the paper is as follows: The literature review is presented in the
second part. Evaluation methods, including the overall condition index and ANN, will be
introduced in the third part of this paper. The data monitoring is presented in the fourth
part. Then, in the fifth part, the case study on the real sample is given, considering two
subsections of results from the overall condition index, and predicting the failure time of
CP by the ANN. At the end, the conclusion of this paper is presented.

2. Literature Review

A recent study [1] has proposed a long-window model to deal with this issue. Ini-
tially, a long-time window is created in the data processing. Then, in model development,
multiple degradation properties are extracted by an improved differential method and
these properties are added to the raw data as additional properties. With the advent of
sensor technology, machine learning (ML) algorithms have become promising in estimating
machine components’ remaining useful life (RUL). Another study [2] presents the repeated
architecture concerning the RUL of turbofan engines. First, a deep long short-term memory
network (DLSTM) with multi-layer deviation is proposed to predict RUL. Next, it upgrades
the DLSTM model to control the sequence back and forth using a bidirectional deep long
short-term memory (BiDLSTM). Finally, an attention-based deep LSTM (Attn-DLSTM)
considers all the time steps in RUL estimation. The inclusion of the attention mechanism
helps to improve the accuracy as well as the interpretability of the LSTM deep network. A
related study [3] suggests a time-dependent survival neural network that incrementally
estimates the risk of latent failure and performs several binary classifications to predict
a specific possible RUL failure. A neural network with a new survival learning standard
is provided. A hybrid method for predicting the RUL of multi-functional spoiler (MFS)
systems is proposed [4]. Additionally, a multi-tank echo mode network is used to estimate
the degradation of the fuel cell and its remaining useful life, which is a method for pre-
dicting the evolution of the fuel cell output voltage over time [5]. According to another
piece of related research [6], performance and maintenance data are reported from a list of
CP systems in the Netherlands installed on about a hundred structures between 1987 and
2010. Many of them provide corrosion protection for a long time. Failure of components
and entire systems is determined as a function of age. Based on the field data’s statistical
analysis, a CP system’s maintenance cost is predicted using a life cycle cost model. Evaluat-
ing direct current (DC) and alternating current (AC) corrosion phenomena on steel fibers
and analyzing the main influencing parameters are discussed [7]. Instrumental methods
in electrochemistry, including polarization, cyclic potentiodynamics and electrochemical
impedance spectroscopy (EIS), were used to evaluate the corrosion resistance of many
reinforced steel fibers. A similar study [8] also created a mathematical model of the stray
current distribution. Some studies [9–13] have also estimated life on the railroad.

ML is a subsection of Artificial Intelligence (AL) [14–18]. In the oil and gas indus-
tries, several forms of data are gathered from the surface and subsurface to identify the
hydrocarbon potential [19–21]. The sensors are discovered to be essential to accumulate
these data in large numbers. Plotting and analyzing these data with technical analysis and
intervention is necessary [22–24]. The ML methods provides associations among input
variables and forecasts the output [25]. In ML, the physical behavior of the system does
not intervene [26,27]. The data associated with the oil and gas industries are huge, and the
process is very complex for data connections [28].

In ML, the principal concern is recognizing the mark of arriving at novel unlabeled in-
put data requiring the training assembly of established marks belonging to classification. In
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this setting, the sorting question will be focused on supervised learning, where it is possible
to examine a group of adequately labeled and associated training information [29,30].

A context can be determined to support data mining, AI, supervised and unsupervised
learning, and other project administration methods as a supportive solution to conventional
upstream frameworks in the oil and gas industries [31–33].

Deep Learning (DL) is a subsection of ML. In DL, a structure called ANN recognizes
the perception of data. Neural networks are one set of algorithms used in ML for modeling
the data [34–36]. A DL algorithm in the oil and gas industry improves the management of
huge amounts of data and attains the best performance with large data [37]. Characters
are extracted without human interference. DL algorithms perform complicated operations,
while ML algorithms cannot. Inputs are run through neural networks. ANN is an effective
ML technique for solving complex problems [38–40]. In oil and gas industries, ANN is
mostly applied in nonlinear and complex problems which a linear relationship cannot
solve.

