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Abstract: In the last decade, industry’s demand for deep learning (DL) has increased due to its high
performance in complex scenarios. Due to the DL method’s complexity, experts and non-experts
rely on blackbox software packages such as Tensorflow and Pytorch. The frameworks are constantly
improving, and new versions are released frequently. As a natural process in software development,
the released versions contain improvements/changes in the methods and their implementation.
Moreover, versions may be bug-polluted, leading to the model performance decreasing or stopping
the model from working. The aforementioned changes in implementation can lead to variance in
obtained results. This work investigates the effect of implementation changes in different major
releases of these frameworks on the model performance. We perform our study using a variety
of standard datasets. Our study shows that users should consider that changing the framework
version can affect the model performance. Moreover, they should consider the possibility of a bug-
polluted version before starting to debug source code that had an excellent performance before a
version change. This also shows the importance of using virtual environments, such as Docker, when
delivering a software product to clients.

Keywords: machine learning; deep learning; deep neural networks; reproducibility; tensorflow;
pytorch

1. Introduction

In the last decade, deep-learning (DL) algorithms have been increasing daily due to their
efficiency in solving highly complicated problems [1]. Recently, we can find a trace of deep
neural networks (DNNs) in many applications, such as computer vision [2], natural language
processing and speech recognition [3], biometrics [4], and geophysics [5,6], to mention a few.
Before training, a DNN is a parametric representation of the function governing the desired
process. Then, by minimizing a loss function using some stochastic processes, such as stochastic
optimization, we fit the DNN to a specific dataset. Hence, given input from the dataset, a DNN
can produce output with generality [7]. Nonetheless, nondeterminism is a commonly known
phenomenon in engineering ML/DL systems [8–10].

The daily advances in DL and its complex low-level implementations compelled
giant technology companies such as Google and Meta AI to invest in creating open-source
high-level DL packages.

The most common DL framework is Tensorflow, developed and maintained by Google
(Mountain View, CA, USA). They mention on their website: “TensorFlow is an end-to-end
open source platform for machine learning. It has a comprehensive, flexible ecosystem of
tools, libraries, and community resources. It lets researchers push the state-of-the-art in
ML, and developers easily build and deploy ML-powered applications.” [11]. The first
version of Tensorflow was released in 2015. The current updated versions of Tensorflow
were released under the name Tensorflow 2.0 whose first version was released in 2019.

Another well-known framework with increasing popularity, especially for academic
users, is Pytorch. Pytorch is developed and maintained by Meta AI (New York, NY, USA):
“An open source machine learning framework that accelerates the path from research
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prototyping to production deployment.” [12]. The first version of Pytorch was released in
2016. Table 1 briefly compares the two above-mentioned frameworks.

Table 1. A feature comparison between Tensorflow and Pytorch.

Tensorflow Pytorch

Creator Google Meta (Facebook)

Computational graph creation static/dynamic dynamic

API level high and low level high and low level

Debugging difficult easy

Ease of use Incomperehensive API Integrated with Python

Nowadays, the increase in the acquired data volume and the improvements in hard-
ware components are leading to the popularity of DL methods. Therefore, the reliability of
a proposed DL technique is of paramount importance. The reproducibility of DNN models
implemented using DL frameworks is critical in showing their reliability. However, mainly,
the following reasons interfere with the reproducibility of models using these frameworks:

• Randomization in DL training methods: A DNN training and optimization process
includes a high level of randomization, e.g., weight initialization and random batch
selection, and stochastic optimization, e.g., stochastic gradient descent [13–17]. Indeed,
this problem arises using many machine-learning (ML) methods [18–21]. It is possible
to reduce randomization by deactivating some functionalities, e.g., randomized batch
selection at each epoch; however, this may also decrease the model performance.

• GPU implementations: The DL frameworks use Cuda [22] and cudnn [23] for their
GPU implementations to accelerate DNN training. These libraries introduce ran-
domization in their implementations to expedite processes, e.g., selecting primitive
operations, floating point precision, and matrix operations [24,25].

• Bugs in DL frameworks: DL frameworks are software, after all. As with any software,
bugs can be introduced in the development process of DL frameworks. This problem can
be magnified when a new version of the framework contains features that fail or show
deteriorating performance although working correctly in previous versions [26–32].

• Improvement in methods and implementations: As DL is an active field of research,
it faces continuous and rapid improvements. Hence, responsible developers imple-
ment state-of-the-art advancements daily to keep the frameworks updated. These
improvements can also lead to changes in the output of the DL-based codes.

