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Abstract: Interactive Machine Learning (IML) can enable intelligent systems to interactively learn
from their end-users, and is quickly becoming more and more relevant to many application domains.
Although it places the human in the loop, interactions are mostly performed via mutual explanations
that miss contextual information. Furthermore, current model-agnostic IML strategies such as CAIPI
are limited to ’destructive’ feedback, meaning that they solely allow an expert to prevent a learner
from using irrelevant features. In this work, we propose a novel interaction framework called Seman-
tic Interactive Learning for the domain of document classification, located at the intersection between
Natural Language Processing (NLP) and Machine Learning (ML). We frame the problem of incorpo-
rating constructive and contextual feedback into the learner as a task involving finding an architecture
that enables more semantic alignment between humans and machines while at the same time helping
to maintain the statistical characteristics of the input domain when generating user-defined counterex-
amples based on meaningful corrections. Therefore, we introduce a technique called SemanticPush
that is effective for translating conceptual corrections of humans to non-extrapolating training ex-
amples such that the learner’s reasoning is pushed towards the desired behavior. Through several
experiments we show how our method compares to CAIPI, a state of the art IML strategy, in terms
of Predictive Performance and Local Explanation Quality in downstream multi-class classification
tasks. Especially in the early stages of interactions, our proposed method clearly outperforms CAIPI
while allowing for contextual interpretation and intervention. Overall, SemanticPush stands out with
regard to data efficiency, as it requires fewer queries from the pool dataset to achieve high accuracy.

Keywords: human-centric machine learning; interactive machine learning; CAIPI; explainable
artificial intelligence; local surrogate explanation models; contextual and semantic explanations;
locally faithful explanations; topic modeling

1. Introduction

Although modern ML approaches have improved tremendously with regard to predic-
tion accuracy, and even exceed human performance in many tasks, they often lack the ability
to allow humans to develop an understanding of the whole logic or of the model’s spe-
cific behavior [1–3]. Additionally, most systems do not allow the integration of corrective
feedback for use in model adaptation.

Consequently, different research disciplines have emerged that provide first solutions.
Both Interpretable Machine Learning and Explainable Artificial Intelligence, which can be
summarized as Comprehensible Artificial Intelligence [4] when combined, allow for global
or local interpretability as well as transparent and comprehensible ML results [5]. In general,
global interpretability refers to providing intrinsic ex ante understanding of the whole logic
of the corresponding models. The explanandum is therefore the ML model itself, with
the rules of reasoning as the explanans providing information about how all of the different
possible outcomes are connected to the inputs. In contrast, local interpretability provides ex
post understanding of the model’s specific behavior [1]. The accompanying explanations
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for individual decisions strive to make the input–output correlations clear to the users
without the need for them to know the internal structure of the model [1].

Nevertheless, the explanations used for better transparency and human comprehensi-
bility during human–machine interactions are mostly considered unidirectional from the AI
system to the human, and often lack contextual information [1]. Therefore, any correction
of erroneous behavior or any inclusion of domain-specific knowledge through human
experts is not possible in a model-agnostic way [4]. Explanatory Interactive Machine Learning
addresses this shortcoming, with the intention of ’closing the loop’ by allowing humans
to correct the prediction and explanations of a query and thus to provide feedback [6].
The authors of [6] demonstrated that both the predictive and explanatory performance
of the learner and the process of building trust in the learner can benefit from interacting
through explanations. Except in systems such as EluciDebug [7] or Crayon [8], which use
feedback to adapt a learner (albeit model-specifically), there are few possibilities at present
for holistic, meaningful, and model-agnostic interventions to correct learner mistakes by
incorporating expert knowledge.

Based on this research gap, we phrase the following research questions (RQ): (1) How
can we develop a model-agnostic Interactive ML approach that offers semantic (con-
structive, meaningful, contextual, and realistic) means for performing corrections and
providing hints? Concretely, how can conceptual human corrections be integrated into
ML classifiers while avoiding counterexamples that are considered ‘Out-of-Distribution’?
(2) Is the elaborated interactive system with contextual interpretation and intervention
support comparable to the state-of-the-art methods in terms of predictive performance
of downstream multi-class classification tasks? (3) Can our method generate explanations
that are comparable to the state-of-the-art methods with regard to the conclusiveness of
the explanations?

Based on our research, in this paper we propose an architecture called Semantic
Interactive Learning and instantiate it with a technique named SemanticPush. Technically,
this approach contributes to the field of Interactive Machine Learning by allowing humans
to correct all possible types of a text classifier’s reasoning and prediction errors. We
showcase how the proposed method harnesses the generative process of the input domain’s
data learned by a Latent Dirichlet Allocation Model in order to transfer human conceptual
corrections to non-extrapolating counterexamples. These counterexamples can then be used
to incorporate the corrections into the learner’s inductive process in a model-agnostic way.
Finally, we propose new context-based evaluation metrics for explanations and evaluate
our approach with regard to the research questions mentioned above.