Figure 1 shows the correlation among the expanded AI, ML, and DL fields.
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Figure 1. The correlation among the expanded AI, ML, and DL fields.

The ANN model helps to forecast pipeline conditions; it supports operators in evalu-
ating and predicting the conditions of pipelines. The ML model can be employed to find
the percentage of sand in the reservoir [41,42]. Figure 2 shows the basic structure of ANN.

ANN is knowledge based on brain and nervous system analyses, as depicted in
Figure 2. These networks contend with a biological neural network, but they employ a
lesser set of theories than biological neural systems. Mainly, ANN models simulate the
brain and nervous system’s electrical activity [43,44]. Processing elements (also known as
either a neuron or perceptron) are linked to other processing elements. Usually, the neurons
are arranged in a layer or vector, with the output of one layer acting as the input to the next
layer and possibly other layers [45,46]. A neuron may be linked to all or a subset of the
neurons in the subsequent layer, with these connections simulating the brain’s synaptic
networks. Weighted data signals entering a neuron simulate the electrical excitation of
a nerve cell and, subsequently, the transmission of information within the network or
brain [47,48].



Mach. Learn. Knowl. Extr. 2023, 5 255Mach. Learn. Knowl. Extr. 2023, 5, FOR PEER REVIEW  4 
 

 

 

Figure 2. The correlation among the expanded AI, ML and DL fields. 

ANN is knowledge based on brain and nervous system analyses, as depicted in Fig-

ure 2. These networks contend with a biological neural network, but they employ a lesser 

set of theories than biological neural systems. Mainly, ANN models simulate the brain 

and nervous system’s electrical activity [43,44]. Processing elements (also known as either 

a neuron or perceptron) are linked to other processing elements. Usually, the neurons are 

arranged in a layer or vector, with the output of one layer acting as the input to the next 

layer and possibly other layers [45,46]. A neuron may be linked to all or a subset of the 

neurons in the subsequent layer, with these connections simulating the brain’s synaptic 

networks. Weighted data signals entering a neuron simulate the electrical excitation of a 

nerve cell and, subsequently, the transmission of information within the network or brain 

[47,48]. 

The steps involved in ML are given in Figure 3. 

Figure 2. The correlation among the expanded AI, ML and DL fields.

The steps involved in ML are given in Figure 3.
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The path forward keeps leveraging AI and ML-based skills, developing quickly and
being implemented across the value chain. Numerous industries have revealed the ad-
vantages of this developing knowledge; consequently, we will continue to see more AI
applications established in the future. In the framework of big data and manufacturing,
ML techniques can manage high nonlinearity in complicated engineering predictions,
consisting of energy, ecological science, hydrology, and construction [48].

An example of a complex neural network flowchart is shown in Figure 4.
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3. Evaluation Methods

The overall condition index and neural network are presented in this part.

3.1. Overall Condition Index

To combine the effects of corrosion monitoring and cathodic protection parameters,
it is necessary to normalize all monitored data. Equation (1), the Gaussian expression,
performs this transformation [49].

C = e−( x−r
s )

2
(1)

In this formula, C is the measurement of the normalization parameter, x is the value of
the observed parameter, and r and s are the values calculated using Equations (2) and (3).

r =
H + L

2
(2)

s =
H − L

2
(3)

H and L are each parameter’s upper and lower ranges, respectively. When x is equal to
the value of its upper limit (H) or its lower limit (L), Equation (1) will become Equation (4).

C = e−( x−r
s )

2
= e

− ( H−L
2 )

2

( H−L
2 )

2
= e−1 (4)

CR indicates normalized constraints. This value can be used as a criterion for measur-
ing the condition of the equipment in normal mode.
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The equipment status is outside the defined range if the normalized parameter exceeds
the CR value. If all the monitored Ci parameters are shown after normalization, the overall
condition index of corrosion will be in Equation (5).

Q =

{
∑N

j=1 WiCi, All Ci > CR

∑M
j=1 WiCi, At least one parameter Ci < CR

(5)

where N is the total number of normalized parameters, M is the total number of normalized
parameters less than the value of CR and Wi is the weighting coefficients of the importance
of each parameter. Accordingly, the value of N is constant while the value of M will differ
from the operating conditions of the equipment corrosion. Wi values are selected to meet
the following conditions:

∑N
i=1 Wi = 1 or ∑M

i=1 Wi = 1 (6)

No reference has examined which parameter is more important than the others. Ac-
cordingly, it is assumed that all the observed parameters are equally important [50].