Researchers using DL frameworks should know the aforementioned irreproducibility
issues to produce reliable methods and results. The authors of [16] performed a survey
by asking more than 900 researchers and developers to fill out a detailed questionnaire.
Surprisingly, many researchers and developers were unaware of these problems or their
severity. This shows that many researchers use DL frameworks as a blackbox without
awareness of the processes and potential pitfalls. This problem becomes even more se-
vere for users of software systems developed on top of DL frameworks, as they may be
completely unaware of the issues introduced by using frameworks in the first place. This
emphasizes the importance of users being aware of basic DL/ML principles and receiv-
ing training and post-installation support from researchers and developers. Moreover,
researchers and developers should provide monitoring and reporting mechanisms as part
of their software solutions which provide insights into the underlying processes and the
performance of the applied models.

This work investigates reproducibility issues related to DNNs when using different
versions of DL frameworks and their effects using quantitative measures. We focus on the
two most common DL frameworks: Tensorflow and Pytorch. We use well-known problems
and simple DNNs to show the variance in the model’s performance obtained using different
framework versions. To restrict our study, we only perform the training on the CPU
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to reduce the level of uncertainty arising from GPU-related implementations. Hence,
comparing two separate versions, we can obtain different variances in the performance
of the obtained models mainly because of code changes and related bugs introduced in
the DL frameworks during the development process. The main aim of this study is to
bring awareness to researchers and developers using DL and about the problems they
may face when they upgrade/downgrade to another version of the DL framework in use.
Table 2 summarizes the objectives of this work. Finally, we propose solutions for users and
developers to control and monitor training to achieve the best performance in their final
DNN model.

Table 2. List of objectives to address in this work that affect the performance of a DL-based code or
its resulting model’s performance.

RQ1 influence of different DL framework versions

RQ2 noticeable effect of bugs in DL framework
versions

RQ3 differences between two popular frameworks

The remainder of this work is organized as follows: Section 2 describes the study we
perform in this work, i.e., the DL definition, the investigated use cases, DNN architecture
design, and the training process. Section 3 shows the results of our experiments and
analyses them. Section 4 is dedicated to the conclusion and discussion.

2. Study Design

In this study, we explore the impact of version changes in different DL frameworks on
the reproducibility of trained models. Table 2 describes the investigated objectives of this
work. We consider well-known use cases/datasets to study the aforementioned objectives.
For each use case, we define a simple DNN architecture. Ultimately, by training the DNNs
using different versions of the DL frameworks and comparing their results, we investigate
the effect of version change in the DL-based code and the resulting model performance.

2.1. DL Definition

We consider X = {x0, x1, · · · , xn} and Y = {y0, y1, · · · , yn} to be the input and output
spaces, respectively, and we have f (xi) = yi for all (xi, yi) ∈ X× Y, where f is the target
function. In the context of supervised DL, knowing the input and output spaces, we aim
to approximate the target function f using a DNN. The parametric representation of the
aforementioned DNN approximation fw,b is as follows:

fw,b = fwn ,bn o fwn−1,bn−1 o · · · o fw0,b0 , (1)

where fwi ,bi
is the function governing the i-th layer of the DNN with wi and bi being

its weights and bias matrices, respectively; o shows the function composition, w =
{w0, w1, · · · , wn}, and b = {b0, b1, · · · , bn}. Then, the training of the DNN minimizes
the following loss function:

w∗, b∗ = arg
w,b

minL( fw,b(X), Y), (2)

where L is a loss function comparing the DNN prediction and the ground truth in a
predefined regime. Then, the DNN approximation of f is fw∗ ,b∗ .

In this work, we consider classification problems. Hence, the output space Y is a set of
valid classes/categories.

2.2. Investigated Cases

For our study, we selected well-known and widely used classification problems with
corresponding datasets as use cases: Pulsars, Iris species, heart disease, 2D Gaussian



Mach. Learn. Knowl. Extr. 2022, 4 891

distribution, and body mass index (BMI). Table 3 describes all the datasets and their
features.

Table 3. List of datasets used as use cases for our experiments.

Dataset List of Features

Pulsars

mean of the integrated profile, the standard
deviation of the integrated profile, excess

kurtosis of the integrated profile, skewness of
the integrated profile, mean of the dispersion

measure signal to noise ratio (DM-SNR) curve,
the standard deviation of the DM-SNR curve,

excess kurtosis of the DM-SNR curve,
skewness of the DM-SNR curve.

Iris Species sepal length (cm), sepal width (cm), petal
length (cm), petal width (cm).

Heart Disease

age, sex, chest pain type (four values), resting
blood pressure, serum cholesterol in ( mg

dl ),
resting electrocardiographic results (three

values), maximum heart rate achieved,
exercise-induced angina, ST depression

induced by exercise relative to rest, the slope of
the peak exercise ST segment, number of major
vessels (0–3) colored by fluoroscopy, Thal(0 =
normal, 1 = fixed defect, 2 = reversible defect).