2. Related Work

Human-Centered Machine Learning can be summarized as methods for aligning machine
learning systems with human goals, contexts, concerns, and ways of working [9]. It is
strongly connected with Interactive Machine Learning as an interaction paradigm in which
a user or user group iteratively trains a model by selecting, labeling, and/or generating
training examples to deliver a desired function [10]. It can be assumed that a learner
is better aligned with human goals when the end user knows more about its behavior
(Explanatory Interactive Machine Learning). Kulesza et al. (2015) [7] proved this intuition
with their Explanatory Debugging approach. They additionally showed that not only
does the machine benefit from corrections based on transparent explanations, but also
the user is able to build a more accurate mental model about its behavior. Furthermore,
in Koh et al. (2020) [11] the authors found that concept bottleneck models applied to image
classification tasks support intervention and interpretation while competing on predictive
performance of downstream tasks such as x-ray grading and bird identification. Thus,
they can enable effective human–model collaboration by allowing practitioners to reason
about the underlying models in terms of higher-level concepts that humans are typically
familiar with.
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Hence, interactions between humans and machines via mutual explanations [4,12]
have the potential to adequately bring humans into the loop in a model-agnostic way.
The overall process should work as a Training–Feedback–Correction cycle that enables
a Machine Learning model to quickly focus on a desired behavior [8]. Users should be able
to iteratively integrate corrective feedback into a Machine Learning model after having
analyzed its decisions [13].

Consequently, Teso and Kersting (2019) [6] included a local explainer called Local
Interpretable Model-Agnostic Explanations (LIME) into an active learning (AL) setting. Their
framework proposes a method called CAIPI which enables users to correct a learner
when its predictions are right for the wrong reasons by adding counterexamples in a ’de-
structive’ manner. The correction approach is based on Zaidan et al. (2007) [14]. As
an example from the text domain, words which are falsely identified as relevant are masked
from the original document, then the resulting counterexamples recur as additional train-
ing documents.

Although CAIPI has paved the way for model-agnostic and explanatory IML, its
use has revealed a number of significant drawbacks. First, it only operates by deleting
irrelevant explanatory features, i.e., those that have been incorrectly learned. Thus, it is
limited to ‘destructive’ feedback about incorrectly-learned correlations; an active learning
setting might rarely contain correct predictions made for the wrong reasons. Second, CAIPI
uses contextless explanations as a basis, and in turn applies contextless feedback by inde-
pendently removing irrelevant explanatory features. In this manner, human conceptual
knowledge may hardly be considered during interactions, even it is known that harness-
ing conceptual knowledge “as a guiding model of reality” might help to develop more
explainable and robust ML models which are less biased [15]. A first step towards this was
suggested by Kiefer (2022) [16], who proposed topicLIME as an extension of LIME that
offers contextual and locally faithful explanations by considering higher-level semantic
characteristics of the input domain within the local surrogate explanation models. A third
drawback of CAIPI is that it enables only ‘discrete’ feedback. In the textual domain, this is
based on mutual explanations in a bag-of-words representation, in which words are either
present as explanatory features or are not. Therefore, continuous feedback is not possible.

When explaining and correcting a classifier in the way described above, neighborhood
extrapolation to feature areas with low data density, especially in cases of dependent fea-
tures [17], causes a classifier to train on contextless counterexamples sampled from unreal-
istic local perturbation distributions. This circumstance might lead to generalization errors.

Therefore, the overall goal of this work is to enable more realistic and constructive
interactions via semantic alignment between humans and ML models across all possible
types of a learner’s reasoning and prediction errors.

3. Method

Figure 1 depicts our proposal for answering RQ1 from the architectural point of view.
This approach extends previous research called Contextual and Semantic Explanations
(CaSE) [16]. CaSE suggests a framework that allows contextual interpretations of ML
decisions by humans in a model-agnostic way via topic-based explanations. While CaSE
solely refers to the process of explanation generation, our research aims at closing the loop
and enabling humans to integrate domain knowledge via semantic corrections and hints.
The following subsections briefly describe the components contained in our framework,
and especially introduce our new IML strategy called SemanticPush.
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Figure 1. Architecture for constructive and contextual interactions. * In this work, we simulate the
expert for efficient evaluation purposes using a conceptual Gold Standard as explained in Sections 3.3
and 4.3.

3.1. Latent Dirichlet Allocation

We instantiated the semantic component of our framework using a method called
Latent Dirichlet Allocation (LDA), which can be described as a hierarchical Bayesian model
for collections of discrete data [18]. Used in text modeling, it finds short representations
of the documents in a corpus and preserves essential statistical relationships necessary
for making sense of the input data. After training, each document can be characterized
as a multinomial distribution over so-called topics. For each document w in a corpus D,
a generative process from which the associated documents have been created is assumed
as follows:

1. Choose N (the number of words) ∼ Poisson(ξ).
2. Choose θ (a topic mixture) ∼ Dir(α).
3. For each of the N words wn:

(a) Choose a topic zn ∼Multinomial(θ).
(b) Choose a word wn from p(wn|zn, β), a multinomial probability conditioned

on the topic zn.

The joint distribution of a topic mixture θ, a set of topics z, and a set of words w, given
the hyperparameters α and β, is characterized by

p(θ, z, w|α, β) = p(θ|α)
N

∏
n=1

p(zn|θ)p(wn|zn, β). (1)

The latent multinomial variables are referred to as topics, and enable LDA to capture
text-oriented intuitions and global statistics in a corpus. Thus, it is able to make sense
of the input data due to its generative probabilistic semantic properties.

We combined LDA with a coherence measure called Cv coherence, which is used
for finding an appropriate hyperparameter number of topics k that LDA then infers. Röder
et al. found the coherence measure to be the best in terms of its correlation with respect
to human topic interpretability [19,20].

Within our Semantic Interactive Learning framework (refer to Figure 1), we use LDA
as a measure to address Research Question 1. LDA provides the basis to enable interactions
that are deemed constructive (by harnessing its generative process to create user-specified
documents), semantically meaningful (by making sense of the input data and identifying
coherent words as topics), and contextual and reliable (by capturing statistical character-
istics of the input domain such as word dependencies). In this way, counterexamples
generated by LDA can be considered ’In-Distribution’ of the input domain.
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3.2. LIME and topicLIME

Ribeiro et al. [21] developed LIME, a method that explains a prediction by locally
approximating the classifier’s decision boundary in the neighborhbood of the given instance.