3.2. Neural Network

According to the type of work, available data, and review of different neural networks,
our selected network in this study is the nonlinear autoregressive with external input
(NARX) dynamic neural network. The NARX structure is more accurate in estimation than
other existing models. We want to evaluate the useful life of the three gas networks under
CP and estimate the remaining useful life of the pipes. For this purpose, we can solve
this problem by using the dynamic neural network and according to our data, which are
continuous-time data, with the time series tool.

This network has a hidden layer, and the neurons number in this layer is considered
trial and error of 10 neurons. The number of previous signals used in the model for the
best fit is four for inputs and five for output. The stimulus function for latent layer neurons,
the sigmoid function, and the output layer stimulus function are considered nonlinear.

To train the neural network, 70% of the data sampled by individuals and experts of
the gas department has been applied. In addition, validation and test data sets are 15% of
the original data. Using this data and the neural network toolbox in MATLAB, the neural
network is trained and the nonlinear function f (nonlinear function of system inputs and
outputs) is defined and it is determined that the output is shown after training.

The determination of indicators and their impact using sources, documents, and expert
opinions is carried out according to approved standards (B31G (ANSI/ASME B31G) and
B31.8 (ANSI/ASME B31.8)). Operating life is calculated by multiplying the calendar life by
the effect of each effective indicator on the life of the relevant equipment and the coefficients
related to the network conditions. Equation (7) shows this.

t f = ∑n
i=1 WiT (7)

This function is the functional age of the equipment, T is the actual life, W is the impact of
the ith index, and i is the number of indicators affecting the operating life of the equipment.

The remaining operating life for each piece of equipment according to the multiplica-
tion of “standard remaining life” in the impact of each of the indicators affecting the life for
the conditions in which the equipment is to operate in the future will be counted according
to Equation (8).

Rt f = ∑n
i=1

(
1

Wi

)
× tR (8)
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In this regard, Rt f is the operating life, and tR is the standard life. The operating and
standard life differences produce the remaining standard life from the following equation.

tR = ts − t f (9)

In this respect, ts is the standard life.

4. Data Monitoring

The data monitored in this paper were from 2013 to 2015.

• The cathodic protection station (CPS) is set every 15 days, including pre-set voltage,
pre-set current, pre-set injection voltage, pre-set cut-off voltage, post-set transformer
voltage, and present, and the color is silica gel;

• Test point measurement (TP) is carried out every four months. If it is in the form of
a pool, the cleaning of the pool should also be carried out, and if it is in the form of
science, it is measured from the three parts of the science valve, the sheath, and the
surge arrester;

• Measurement of flange insulation of turner broadcasting system (TBS) stations once
every six months;

• Anodic control is performed every six months to measure the flow of anodes;
• Test the cover with a holiday device or by installing a current source by insulating the

damaged points;
• AC line voltage measurement (caused by stray currents), according to US NACL

standards, can be omitted if it is less than 15 volts (every four months). This voltage
enters the line from one point, and from where it exits it will cause corrosion of the
pipe in the same place;

• Existence of a protected structure next to a protected gas pipe (such as a water pipe).
Additionally, two lines must be potentialized to prevent corrosion;

• The presence of DC voltage (700 volts) on city trains is harmful;
• The presence of AC voltage (20 kV) in the subway is harmful.

Therefore, according to the above, the data required for fault analysis are:

• DC voltage of measuring points in gas networks; the normal value of this voltage is
between 0.85 and 2.1 volts;

• AC voltage of measuring points in gas networks; the maximum acceptable voltage is
15 volts;

• DC voltage measuring points. Before adjusting, if the voltage value is more than
2.1 volts and less than 0.85 volts it should be checked;

• The voltage of measuring points in the transformer off mode depends on the type of
cover and transformer capacity;

• Circuit resistance in GPS stations; if it is more than 3 ohms, the circuit should be
checked;

• Transformer output voltage depends on the injection voltage, and its value is adjusted
according to the injection voltage;

• Transformer output current is determined according to the surface of the pipe and the
amount of damage to the cover;

• Output current in 75 volts and 25 amps transformers can be from 1 to 25 amps;
• Anode current rate: MMO in water is 8 amps, and silicon in water is 4 amps;
• Water column: at the beginning of drilling, the well should be about 10 m above the

anodes;
• Circuit resistance: factors that increase it are lowering the water level, cable cross-

section, end of anodes, incomplete coding, and sulfation of cable washer and busbars
inbox.
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5. Case Study

In this section, the results of the case study will be analyzed. As mentioned, two
general methods of the general condition monitoring index and neural network method
will be examined in this section.