2D Gaussian distribution points location along x- and y- axis

Body Mass Index gender, height (cm), weight (kg)

2.2.1. Pulsars Dataset

A Pulsar is a neutron star that produces a detectable radio emission on Earth. Each
sample in this dataset consists of eight continuous variables and one class. The class is
a Boolean variable. This dataset contains 17,898 samples in which 1639 are positive, and
the rest are negative (https://www.kaggle.com/datasets/colearninglounge/predicting-
pulsar-starintermediate (accessed on 1 August 2022)).

We first remove the samples containing a missing value in the preprocessing part.
Then, we rescale all the inputs to be between 0 and 1. Then, as the dataset is unbalanced,
we use the synthetic minority over-sampling technique (SMOTE) to balance the dataset.
We fix the random seed for the SMOTE to produce the same samples consistently [33].

2.2.2. Iris Species Dataset

This dataset is dedicated to classifying the species of the Iris plant using its flower
characterizations. It contains three separate classes of species. Hence, the problem is a multi-
class prediction. This dataset includes 150 samples equally divided between three target
iris species, i.e., 50 samples for each class (https://www.kaggle.com/datasets/uciml/iris
(accessed on 1 August 2022)).

For preprocessing, we first rescale all the input values to (0, 1). Then, we apply a
one-hot encoding to the label values.

2.2.3. Heart Disease Dataset

In this dataset, we use a patient’s information to predict if they have any heart disease.
The output is Boolean, detecting the presence of heart disease. This dataset contains 1, 025
samples (https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset (accessed
on 1 August 2022)).

We only rescale the input values to [0, 1] in preprocessing.

https://www.kaggle.com/datasets/colearninglounge/predicting-pulsar-starintermediate
https://www.kaggle.com/datasets/colearninglounge/predicting-pulsar-starintermediate
https://www.kaggle.com/datasets/uciml/iris
https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset
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2.2.4. Two-Dimensional (2D) Gaussian Distribution

We describe a joint Gaussian distribution of a 2D random vector X = (x0, x1) as
X ∼ N (µ, σ). In the aforementioned notation, µ = (µ0, µ1), where µi is the mean of the

random variable xi. Moreover, as we consider a joint distribution, we have σ =

[
σ0 0
0 σ1

]
,

where σi is the standard deviation of xi. In this experiment, we consider two separate
2D Gaussian distributions, i.e., X1 ∼ N (µ1, σ1) and X2 ∼ N (µ2, σ2). Therefore, given a
vector of random variables Xp, the classification task consists of predicting j ∈ {1, 2} where
Xp ∼ N (µj, σ j).

Using 2D Gaussian distribution, we produce a dataset of 5000 samples. The input
in this dataset is a vector of random variables, and the output is the class showing its
corresponding Gaussian distribution. In this experiment, we consider µ1 = [0, 10] and
µ2 = [10, 0]. Moreover, we consider σ1 = σ2 = 10 ∗ I2, where I2 is the identity matrix of
dimension 2× 2. Figure 1 shows the samples.

Figure 1. Visualization of the Gaussian points belong to two different distributions. The blue points
show X1 ∼ N (µ1, σ1), and the red points represent X2 ∼ N (µ2, σ2).

In the preprocessing stage, we rescale the input to be in the [0, 1] interval.

2.2.5. BMI Dataset

In this dataset, using the physical information of participants, we predict the BMI
index. The BMI index helps us to detect obesity. The corresponding index is an integer
value between one to five. Hence, the output is five separate classes. This dataset contains
500 samples (https://www.kaggle.com/code/titan23/bmi-dataset/notebook (accessed on
1 August 2022)).

In the preprocessing stage, we first encode the gender values to unique binary values.
Then, we rescale all the input to [0, 1].

2.3. DNN Architecture

There exist types of DNN layers that consist of randomization and stochastic opera-
tions, e.g., the pooling layer. To avoid the aforementioned randomization, we only consider
fully connected layers to produce our DNN architectures. Table 4 describes the DNN
architectures used for all the model problems. In all DNNs, except the final layer, a ReLu
activation function follows the output of each fully connected layer. For the final layer, in
the case of binary classification, the activation function is Sigmoid. In the case of multi-class
classification, the last layer contains a Softmax activation function.

https://www.kaggle.com/code/titan23/bmi-dataset/notebook
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Table 4. The NN architecture used for each model problem. We only use fully connected layers.