LIME uses a local linear explanation model, and can thus be characterized as an addi-
tive feature attribution method [22]. Given the original representation x ε Rd of an instance
to be explained, x′ ε {0, 1}d′ denotes a binary vector for its interpretable input representa-
tion. Furthermore, let an explanation be represented as a model g ε G, where G is a class
of potentially interpretable models such as linear models or decision trees. Additionally,
let Ω(g) be a measure of complexity of the explanation g ε G, for example, the number
of non-zero weights of a linear model. The original model for which explanations are
searched is denoted as f : Rd → R. A measure πx(z) defining the locality around x is used
to capture the proximity between an instance z and x. The final objective is to minimize
a measure L( f , g, πx(z)) that evaluates how unfaithful g (the local explanation model) is
at approximating f (the model to be explained) in the locality defined by πx(z). Striv-
ing for both interpretability and local fidelity, an explanation is obtained by minimizing
L( f , g, πx(z)) as well as by keeping Ω(g) low enough to ensure an interpretable model:

ξ(x) = arg min
gεG

L( f , g, πx(z)) + Ω(g). (2)

To be a model-agnostic explainer, the local behavior of f must be learned without
making any assumptions about f . Therefore, L( f , g, πx(z)) needs to be approximated
by drawing random samples weighted by πx(z); instances around x′ (a binary vector
for the interpretable input representation of x) are sampled by drawing nonzero elements
of x′ uniformly at random, then a perturbed sample z′ is obtained.

Recovering z from z′ and applying f (z) then yields a label, which is used as label
for the explanation model. The last step consists of optimizing Equation (2) by making use
of dataset Z , which includes all perturbed samples with the associated labels. For a sample
word-based explanation generated by LIME, please refer to Figure 2.

Input document: „The Federal Home Loan Bank Board adjusted the rates on its short term
discount notes as follows: (maturity new rate) (old rate) (maturity days) (7 per cent 5 per cent 3
days).“

Original LIME Text Explainer

Dataset: Reuters R52
Document id: 645
Predicted class = ['interest']
True class: interest

Explanation for class interest
('rate', 0.157)
('rates', 0.113)
('discount', 0.035)
('bank', 0.026)
('term', 0.014)
('federal', 0.004)
('short', 0.003)
('follows', 0.002)

TopicLIME Text Explainer

Dataset: Reuters R52
Document id: 645
Predicted class = ['interest']
True class: interest

Explanation for class interest
("topic #7 („Financial rates“) = ['discount', 'rates', 'rate']", 0.288)
("topic #18 („FED, Assets & Deposits“)= ['federal', 'bank']", 0.035)
("topic #4 („Foreign exchange“) = ['short', 'term']", 0.030)
("topic #12 („Loan and tax“) = ['loan']", 0.004)

Figure 2. Textual comparison of original LIME text explainer (left) and topicLIME text explainer
(right). A contextual interpretation of the word-explanations generated by LIME is complicated as
the semantic “links” of a word are not reflected in the explanations. For topicLIME explanations,
coherent and most likely, at least semantically, related words are considered at once including the
semantic “links” that in turn provide the context in the explanations.

In contrast to LIME, topicLIME, developed by Kiefer (2022) [16], generates a local
neighborhood of a document to be explained by removing coherent words. It is therefore
capable of including the distributional, contextual, and semantic information of the input
domain in the resulting topic-based explanations. As such, it offers realistic and meaning-
ful local perturbation distributions by avoiding extrapolation when generating the local
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neighborhood, leading to higher local fidelity of the local surrogate models. For a sample
topic-based explanation generated by topicLIME, please refer to Figure 2.

3.3. Our Method: SemanticPush

Our proposed method, called SemanticPush, enables model-agnostic Interactive Ma-
chine Learning at a higher level of semantic detail. Therefore, it extends the idea of CAIPI
(refer to Algorithm 1), which offers model-agnostic, albeit contextless, interactions for
humans in the form of word-based explanations and ’destructive’ corrections.

Algorithm 1 CAIPI [6]
Require: a set of labelled examples L, a set of unlabelled instances U, and an iteration

budget T.
f ← FIT(L)
repeat

x ← Select Query ( f , U)
ŷ← f (x)
ẑ← Explain ( f , x, ŷ)
Present x, ŷ, and ẑ to the user
Obtain y and explanation correction C
{(x̄i, ȳi)}c

i=1 ← To Counterexamples(C)
L← L ∪ {(x, y)} ∪ {x̄i, ȳi)}c

i=1
U ← U \ ({x} ∪ {x̄i}c

i=1)
f ← FIT(L)

until budget T is exhausted or f is good enough
return f

From IML research, it is known that humans want to demonstrate how learners should
behave. According to Amershi et al. (2014) [13] and Odom and Natarajan (2018) [23],
people do not want to simply teach ‘by feedback’; we want to teach ‘by demonstration’,
that is, by providing examples of a concept. Therefore, interaction techniques should move
away from limited learner-centered ways of interacting and instead proceed to more natural
modes of feedback, such as suggesting alternative or new features [24].