5.1. Results from the Overall Condition Index

In the following, the conditions resulting from the general condition of the equipment
will be checked. As can be seen in Figure 5, the overall condition index of the six types
of equipment over time is examined. According to this analysis, the general equipment
monitoring index trend is almost deteriorating. This procedure is unique for different
equipment. In all the equipment, the index trend initially showed an improvement in the
second sample and then went to failure. In equipment items 4, 5 and 6, the seventh data
sample has the worst condition, while equipment items 1, 2 and 3 in these data have a
much better situation. According to what has been said, when the values of these graphs
are less than the value of e−1 = 0.367 the equipment conditions will be critical.
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2, (c) Equipment item 3, (d) Equipment item 4, (e) Equipment item 5, (f) Equipment item 6.

As a result of the complex state of the pipeline, the diagnostic approach based on the
hypothetical model has weak reliability. To enhance this deficiency, ANN is applied to
perform pattern recognition on the checking report. Leakage diagnosis is accomplished by
evaluating the correlation between self-trained leakage points and symptoms of a neural
network [51–54]. The leakage diagnosis method based on neural networks can prevent the
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computation and modeling of the pipeline network fluid parameters. Linear regression,
ANN, and SVM are the ML methods normally employed. Compared with linear regression,
ANN and SVM offer greater prediction accuracy. Recent research papers described how
improved optimization algorithms could improve ML training. The improvement of the
hybrid models develops prediction accuracy, which has been extensively applied in pipeline
activities, including failure pressure prediction, leakage checking and reliability assessment.
It is suggested that ML techniques can be applied to train the simulations with complicated
physical structures [55–58]. Figure 6 also shows the monitoring of equipment conditions.
According to this figure, the difference in equipment conditions is quite apparent.
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5.2. Predicting the Failure Time of Cathodic Protection by the Neural Network

For this case study, we selected the NARX model of the neural network and used the
Levenberg–Marquardt train model. A multilayer perceptron neural network estimated
the remaining useful life. After performing the simulation with MATLAB software, we
examined the output details. Figure 7 can predict the failure time of CP. The blue line is the
training results, the green line is the validation result, and the red line is the test data. Due
to the lack of data in this diagram, the training data diagram (train data) fits poorly with
the test data diagram. Validation of the network training accuracy is possible by matching
proof and test charts. When the training data diagram is most different from the test data,
and there are sudden changes in the test data diagram, it is time to pay more attention to
the CP system and check the condition of the tube.
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Most preceding leakage diagnosis approaches were based on static rules; the technique
requires controlling all the information of the gas flow principle and microscopic model of
the pipeline. The checking value of the same node was influenced by the position of various
leakage points [59–61]. Moreover, uncertain aspects including medium composition and
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working conditions made it complicated to establish the constraints needed for modeling,
which made it easy to cause errors or mistake diagnoses. The operating conditions of
the extraction pipeline were time-consuming and complicated, so the traditional leakage
diagnosis method of the pipeline cannot reflect the leakage state of the pipeline [62–65]. To
solve the problem of precisely diagnosing and locating leakage points in gas extraction
pipelines, a method combining laboratory experiments and ML is proposed in this study.
The suggested approach considered the power of various input parameters on diagnostic
and positioning accuracy. According to Figure 8, when the CP is used correctly, the data
scatter will be less than the regression line.
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Figure 9 shows the Regavolt for 20 periods related to the Nazarabad city pipeline.
The period is three months, and the amount of Regavolt is in terms of distance. Regavolt
changes from zero to one hundred and fifty. If the amount of Regavolt is more than one
hundred, the short visit period and the network should be monitored, and the necessary
checks should be made on the pipe.