Model Problem Layers Optimizer Epochs

Pulsars (64, 64, 1) Adam 10
Iris species (256, 64, 32, 32, 3) Rmsprop 100

Heart disease (128, 64, 1) Adam 75
2D Gaussian (10, 10, 1) Adam 10

BMI (64, 64, 6) Adam 100

In the case of Tensorflow, we consider the following versions (and their corresponding
release dates): 2.2.0 (May 2020), 2.2.3 (June 2021), 2.3.0 (July 2020), 2.3.4 (August 2021),
2.4.0 (December 2020), 2.4.4 (December 2021), 2.5.0 (May 2021), 2.5.3 (February 2022), 2.6.2
(November 2021), 2.6.3 (February 2022), 2.7.0 (November 2021), 2.7.1 (February 2022), 2.8.0
(February 2022), 2.9.0-rc2 (May 2022). Usually, Tensorflow developers release a 2.x.0 version
that includes major improvements compared to the previous versions concerning efficient
computational capabilities and recent developments in the field. Then, versions 2.x.y are
dedicated to fixing reported bugs and deficiencies of 2.x.0 versions.

For Pytorch, we use the following versions (and their corresponding release dates):
1.6.0 (July 2020), 1.7.0 (October 2020), 1.7.1 (December 2020), 1.8.0 (March 2021), 1.8.1 (March
2021), 1.9.0 (June 2021), 1.9.1 (September 2021), 1.10.0 (October 2021), 1.11.0 (March 2022),
1.12.0 (June 2022). Pytorch is following an analogous release strategy to Tensorflow.

2.4. Experimental Setting

To eliminate the randomization from the Cuda and cudnn implementations when
using a GPU setup [22,23], we perform the experiments on the CPU. We use a standard
desktop PC with 2 GHz Quad-Core Intel Core i5 as the processor for this task.

As the training process includes levels of randomization, e.g., initialization, and
stochastic processes, e.g., optimization, to perform a fair comparison among the different
versions of the DL platforms, we run the experiments multiple times for each version. By
performing various experiments, we conclude that it is sufficient to run them twenty times
to obtain the variance for the model performance. However, this selection is arbitrary,
and one might consider fewer or more repetitions. Therefore, we obtain a variance in the
models’ performance for each version. Before training, we split our dataset into training
and validation datasets, i.e., 80% and 20% of the entire dataset, respectively. We consider
a fixed random seed to obtain similar training and validation datasets in each repetition.
After training, we save the resulting model. Then, by loading the model and evaluating it
on the validation dataset, we obtain inference results. Hence, to compare the results of each
version, we produce the following figures:

• Initial accuracy: The model’s accuracy on the validation dataset before training. The
optimal initialization of the DNN is an active line of research and encounters con-
tinuous improvements. These improvements also affect the development of the
frameworks. The proper initialization of the DNN is of paramount importance as
different initial values can lead the optimizer to separate local minimums, hence,
different results.

• Final training accuracy: The model’s accuracy on the validation dataset at the last
epoch. This value shows us what to expect if the user trains the model using the same
training setup.

• Best accuracy: The best accuracy of the model on the validation dataset during training.
We may encounter the best performance of the model before the final epoch. This
quantity magnifies the importance of training with care and supervision. Furthermore,
it is one of the reasons to save the checkpoints while training that the user can retrieve
the best model after the training.

• Epoch with the best accuracy: the identifier of the epoch that the best performance of
the model was achieved.



Mach. Learn. Knowl. Extr. 2022, 4 894

• Inference accuracy: The accuracy of the final model (the resulting model after the last
epoch) at the inference stage. We measure this value to identify any bug in the DL
framework.

• Average final accuracy: The average of the last models’ accuracies in twenty runs for
each version. To obtain reproducible results, it is common practice to take an average
of the outputs of multiple runs. This value illustrates what to expect if we use this
approach.

3. Results

This section presents the results for the investigated DL frameworks, Tensorflow and
Pytorch.

3.1. Tensorflow Models

In this framework, we faced a compatibility error/bug when using Tensorflow ver-
sion 2.6.0 (https://stackoverflow.com/questions/72255562/cannot-import-name-dtensor-
from-tensorflow-compat-v2-experimental (accessed on 10 August 2022)). This sort of
behavior causes users frustration and confusion when upgrading the systems. It makes a
working application crash with no fault of the application itself. For the rest of the versions,
we summarize the results as follows:

3.1.1. Pulsars

Figure 2 shows the results of this experiment. For the initial accuracy, excluding the
outliers, versions 2.5.3 and 2.9.0-rc2 show the maximum variation (almost 2%). However,
there are evident differences among different versions. Different initial points can lead the
optimizer to different local minimums of the loss function. These variations can lead to
inconsistent solutions when training the same model using separate versions of Tensorflow.
Analogously, in the case of final accuracy, the maximum variance happens in versions 2.3.0
and 2.4.0, i.e., almost 1%. The maximum accuracy while training also shows discrepancies
between different versions. However, by checking the average accuracy for all versions, we
see that this difference is not significant enough to impose any problem at the inference
stage if we use an averaging approach. The epoch in which the maximum accuracy
happens shows total randomness caused by many factors, e.g., the initialization. However,
similar to initial accuracy, versions 2.5.3 and 2.9.0-rc2 show the maximum variance among
the considered versions. We expect the initial point selection to lead to faster or slower
convergence to the local minimum. Hence, a high variance in initial accuracy can lead
to a high variance in the epoch with maximum accuracy when the optimizer parameters
are constant.