SemanticPush provides this knowledge in practice, as depicted by the graphical model
in Figure 3. Let X and Y be the input and output space for a binary classification, where
x ∈ X represents a query instance, y ∈ Y is the accompanying true label, and ŷ ∈ Y is
the predicted label. The overall goal is to find a matrix M depending on labels y or ŷ
that adequately incorporates human feedback into the classifier’s reasoning in a model-
agnostic way by generating counterexamples x̄ based on x. Thus, we seek a set of L input
manipulations M = {m1, ..., mL} as well as a manipulation function q : M× X → X̄. Here,
q(m, x) is a local function such that it only affects a part of the input x. This is the case
because user input in IML shall be focused (i.e., it shall only affect a certain part/aspect
of the model) as well as incremental (i.e., each user input shall only result in a small change
to the model) [13].

N N

!

"#

#

$"%

!

"##

$%

!

#

!̅% !̅ "%
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Figure 3. Graphical Model of SemanticPush.



Mach. Learn. Knowl. Extr. 2022, 4 1000

Algorithms 2 and 3 describe in detail the different semantic manipulations of X (cor-
rections and completions) performed by SemanticPush.

Algorithm 2 SemanticPush
Require: a destructive correction set Cdestx , a topicLIME explanation ẑxy for query instance

x with true class y, expert knowledge (here simulated via Gold Standard GS), and
a balancing parameter λ
Cdestx = {t ∈ ẑxy|t /∈ GSy} . Set of falsely explained topics
if ŷ = y ∧ Cdestx 6= ∅ then . Right for partially wrong reasons

x̄i ← x \ Cdestx∪Semantic Completion(
x, GSy, ẑxy, λ) . Add a concept the classifier forgot to learn

ȳ← y
else if ŷ 6= y then . False prediction

x̄iy ←Semantic Correctiony(x, GSy, ẑxy) . Provide feedback/hints for the true class
ȳiy ← y
x̄iŷ ← Semantic Correctionŷ(x, GSŷ, ẑxŷ) . Provide feedback/hints for the predicted

class
ȳiŷ ← ŷ

end if

Algorithm 3 Semantic Correction
Require: a Topic Model lda

θx ← lda.Get Topic Mixture(x)
for t ∈ θ do . t represents a topic as explanation unit

if t ∈ ẑ+ ∩ GS+ ∨ t ∈ ẑ− ∩ GS−∨
t ∈ ẑ+ ∩ GS− ∨ (t /∈ ẑ ∧ t /∈ GS) then . Topics either correctly used or incorrectly

used (but hard to reverse polarity and still important) or correctly ignored
θ̂xt ← KeepProbability(θxt )

else if t ∈ ẑ− ∩ GS+∨
(t /∈ ẑ ∧ t ∈ GS+) then . Topics either incorrectly learned (but easy to reverse

polarity) or forgotten to learn
θ̂xt ← Increase Probability(θxt , GS, λ)

else if (t ∈ ẑ ∧ t /∈ GS) then . Irrelevant topics were used
θ̂xt ← Decrease Probability(θxt )

end if
end for
return lda.Sample Instance(ψ(θ̂x)) . sampling from the multinomial distribution

harnessing the generative process of LDA

Semantic Completion(x, GSy, ẑxy, λ) from Algorithm 2 is defined as ∼ [λ ∗ ψ(Caddx ) +
(1− λ) ∗ ψ(xadd)], where Caddx = {(t, tw) ∈ GS+

y |t /∈ ẑ+xy} and xadd = {(t, tw) ∈ x|t ∈
Caddx}. Here, Caddx contains relevant and positively attributed topics for the predicted label
y weighted according to Gold Standard GS+

y that are (thus far) missing in the classifier’s ex-
planation.

In addition, ψ constitutes a normalization operator that re-normalizes the weights tw
of the associated topics t (either from Gold Standard or topicLIME explanation), revealing
a multinomial distribution over topics t. SemanticPush then incorporates the concepts
the classifier forgot to learn by adding text parts via sampling (∼) from the multinomial
distribution and harnessing the generative process of LDA (see Section 3.1).

Increase Probability() from Algorithm 3 carries out probability change of a topic δt
in the following way: δt = θxt + λ ∗ GSyt + (1− λ) ∗ θxt .

Decrease Probability() from Algorithm 3 in our scenario sets the probability of a topic
to zero, as the topic is assumed to be irrelevant for the class decision.

In order to more efficiently evaluate and optimize SemanticPush, we consciously
decided to use a simulated oracle that can be replaced by a human expert in a practical
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real-life scenario. Therefore, SemanticPush is based on a newly developed conceptual Gold
Standard GS that works as a proxy for an expert’s knowledge. Specifically, GSy contains
concepts in the form of LDA-retrieved topics that should be informative for a specific
class y. We obtain this kind of Gold Standard using intrinsic feature selection, especially
by extracting the weights of a Logistic Regression Model trained on all available topic-
represented data from the datasets described in Section 4.2. The details of how GS is
implemented can be found in Section 4.3. The superscripts + and − (of Gold Standard GS
or explanations z, respectively) indicate positive and negative attributions for a specific
class. In addition to the algorithmic descriptions, Figure 4a,b illustrates SemanticPush
conceptually and with an example application.

correct globally known Decision 
boundary

initially locally learned 
Decision boundary

Prototype class „orange“

Prototype class 
„blue“ f1

f2

f3

X

learned Decision 
boundary after correction

(a)

4) Corrections/Hints for class gold:

- topic #18 („Assets & Deposits“) à increase

- topic #12 („Merger & Acquisition“) à decrease / remove

- topic #4 („Foreign exchange“) à add ✚

1) Input document: „ CRA sold Forrest Gold for 8 mln dlrs. Whim Creek Consolidated NL said, the consortium it is leading 

will pay 50 mln dlrs for the acquisition of CRA LTDs Forrest Gold. PTY LTD Unit reported yesterday CRA and Whim Creek did 

not disclose the price yesterday. Whim Creek will hold 10 pct of the consortium while Austwhim resources NL will hold 5 

pct and Croesus Mining NL 5 pct it said in a statement. As reported Forrest Gold owns two mines in western australia 

producing a combined 50 ounces of gold a year. It also owns an undeveloped gold project.“