Data are available for up to twenty periods. Over time and by recording more data,
it will be possible to draw a graph based on Figure 10. In this study, 120 periods are
given for the sample, which can be drawn from the beginning to the end until the tube is
replaced. Additionally, Regavolt is the line voltage regulator; therefore, changes in it must
be considered.
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Potential differences are measured and recorded at stations before and after transform-
ers based on Figure 11. If this difference is significant, the visit periods will be shortened
and the network will be monitored.
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The potential difference is measured after adjustment based on Figure 12. If this value
is more than 0.5 volts, the short visit period and the network should be monitored.
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The potential difference is measured before adjustment based on Figure 13. If the
potential difference value is more than 0.5 volts, the short visit period and the network
should be monitored.
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The comparison of implementing this method with the previous methods is described
in Table 1. It is worth noting that the results of the two ways are close to each other. As a
result, the correctness of the implementation steps of the new method is confirmed.

Table 1. Comparison of implementing this method with the previous methods.

Method Nazar Abad Eshtehard Karaj

Previous 17 years and 7 months 19 years and 9 months 17 years and 2 months

New 16 years and 3 months 18 years and 3 months 16 years and 1 month

The previous model calculates the remaining life using standard organizational, oper-
ating and calendar life. The basis of the calculations is the application of indicators deter-
mined in mathematical formulas [66–69], while in the new method neural networks with
more accuracy in estimation are used. Scientists have preferred ANN-based-predictive mod-
els in this domain against other AI methods because of the following advantages [70–74]:

• Consistent prediction, and compatibility with other building energy simulation soft-
ware [75–77];
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• Overcoming the nonlinearity among the energy-related data inputs and outputs [78,79];
• Since training in applying ANN is not as expensive as traditional data collection (such

as theoretical-based or empirical-based techniques), progressively more scientists are
becoming attracted to the development of ANN [80,81].

One interesting thing about ANN is that they are trained, instead of being designed
to perform specific tasks concerning data sets until they learn the patterns given to
them [82–85].

6. Conclusions

In this paper, the effect of stray currents on estimating the remaining useful life of
gas pipes under CP was investigated using an overall condition index of equipment and
neural networks. According to the comprehensive condition index, the general equipment
monitoring index trend was almost deteriorating, which was seen differently for different
equipment. In all the types of equipment, the index trend initially improved in the second
sample and then declined. Next, we proposed a model of neural networks. A multilayer
perceptron neural network was used to estimate the remaining useful life. After study-
ing and evaluating different optimization methods and selecting the appropriate method,
MATLAB was used to assess and measure it and prove its optimality after simulation.
In addition to estimating the remaining useful life of equipment in the industry, it man-
ages the commercial risks that result from malfunctions and failures in the operation of
devices. Industry, economic aspects, maintaining production safety, weighing preventing
life and financial loss, applying high-reliability coefficients, analyzing unwanted stresses,
unforeseen environmental and operational factors, applying outside design ranges (such
as high temperature and cyclic load), the reduction of material properties in service in
sensitive areas, experience, and damage analysis are factors identified in the case study.
In addition to stating the extent of the failure and the remaining useful life, this article
plans and announces the next visit time according to the pipe conditions and the latest
information. Supposing that the existing equipment conditions in the current repair plan
of the gas company are fine with future planning, this plan can be an excellent alternative
to the existing repair plan.

Future Study

According to the proposed procedure, by updating the data obtained from any equip-
ment in the future its life and failure rate can be estimated. Based on this, new data can
be given to the neural network and its training can be made more complete, or the rate of
failure in each period can be estimated. In addition, based on the evaluations in this study,
CP is one of the most important contributors to pipeline condition prediction. However,
other factors including metal loss, coating condition, age, support condition, joint condition,
anode wastage, and free spans are still important for pipeline condition prediction and
should be considered for future studies. Finally, the majority of the improved condition
evaluation models are either subjective (i.e., dependent only on expert opinions, consider-
ing no historical data), or incomplete (i.e., considering just one failure cause). The objective
of future research should be to develop a more comprehensive condition evaluation model
that allows pipeline operators to take the required activities to avoid future devastating
failures.
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