3.1.2. Iris Species

Figure 3 describes the results of this experiment. For the initial accuracy, we witness
randomness. However, the average initial accuracy for all the versions is almost similar. In
the case of final accuracy, we notice an extreme variation (more than 10%) in some versions,
e.g., 2.2.3 and 2.5.3. This discrepancy can result in an inapplicable model in the production
stage. In all versions, in a specific epoch, the model achieves its best performance (100%
accuracy). However, this accuracy can happen in any epoch, and different versions also
affect the epoch identifier. The average accuracy between separate models is also different,
i.e., it can deliver inapplicable models. Version 2.5.3 shows the minimum average accuracy
of almost 2.5% lower than 2.8.0.

https://stackoverflow.com/questions/72255562/cannot-import-name-dtensor-from-tensorflow-compat-v2-experimental
https://stackoverflow.com/questions/72255562/cannot-import-name-dtensor-from-tensorflow-compat-v2-experimental
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Figure 2. The results for the Pulsars dataset using Tensorflow.

3.1.3. Heart Disease

Figure 4 presents the results for this experiment. These results also show similar
conclusions to the Iris experiment. In contrast to Pulsars, version 2.5.3 and 2.9.0-rc2 show
low variance in cases of initial accuracy. This shows that, considering the nature of the
problem and the Tensorflow functions that we need to use for each problem, the efficiency
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of the DL-based code and its resulting model can improve or deteriorate when using
different versions of Tensorflow.
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Figure 3. The results for the Iris dataset using Tensorflow.
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Figure 4. The results for the heart-disease dataset using Tensorflow.

3.1.4. 2D Gaussian

Figure 5 presents the results for this experiment. These results also show similar
conclusions to the previous experiments. Similarly, we encounter the minimum average
accuracy at version 2.5.3, which is almost 2% lower than the maximum in version 2.2.0.
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Figure 5. The results for the 2D Gaussian dataset using Tensorflow.

3.1.5. BMI

Figure 6 shows the results of this experiment. The results show similar discrepancies
comparing the different versions of Tensorflow. However, we can also see a failure in
evaluating the model using versions 2.3.0 and 2.3.4 that can be related to a documented bug
in this version (https://github.com/tensorflow/tensorflow/issues/42459 (accessed on 10

https://github.com/tensorflow/tensorflow/issues/42459
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August 2022)). This bug does not affect the prediction. However, the evaluation results are
unreliable, leading to confusion and, more importantly, to wrong and unstable results.
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Figure 6. The results for the BMI dataset using Tensorflow.
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3.2. Pytorch Models

In the case of Pytorch models, we conclude our results as follows:

3.2.1. Pulsars

Figure 7 shows the results for this experiment. The difference between the initial
accuracy of the networks in different versions is evident. Versions 1.9.1 and 1.7.0 show the
maximum and minimum variation, respectively. The final accuracy of the DNNs shows al-
most similar behavior in different versions. The randomization can cause slight differences
in this case. Maximum and average training accuracies are also similar in all versions. The
variation is too small to cause any inconvenience in inference, i.e., producing inapplicable
models. Considering the number of epochs for which we achieve the maximum accuracy,
we witness some discrepancies that show the importance of monitoring the training stage.
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Figure 7. The results for the Pulsar dataset using Pytorch.

3.2.2. Iris Species

Figure 8 represents the results of this experiment. The final and average accuracies
show a significant discrepancy among different versions. This discrepancy can be up to
1.5%, which can cause unreliability in the model. We see a significant difference among ver-
sions considering the epoch number at which we reach the maximum accuracy. Excluding
the outliers, versions 1.7.0, 1.8.0, and their corresponding subversions 1.7.1 and 1.8.1 show
the maximum variance. In this case, version 1.6.0 shows the minimum variance.
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Mach. Learn. Knowl. Extr. 2022, 4 902

version

ac
cu

ra
cy

Maximum accuracy

version

ep
oc

h

Epoch with maximum accuracy

version

ac
cu

ra
cy

Inference accuracy

version

ac
cu

ra
cy

Average accuracy

Figure 8. The results for the Iris dataset using Pytorch.

3.2.3. Heart Disease

Figure 9 shows the results. For the final accuracy, a significant difference exists among
different runs in one version that can make the models unreliable. Moreover, some versions, e.g.,
1.10.1, achieve better accuracy than others. The average accuracy also verifies this difference.
The number of epochs with maximum accuracy also shows discrepancies among versions.