2) Predicted class: gold <> True class: acquisition

3) TopicLIME explanation for class gold:

("topic #18 („Assets & Deposits), 0.383)

("topic #12 („Merger & Acquisition“), -0.086)

3) TopicLIME explanation for class acquisition:

("topic #12 („Merger & Acquisition“), 0.302)

("topic #18 („Assets & Deposits), -0.099)

4) Corrections/Hints for class acquistion:

- topic #12 („Merger & Acquisition“) à increase

- topic #18 („Assets & Deposits“) à decrease / remove

- topic #2 („Key figures“) à add ✚

5) Generate counterexamples for classes gold and acquisition
-based on document-topic-attributions and incorporating corrections/hints

-using relative importance scores

-balancing, how global feedback shall be applied locally

(b)

Figure 4. (a) Conceptualization of SemanticPush: The grey query instance in the middle is predicted
as class “blue”, but should be “orange” instead according to ground truth. Local explanation fea-
tures f1 and f2 are features used by the classifier locally to assign the query instance to class “blue”.
According to expert knowledge, those features push the learned local decision boundary too far
towards the class “orange”. Feature f3 also constitutes expert knowledge as it is, among others,
significantly used globally by the classifier to assign instances to class “orange”. SemanticPush
incorporates this information by generating new instances (shown in light color) for both classes
and eventually weighs them by their distance to the query instance. The degree of locality of ap-
plying the expert knowledge to the query instance is controlled by the hyperparameter λ. Sam-
pling new instances only based on global expert knowledge might result in prototypical instances
(located in dense regions) which might not lead to great benefit for the classifier. (b) An exemplary
application of SemanticPush to document ID 9 of the Reuters R 52 Dataset.
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4. Experimental Setup
4.1. Baseline: Active Learning and CAIPI

In this section, we compare our SemanticPush approach against three baseline ap-
proaches. First, we use a standard ActiveLearner that internally harnesses Maximum Clas-
sification Uncertainty with regard to a pool dataset as a sampling strategy. Classification
uncertainty is defined as U(x) = 1− Pθ(ŷ|x), where x is the instance to be predicted and ŷ is
the most likely prediction. Second, we apply the original CAIPI method, as described in [6]
(refer to Algorithm 1), which provides explanation corrections for the ‘right for the wrong
reasons’ (ŷ = y) case. We call this setup ‘CAIPI destructive’ (CAIPId), as it is only capable
of removing those components that have been identified by a local LIME explanation ε(x)
as relevant even though an oracle believes those components to be irrelevant. Third, we
extend CAIPI such that it is additionally able to deal with false predictions (ŷ 6= y). We
call this setting ‘CAIPI destructive + constructive’ (CAIPId/c), as we additionally generate
new documents comprising words that could have been used to predict the associated true

class. We therefore sample words from a set GS+
local(x) (where GS+

local(x) = GS(k+)
global(y)∩ x)

that contains the top k positive words from a global Gold Standard of the true class y (see
Section 3.3) that are part of the document x.

4.2. Datasets

We evaluated SemanticPush on two multiclass classification tasks harnessing the fol-
lowing datasets: the AG News Classification Dataset [25] and Reuters R52 Dataset [26].
The AG News Dataset (127,600 documents) is constructed by selecting the four largest
classes from the original AG Dataset, which is a collection of more than one million news
articles. The average document length is 25 words, and the classes to be distinguished are
‘Business News’, ‘Science-Technology News’, ‘Sports News’, and ‘World News’. The Reuters
R52 Dataset (9100 documents) originally comprises 52 classes. Due to strong imbalance
between the classes, we selected the ten most represented classes (‘Earn’, ‘Acquisition’,
‘Coffee’, ‘Sugar’, ‘Trade’, ‘Ship’, ‘Crude’, ‘Interest’, and ‘Money-Foreign-Exchange’), leading
to a corpus comprising 7857 documents. The average document length is 60 words. From
now on, we refer to this dataset as the Reuters R10 Dataset.

For both datasets, we performed standard NLP preprocessing steps such as Tokeniza-
tion, Lemmatization, Stemming, Lower-Casing, and Removal of Stopwords.

4.3. Models

Our architecture comprises a semantic component that provides contextual informa-
tion about the input domain. Here, we showcase how we instantiated the Latent Dirichlet
Allocation Models for the two datasets. For this research, we used scikit-learn (version
0.20.2) and gensim (version 3.8.3). For the AG News Dataset, several LDA models were
trained on the preprocessed corpus with different values for the number of topics hyperpa-
rameter k. A final selection was made by determining the optimal number K∗ of topics

t = 1, . . . , K by solving arg max
K

1
K

K
∑

t=1
Cv(t), where Cv is the Cv coherence as introduced in

Section 3.1. We set K to 30 and determined K∗ = 13, meaning an optimal number of thirteen
topics. These topics, together with their most representative words, are described in Table 1.

We proceeded analogously with the Reuters R10 Dataset; however, in contrast to the AG
News Dataset, we could not solely rely on Cv coherence to find a suitable number of topics.
As the LDA model in our framework serves as both the semantic component and is
used to build a topic-based Gold Standard model (see next paragraph), we had to trade
off Cv coherence against learning performance. In order to achieve sufficient predictive
performance for Reuters R10 while preserving high coherence, the optimal number of topics
K∗ was set to 100.
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Table 1. Learned LDA topics and most representative words for the AG News Dataset.