Mach. Learn. Knowl. Extr. 2022, 4 903

version

ac
cu

ra
cy

Initial accuracy

version

ac
cu

ra
cy

Final accuracy

version

ac
cu

ra
cy

Maximum accuracy

version

ep
oc

h

Epoch with maximum accuracy

version

ac
cu

ra
cy

Inference accuracy

version

ac
cu

ra
cy

Average accuracy

Figure 9. The results for the heart-disease dataset using Pytorch.

3.2.4. 2D Gaussian

Figure 10 shows the results of this experiment. In this case, the maximum, final, and
average accuracies show concerning results in version 1.8.0.
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3.2.5. BMI

Figure 11 shows this experiment’s results. In this case, the epoch with maximum
accuracy shows a significant variance among different versions.
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Figure 10. The results for the 2D Gaussian dataset using Pytorch.
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Figure 11. The results for the BMI dataset using Pytorch.

4. Discussion
4.1. Answer to Research Questions

Regarding the influence of version change on the reproducibility of the DNN model,
we respond to the objectives raised in Table 2 as follows:
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• RQ1: This irreproducibility can occur when using different versions of these frame-
works. Due to the implementation changes, any upgrade/downgrade of these frame-
works can increase/reduce the variance in the model performance. The aforemen-
tioned changes can also occur in the dependencies of these frameworks. Nevertheless,
any of these changes leads to a change in the variance of the model’s performance.

• RQ2: A bug introduced by the developer may lead to erroneous results or the DL code
to crash. In our use cases, we faced this issue in Tensorflow versions 2.6.0, 2.3.0, and
2.3.4.

• RQ3: In our considered cases, by comparing the results between Tensorflow and
Pytorch, we find no reason to conclude that either of them can produce more reli-
able models in the context of reproducibility when the framework version changes.
However, in Pytorch, we did not witness any bug that caused a sudden performance
deterioration or code crash.

4.2. Comparison to Related Work

The focus of our work is on the impact of DL framework versions on model perfor-
mance. Research related to our work has been conducted with the focus on (a) repeatability
and reproducibility of DL results, (b) bugs in ML/DL frameworks and components, and (c)
software engineering best practices for DL. In these areas, several studies have also identi-
fied nondeterministic effects as a critical factor for producing reliable and repeatable results
with DL, yet from a different perspective and on a less-detailed level. In the following, we
discuss the related work and differences to our study.

4.2.1. Repeatability and Reproducibility

Repeatability is the ability to obtain the exact same results of an experiment under the
same experimental setup, such as hardware and software settings on multiple runs. It is the
precondition for reproducing an experiment to obtain the same results by an independent
team following documented procedures. The importance of reproducibility when using
DL is rapidly increasing due to more and more sensitive and safety-critical data-science
applications in recent years [34].

However, repeatability issues are frequent in DL [15] and, in consequence, DL is facing
a serious reproducibility challenge [35,36] which is gaining more and more attention in the
research community.

Alahmari et al. [15] studied repeatability issues in training DL models with two frame-
works (Pytorch and Keras) using the same data under the same software and hardware
settings. They showed that even when applying the available control of randomization
in Keras and TensorFlow, there are uncontrolled randomizations due to variations in the
implementation of the weight initialization algorithm across deep-learning libraries. How-
ever, in contrast to our work, they did not evaluate the impact on repeatability caused by
operating systems and deep-learning framework versions.

Zhuang et al. [37] conducted a series of experiments across different types of hardware,
accelerators, state-of-the-art networks, and open-source datasets, to assess the impact of
tooling choices on the level of non-determinism in DL. They found that both algorithmic
and implementation noise have a significant impact. Implementation noise includes noise
introduced by the selected DL framework (e.g., Tensorflow, PyTorch, cuDNN) as well as
hardware acceleration architectures (e.g., CPU/GPU). They did not specifically analyze the
impact of different software versions of the selected DL frameworks.

In a recent study, Gundersen et al. [21] conducted a comprehensive literature review
on the sources of irreproducibility. They identified six groups of influence factors: (1) study
design factors, (2) algorithmic factors, (3) implementation factors, (4) observation factors,
(5) evaluation factors, and (6) documentation factors. Implementation factors affecting
reproducibility comprise different initialization seeds but also the same seed on different
platforms, truncation errors of floating point calculations with single precision (32 bits) or
double-precision (64 bits), parallel executions leading to a random completion order of
parallel tasks, changing processing units such as switching from CPU to GPU and vice versa,
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the use of different DL frameworks such as TensorFlow or PyTorch, different operating
systems, as well as different software versions of involved libraries, DL frameworks or
operating systems. While they identify different software versions as a relevant influence
factor, their work does not provide a quantification of the related influence.