Topic Representative Words

0 Iraq, Baghdad, Nuclear, Iran, Force, Military
1 Microsoft, Company, Software, IBM, System
2 European, United, Bank, Million, Trade, Deal
3 Bush, President, Press, Washington, John, Kerry
4 Internet, Search, Service, Phone, Online, Google
5 Oil, Price, Percent, Sale, Profit, Rate
6 Court, Company, Charge, Million, Trial, Drug
7 World, Cup, Win, Gold, Final, Champion
8 Game, Season, Team, League, Coach, Sport
9 New, York, Stock, Dollar, Share, Investor
10 Game, India, Australia, Fan, Video, Cricket
11 Police, People, Killed, Attack, Palestinian, Bomb
12 Minister, Election, Leader, President, Vote, Party

As described in Section 3.3, a Logistic Regression model is harnessed as an approxima-
tion for the oracle’s expert knowledge required in any Active Learning setting. To obtain
that kind of Gold Standard GS for CAIPI, we trained the regression model on the bag-of-
words-represented documents and obtained the following results.

For the AG News Dataset, a macro-averaged F1 score of 0.85 was achieved, while
for Reuters R10 the regression model reached a score of 0.8.

In order to include contextual and higher-level semantic information (simulating the
conceptual knowledge of a human expert) in the GS used for SemanticPush, we represented
the documents as multinomial distributions over topics (features of the regression model)
using the LDA model described above. The associated model achieved a macro-averaged F1
score of 0.74 for AG News and of 0.71 for Reuters R10. Due to the reduced number of features
when representing documents via topics, the topic-based GS obviously performs slightly
worse than the word-based GS due to reduced degrees of freedom of the regression model.

During our experiments, we primarily used an XGBoost model as the Base Learner,
as it constitutes a high-performing ensemble and tree-based classification algorithm.
We consciously made that decision because a tree-based learner is biased towards fea-
ture interaction and is able to naturally and intrinsically include both variables that interact
and variables with effects that do not interact [27]. This choice allows us to compare interac-
tions based on both context-less mutual explanations and contextual mutual explanations.
The latter are based on topics that contain words that can be polysemous or can exhibit
semantic interrelationships with each other.

In addition, we experimented with a Support Vector Machine (SVM) with a linear
kernel. SVMs can be described as max-margin classifiers that try to maximize a margin.
When learning a linear decision boundary, maximizing the margin intuitively means
searching for a decision boundary that maximizes the distance to those datapoints that are
closest to the boundary. Adding counterexamples in a separable case can be compared
to enforcing an orthogonality constraint during learning. In that case, counterexamples
amount to additional max-margin constraints [28] that can help to obtain a better model
(please refer to Figure 4a). For this reason, we chose to additionally include an SVM as the
base learner for cases in which model-agnostic and local corrections via counterexamples
develop their potential in an inherently interpretable way.

For instantiating the Active Learner, we chose the modAL python framework [29].
As the query strategy, we used Maximum Classification Uncertainty. For both datasets,
a stratified split into training, pool, and test sets was performed (training 1%, pool 79%,
and test 20% of the data). We therefore accounted for a standard Active Learning setting
where a small number of labeled data and a huge amount of unlabeled data were available.
All experiments were performed over 200 iterations each.
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4.4. Evaluation Metrics

To evaluate the quality of our framework and answer Research Questions 2 and 3 (see
Section 1), we performed two kinds of experiments. First, we measured the Predictive
Performance of the different IML strategies with regard to a downstream classification task
on the testset during 200 iterations. As performance metrics for evaluation of Research
Question 2, we chose the macro-averaged F1 score (after each AL iteration) and the Average
Classification Margin between the predicted and true class (after every tenth AL iteration).
The Average Classification Margin between predicted and true class is defined as M(x) =
1
N

N
∑

i=1
P(ŷ|xi) − P(y|xi), where ŷ is the predicted class, y is the true class, x̂i is a certain

instance of the testset to be predicted, and N is the total number of instances in the testset.
Accordingly, this measure analyzes the classifier’s confidence towards false predictions
for all test instances and then finds the average over them.

To answer Research Question 3, Local Explanation Quality was analyzed in two ways:
(a) with regard to local fidelity and approximation accuracy (the quality of the local expla-
nation generators itself before any interactions), and (b) with regard to the ‘Explanation
Ground Truth’ of the downstream classification tasks (the quality of local explanations
for all test instances compared to the bag-of-words represented Gold Standard described
in Section 4.3).

Local fidelity is said to be achieved if an explanation model g ε G is found such that
f (z) ≈ g(z′) for z, z′ ε Z, where Z constitutes the vicinity of x and f is the model to be
explained. Here, we use the Mean Local Approximation Error (MLAE, Equation (3)) and
MeanR2 (Equation (4)) as a proxy to measure the local fidelity of the whole explanation
models to be compared.

MLAE =

N
∑

i=1
| f (xi)− gi(xi)|

N
. (3)

MeanR2 =

N
∑

i=1
R2(gi)

N
, R2 = 1−

1
n

n
∑

i=1
( f (zi)− g(z′i))

2

1
n

n
∑

i=1
( f (zi)− fmean)2

. (4)

In both cases, N is the number of instances in the associated test dataset.
Furthermore, we analyzed a modified variant of the Area Over The Perturbation Curve

(AOPC), which measures the local fidelity of individual explanations. We call this the
Combined Removal Impact (CRI), defined as follows:

CRI =
1
N

N

∑
i=1

p(ŷ|xi)− p(ŷ|x̃(k)i ), (5)

where the top k% explanation features are removed from xi to yield x̃(k)i , ŷ denotes the pre-
dicted label for xi, and N is the number of instances in the associated test dataset. For both
evaluation metrics, please refer to [16] for details on how these metrics have been applied
to compare word-based and topic-based contextual explanations.