Qian et al. [38] quantified the impact of the variance introduced by DL software
implementations. They found that identical DL training runs (i.e., identical network, data,
configuration, software, and hardware) with a fixed seed produce different models with a
large variance in fairness, up to 12.6%. Hence, one training run may produce a fair model
but another fixed-seed identical training run may generate an unfair one. In their work, the
impact of variance is quantified, but not at the level of individual influence factors.

4.2.2. Bugs in DL Software

DL frameworks are widely used by non-experts. However, like any other programs,
they are prone to bugs. These bugs can lead to, e.g., crashes, bad performance, incorrect out-
put, data corruption, or memory leakage [39]. Bad performance refers to the consequence
of a bug where the accuracy of the trained model is negatively affected. The severity of
such bugs is particularly high if these bugs occur "silently", i.e., without the user noticing
it [27].

Bugs can occur in DL frameworks, in programs written by users, or in the data.
According to Islam et al. [32], data bugs and logic bugs are the most severe bug types in
deep-learning software. In their study, they examined several hundred posts from Stack
Overflow and bug fix commits from Github about five popular deep-learning libraries
Caffe, Keras, Tensorflow, Theano, and Torch. They also identified fast changes in new DL
framework versions as a major challenge. For example, they report that almost 26% of
operations were changed from version 1.10 to 2.0 in TensorFlow.

Jia et al. [40] analyzed 202 bugs inside the TensorFlow framework, which they collected
directly from closed pull requests on GitHub. They identified the following bug categories:
Functional errors (35.6%), where the software does not function as expected; crash (26.7%),
when the software aborts unexpectedly; hang (1.5%), when the software keeps running
without responding; performance degradation (1.5%), when the software does not provide
results in expected time; build failure (23.8%), when the software cannot be compiled in
the first place; and warning-style error (10.9%), when warning messages are shown in the
build process.

The subcategory of bugs named "silent bugs" has been studied by Tambon et al. [27].
These bugs lead to the wrong behavior of the system, but they do not cause crashes or
hangs, nor do they indicate any error message to the user. Such bugs are even more
dangerous in DL applications and frameworks due to the black-box and non-deterministic
nature of the systems, which makes it hard for the end user to understand the model
and explain decisions. Tambon et al. found 77 reproducible silent bugs in TensorFlow
and Keras from their respective GitHub repositories. They identified several categories of
effect caused by silent bugs: the wrong shape of a tensor in the model without raising an
error, wrong/deceiving information displayed on the user interface or console, wrong or
incomplete saving/reloading of the model, wrong parameter setting, degrading runtime
or memory performance, wrong model structure, and wrong calculations resulting in
incorrectly computed results.

In these categories, bugs of type "wrong calculation" (e.g., back-propagation gradients
being computed wrongly) and "wrong saving/reloading" (e.g., weights not being properly
set when a saved model is reloaded) have the highest severity as these bugs represent
issues that would drastically affect the results of the model without obvious noticeable
symptoms for the user. The authors advise not blindly trusting DL frameworks as they are
not infallible, and results should always be carefully and critically reviewed and compared
to similar studies or a baseline.

In this context, our work complements the findings from these studies, and it de-
scribes an approach for revealing silent regression bugs by comparing training results from
consecutive versions of DL frameworks.
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4.2.3. Software Engineering Best Practices

Amershi et al. [41] report on a study that has been conducted on observing software
teams at Microsoft developing AI-based applications, providing insights about several
essential engineering challenges that organizations may face in creating large-scale AI solu-
tions. They identified three main challenges in AI engineering that make it fundamentally
different to software engineering: (1) provisioning and managing data for DL applications
is much more complex than for developing software applications, (2) model customization
and model reuse require new skills not typically found in software teams, and (3) ML/DL
models are more difficult to handle as they are entangled in complex ways, and because
they exhibit non-deterministic behavior.

The authors describe several best practices for applying ML/DL in software engi-
neering, including, for example, building end-to-end pipeline support to automate model
training, deployment, and integration with the product they are a part of. Furthermore,
they also elaborate on best practices for model evolution, evaluation, and deployment
since ML/DL applications go through frequent revisions initiated by model tuning, data
changes, and software updates, which have a significant impact on system performance.
Frequent model iterations also require frequent deployment, which should be accompanied
by automated tests that ensure that models work as intended after every update.

A systematic literature review on the state of software engineering research for engi-
neering ML/DL systems conducted by Giray [42] identified similar practices. In particular,
the author emphasized the challenges arising due to the non-deterministic nature of ML/DL
on all engineering aspects of ML/DL systems. Testing has been identified as one of the far
most popular measures to address these issues in the reviewed research.

Overall, while most of the related works recognize and discuss the non-deterministic
behavior of ML/DL as an important source of issues when developing ML/DL systems,
the analysis of these issues, their effects, as well as the underlying causes are studied on a
very abstract and broad level.

Nevertheless, there exists one study in context of engineering DL software systems,
by Pham et al. [16], that specifically examines the variance in DL systems and the factors
that introduce nondeterminism. The authors quantitatively analyze the variance related to
model accuracies and training times resulting from factors introducing nondeterminism
over multiple identical training runs (e.g., identical training data, algorithm, and network).
Besides algorithmic factors, DL frameworks and libraries (e.g., TensorFlow and cuDNN)
introduce additional variance referred to as implementation-level variance due to paral-
lelism, optimization, and floating-point computation. These implementation-level factors
alone cause an accuracy difference across identical training runs of up to 2.9%, a per-class
accuracy difference of up to 52.4%, and a training time difference of up to 145.3%.

All investigated DL frameworks (TensorFlow, CNTK, and Theano) and DL libraries
(e.g., cuDNN) also exhibit implementation-level variance across different versions. In
this study, the authors also analyzed the overall accuracy differences of 11 low-level
library combinations (cuDNN and CUDA) with TensorFlow to examine the variance when
switching versions of the low-level libraries. They observed an average overall accuracy
difference of 2% (largest overall accuracy difference of 2.9% and smallest 1.6%) in fixed-seed
identical training runs with the 11 library combinations. With respect to the analysis of
different version combinations, the study conducted by Pham et al. is closely related to
our work. In our study, we were able to identify cases exhibiting even larger differences in
accuracy, which are confirmed by the findings described in [16] .

5. Conclusions

In this work, we investigated the effect of version change on model performance in
two common DL frameworks, Tensorflow and Pytorch. We selected a set of well-known
datasets/examples to compare the performance of the aforementioned DL frameworks.
For each use case, we designed a simple DNN consisting of multiple fully connected layers.
We utilized only fully connected layers to reduce the level of stochastic processes that can
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arise from the nature of the DNN layer, e.g., pooling layers. Moreover, as the problems’
computational complexity is low, we train the models using a CPU to avoid randomization
caused by Cuda and cudnn implementations. Using a GPU implementation can only
increase the level of uncertainty that we witness. Using the aforementioned experimental
setup, we analyzed the performance of different stable versions of the frameworks to obtain
a quantitative analysis of their corresponding models’ performance.

The results of a single version show that the randomization involved in the DNN
training, e.g., initialization and optimization, hinders the reproducibility of the obtained
model. In some cases, e.g., Pulsars, this variation is negligible. However, we may obtain
unacceptable results in other cases, e.g., Iris. This variation can be the difference between
an efficient and an inapplicable model. Moreover, when considering two separate DNN
models, i.e., two models with different architectures, a slight improvement in the results
corresponding to one of the models compared to the other is not enough to judge its
superiority.

At the academic level, the variations mentioned above in the model’s performance
can throw into question the reliability of some research work. Moreover, if a model is
used in an industrial setting, an upgrade or a downgrade in the framework’s version or
its dependencies can reduce the performance of an already installed model and may lead
to catastrophic consequences. As randomization increases when using GPUs for training,
it can only magnify the abovementioned problems. To control the training process and
to reduce the issues arising from the reproducibility of the DNN models, we suggest the
following:

• To use virtual environments, such as Docker, to deliver a model to any industrial
partner. Using these environments saves the model from any version change during
an upgrade.

• To use graphics, such as the ones we used, to properly investigate the model’s efficiency
before using it in any industrial cycle.

• To save the checkpoints while training the model. By doing so, the user can use a
model with a better performance obtained in the previous epochs.

• To avoid using DL codes as a blackbox. As we witnessed, in the best-case scenario, the
best-performing model can be in an earlier epoch than the one defined for the training.
The user should be able to control and adapt these variables to achieve maximum
efficiency.

• To use automated-ML frameworks, e.g., KerasTuner, to obtain the model with the
best performance [43]. Using these techniques, we can extract the model with the best
performance by defining a search space of variables, e.g., learning rate. In advance
usage, we can use these techniques to select the best model architecture in a designated
search space of DNN architectures.

• To avoid using the output of a single training as the sole evaluator of the model perfor-
mance. In academic works, one can claim with caution that a model performs better than
others as the model performance can change if we repeat the training process.

In future work, we will investigate the irreproducibility caused by changing the
hardware components, i.e., CPU and GPU. Moreover, we shall study this effect in less
common DL frameworks, e.g., Caffe. We shall also examine the impact of DNN layers that
contain stochastic processes, e.g., the pooling layer, on the model’s performance.
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