In order to analyze the development of Local Explanation Quality after applying
the different IML strategies, we calculated a measure called ’Explanatory Accuracy’. First,
we took k = 10% of the most relevant words from the global Gold Standard GS(k)

global(y) and

intersected them with words (GS(k)
global(y) ∩ x) from a document x, resulting in a local Gold

Standard (GSlocal(x)) per document x. For each test document x, a local explanation ε(x)
was subsequently generated using LIME. The Average Explanatory Accuracy was then
defined as

ExplanatoryAccuracyAVG =
1
N

N

∑
i=1

|GSlocal(xi) ∩ ε(xi)|
|GSlocal(xi)|

, (6)
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with N being the number of documents in the test dataset. We restricted the complexity
of the local surrogate models (number of explanatory words) to Ω(g) = |GSlocal(x)|, such
that the LIME explanations were theoretically capable of finding all relevant explanations
according to local GS. We measured the Average Explanatory Accuracy of the test instances
after every 20th iteration.

5. Experiment 1: Predictive Performance

We conducted the first experiment by measuring the Predictive Performance of the dif-
ferent IML strategies. Figures 5a–7a show the convergence of the macro-averaged F1 score
on the two testsets over 200 iterations for our SemanticPush approach along with its base-
lines. For both datasets, SemanticPush clearly outperforms the standard ActiveLearner
and the two versions of CAIPI when using XGBoost as the base learner, despite a Gold
Standard that is around ten percent worse than that used for CAIPI. In the early stages
of interaction, this holds true for the SVM base learner as well.

(a) (b)

Figure 5. (a) Learning performance of different IML strategies for AG News Dataset (XGBoost as base
learner). (b) Average Classification Margin of different IML strategies for AG News Dataset (XGBoost
as base learner).

(a) (b)

Figure 6. (a) Learning performance of different IML strategies for Reuters R10 Dataset (XGBoost as
base learner). (b) Average Classification Margin of different IML strategies for Reuters R10 Dataset
(XGBoost as base learner).

More generally, SemanticPush shows high data efficiency with respect to queries
from the pool dataset, as it incorporates the oracle’s expert knowledge efficiently at a
much earlier stage (around 90 percent of final F1 score reached already after only 50 it-
erations). In the middle range of the iterations, SemanticPush has already applied much
of the correct knowledge; therefore, its performance starts to increase more slowly. For
classifiers such as the Support Vector Machine, which reach high classification accuracy
earlier (in the realm of the conceptual Gold Standard’s performance), the performance of
SemanticPush begins to stagnate during later iterations, as it partially has applied ‘incorrect
corrections’. CAIPI destructive is not able to consistently beat the ActiveLearner’s baseline,
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while our constructive extension performs better. Figures 5b–7b confirm the above obser-
vations from the point of view of the Average Classification Margin between predicted
and true class, where SemanticPush on average provides false predictions less frequently
and/or with less confidence than its baselines.

(a) (b)

Figure 7. (a): Learning performance of different IML strategies for Reuters R10 Dataset (SVM as base
learner). (b): Average Classification Margin of different IML strategies for Reuters R10 Dataset (SVM
as base learner).

Across all experiments, we kept the hyperparameters constant. At each iteration,
we allowed the different methods to generate N = 10 counterexamples incorporating
the corrective knowledge. Furthermore, we set the length (number of words) of each
counterexample to the average document length of the respective corpora (25 for the AG
News Dataset and 60 for Reuters R10). We allowed LIME to generate explanations containing
7 words (for AG News) and 15 words (for Reuters R10). The topicLIME explanations included
three and five topics, respectively. This limitation was enforced due to the fact that in the
real world humans are only able to perceive, process, and remember a limited number
of pieces of information. According to Miller’s law [30], this capacity is somewhere between
seven plus or minus two. Additionally, we set λ (from Algorithm 2) to 0.95 to simulate the
effect of global expert knowledge.

Experiment 2: Local Explanation Quality

We performed experiments by analyzing the Local Explanation Quality of the dif-
ferent IML strategies in both directions of interaction with the oracle. Table 2 compares
the quality of the local surrogate models and the resulting explanations generated by LIME
and topicLIME. The related measures are the Approximation Error, MeanR2, and Com-
bined Removal Impact (CRI) of the two different test datasets. It is noticeable that both
the surrogate explanation models and the local explanations itself are more faithful towards
the model to be explained when using contextual explanations generated from realis-
tic local perturbation distributions. Therefore, the resulting explanations are regarded
as more reliable.

Tables 3 and 4 take up the topic of Local Explanation Quality from the other direction
(after the interactions with the oracle).

It is striking that only SemanticPush is capable of clearly transferring the expert
knowledge in a way that it is adequately adopted by the base learner. The two versions
of CAIPI do not reveal better results than the standard ActiveLearner.

To sum up, our proposed approach improves Learning Performance, especially in the early
stages of interactions, pushing the reasoning of the learner towards the desired behavior.
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Table 2. Comparison of LIME and topicLIME with respect to local fidelity (with XGBoost as the
base learner).

AG News

Lime TopicLIME Difference

Approx. Error 0.0394 0.0342 −13%
R2 0.863 0.884 +2.5%

CRI 0.229 0.277 +21%

Reuters R52

Approx. Error 0.0195 0.0076 −61%
R2 0.864 0.951 +10%

CRI 0.271 0.302 +11%

Table 3. Local explanation quality with respect to ‘Ground Truth’ of downstream classification tasks
(with XGBoost as the base learner).

Explanatory AccuracyAVG

AL CAIPId CAIPId/c Sem.Push

AG News 0.690 0.683 0.685 0.711
Reuters R10 0.741 0.739 0.742 0.768

Table 4. Local explanation quality with respect to ‘Ground Truth’ of downstream classification task
(with SVM as the base learner).

Explanatory AccuracyAVG

AL CAIPId CAIPId/c Sem.Push

Reuters R10 0.786 0.785 0.788 0.796

6. Subsumption and Discussion

As social beings, humans engage in interactions, often attempting to communicate
an understanding between individuals. Therefore, humans are naturally driven to acquire
and provide explanations as well as to receive explanations in order to expand their under-
standing [31]. As human explanations are often framed by stances or modes of construal,
and are therefore interpretative and diverse in nature, humans need to perform mental
calculations in order to understand such explanations [32]. Often, the human capability
to flexibly use contextual and background information as well as intuition and feeling
are consulted in order to distinguish ‘brilliant’ and ‘real’ intelligence [33] from Artificial
Intelligence, as computers generally are deemed ‘stupid’ with regard to such tasks.

Therefore, we developed SemanticPush in order to account for the inclusion of contex-
tual and background knowledge during interactions between humans and ML systems.
We illuminate the topic of semantic interactivity from both directions: from machines to hu-
mans by enabling ML explanations to be coherent, semantically meaningful, and locally
faithful, and from the other direction by enabling humans to include expert knowledge
in a conceptual manner.

As a result, SemanticPush differs from state of the art approaches such as CAIPI in
(a) using contextual topicLIME explanations instead of LIME explanations, (b) internally
using a conceptually meaningful Gold Standard that allows corrections on higher semantic
detail, (c) additionally enabling constructive feedback, and (d) being able to locally correct
the reasoning used to arrive at false predictions. Transferred to a real-world interaction
setting, human annotators are capable of indicating and correcting (a) components that
a learner wrongly identified as relevant (as CAIPI does), (b) components that the learner
has forgotten to learn, and (c) relevant components that have been incorrectly used.
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In a practical text classification scenario, humans could teach a learner by generating
documents that exhibit a specific semantic content and structure together with a target
class. As an example, a human domain expert could analyze the reasoning of a learner
by locally harnessing the contextual topicLIME explanations for a document of interest.
In the next step, the expert could gradually manipulate the document’s concept composition
by analogy to his or her conceptual knowledge. Hence, the expert would be able to
underweight, overweight, remove, or add higher-level concepts of the according input
domain via manipulation (decreasing, increasing, removing, or adding) of individual topic
attributions (see Figure 4b). As a result of this interaction it is possible to maintain statistical
characteristics of the input domain, leading to non-extrapolation of training examples
comprising the annotator’s corrections, and thereby forcing the classifier’s reasoning
to converge to the desired behavior.

7. Summary and Conclusions

In this paper, we introduced a novel IML architecture called Semantic Interactive
Learning that helps to bring humans into the loop and allows for richer interactions. We
instantiated it with SemanticPush, the first IML strategy enabling semantic and constructive
corrections of a learner, also for completely false predictions. Our approach offers locally
faithful and contextual explanations; on this basis, it qualifies humans to provide concep-
tual corrections that can be considered as continuous. The corrections are in turn integrated
into the learner’s reasoning via non-extrapolating and contextual additional training in-
stances. As a consequence of combining richer explanations with more extensive semantic
corrections, our proposed interaction paradigm outperforms its baselines with regard to
learning performance as well as local explanation quality of downstream classification tasks
in the majority of our experiments. Please note that our constructive extension for CAIPI
outperforms original CAIPI as well in most experiments w.r.t. Learning Performance.

In addition to all the listed benefits, there are two main prerequisites for our approach
that should be mentioned. First, as its entire semantic functionality is based on an LDA
approach, a certain level of expertise in topic modeling is required; for instance, in or-
der to implement suitable data preprocessing or to find an adequate number of topics k.
Therefore, additional analysis is necessary upfront. However, if helpful semantic concepts
have been identified, then fewer interactions with the oracle might be required. This
allows model developers to trade off more potentially costly interactions with an ora-
cle against the cost of extra data preprocessing and topic modeling. Second, as for all
interactive scenarios, efficient access to an oracle is needed, be it simulated or based on
human annotators.

Therefore, this work can provide new perspectives for further studies. For our experi-
ments, where the simulation of expert knowledge via a global Gold Standard is a crucial
aspect, we plan to improve the simulation accuracy as well as to evaluate its quality using
inter-rater reliability. Furthermore, we intend to conduct experiments with human experts.
Additionally, we intend to include a language model such as BERT into our architecture
to ensure that generated counterexamples are meaningful both semantically and linguis-
tically, and especially that they are syntactically correct. Masked Language Modeling
could be harnessed to check for linguistically sensible counterexamples, while Autoen-
coders could be used to identify ‘Out-of-Distribution’ counterexamples by analyzing the
reconstruction error.

In summary, this work takes a step towards Human-Centered Machine Learning by
allowing contextual interpretation and intervention in an interactive setting. Effective and
efficient co-work between users and an ML learner is enabled, allowing the learner to take
advantage of the richness of human expertise.
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