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Abstract: Machine learning represents a milestone in data-driven research, including material infor-
matics, robotics, and computer-aided drug discovery. With the continuously growing virtual and
synthetically available chemical space, efficient and robust quantitative structure–activity relationship
(QSAR) methods are required to uncover molecules with desired properties. Herein, we propose
variable-length-array SMILES-based (VLA-SMILES) structural descriptors that expand conventional
SMILES descriptors widely used in machine learning. This structural representation extends the
family of numerically coded SMILES, particularly binary SMILES, to expedite the discovery of new
deep learning QSAR models with high predictive ability. VLA-SMILES descriptors were shown to
speed up the training of QSAR models based on multilayer perceptron (MLP) with optimized back-
propagation (ATransformedBP), resilient propagation (iRPROP−), and Adam optimization learning
algorithms featuring rational train–test splitting, while improving the predictive ability toward the
more compute-intensive binary SMILES representation format. All the tested MLPs under the same
length-array-based SMILES descriptors showed similar predictive ability and convergence rate of
training in combination with the considered learning procedures. Validation with the Kennard–Stone
train–test splitting based on the structural descriptor similarity metrics was found more effective
than the partitioning with the ranking by activity based on biological activity values metrics for the
entire set of VLA-SMILES featured QSAR. Robustness and the predictive ability of MLP models
based on VLA-SMILES were assessed via the method of QSAR parametric model validation. In
addition, the method of the statistical H0 hypothesis testing of the linear regression between real
and observed activities based on the F2,n−2 -criteria was used for predictability estimation among
VLA-SMILES featured QSAR-MLPs (with n being the volume of the testing set). Both approaches
of QSAR parametric model validation and statistical hypothesis testing were found to correlate
when used for the quantitative evaluation of predictabilities of the designed QSAR models with
VLA-SMILES descriptors.

Keywords: machine learning; deep learning; neural networks; SMILES; descriptors; QSAR

1. Introduction

In the rising era of big data and artificial intelligence, machine learning (ML)-based
technologies have become one of the key approaches in computer-aided drug discovery,
allowing fast processing of large-scale and continuously growing chemical libraries [1,2].
Quantitative structure–activity relationship (QSAR) or quantitative structure–property
relationship (QSPR)-based modeling evolved as the leading framework for the development
of scalable and versatile methods for in silico activity or property prediction [3–6]. When
considering a specific biological target, ML modeling remains an efficient and low-cost
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choice for activity prediction by training the model on a library of compounds with known
biological activities. Prior to utilizing a QSAR model for screening unknown compounds, it
should be tested on a variety of externally generated sets and demonstrate consistency and
robustness for the chosen biological system [7]. Direct research expenses for experimental
testing can be substantially reduced with the increasing predictive ability of computer-
assisted screening in the sheer magnitude of the synthetically available chemical space [8,9].
Recent QSAR studies have focused on both nonlinear and linear methods, such as the k
nearest neighbor method (kNN) [10], random forest [11], and artificial neural networks
(ANNs) [12] including deep learning neural networks (DNN) as a basis of deep learning
methods [13]. In a comparative study of 16 different types of ML algorithms for QSAR,
the neural network-based, i.e., principal component analysis (PCA)-ANN and deep neural
network (DNN), models were reported to be among the best in terms of prediction abilities
within those commonly used in QSAR [14]. The development of ANN-based models to
improve predictive ability has gained great attention and provided a new direction in
ML-based QSAR studies [15–17]. In particular, multilayer perceptrons (MLPs) have been
demonstrated to be promising for structural design and biological activity prediction [18].
Success of ANN models such as MLP is dictated by their ability to establish complex
nonlinear relationships among different types of predictors, which is the basis of structure–
activity (QSAR) or structure–property (QSPR) modeling [18]. The capability of ANNs to
solve these complex correlations is linked to the “learning” potential to adapt parameters
to fit the multidimensional space of training samples obtained either experimentally or
computationally. A variety of learning algorithms and optimization strategies for ANNs,
such as input sequence calibration and weight update initializations, have been reported
and can be readily applied in various systems [19].

One of the most time-consuming tasks in the development of QSAR models is the
preparation of the modeling and validation datasets that should span the entire scope
of potential molecular structures and scaffolds [20]. To improve the predictive ability in
ML models, the datasets should be accurately described in numerical, computer-friendly
notation. Recent ML studies used various types of molecular descriptors [21], among which
the SMILES (Simplified Molecular Input Line Entry System) representation proposed by
Weininger in 1988 remains one of the most commonly used and low-space-complexity
descriptors [22]. Recent advancements in molecular representations using SMILES-based
formats have facilitated the discovery of novel therapeutics [23] and enhanced toxicity
prediction [24], driving the development of versatile and easily generated molecular de-
scriptors for QSAR studies [25,26]. Despite these successes, several critical issues remain
unsolved in neural network-based QSAR modeling. A recent study demonstrated the
importance of numerical coding of SMILES, where decimal and binary SMILES coding
schemes were shown to work well for solving structure–property relationships in dielectric
polymer motifs [27]. However, it remains to be studied systematically how such encoding
influences the speed and accuracy of training in a more general setting. In this work, we pro-
pose variable-length-array numerical SMILES-based representations (VLA-SMILES) and
apply them as digital input sequences for the structural description of bioactive molecules
(Figure 1). Notably, compared to binary SMILES for molecular representation, VLA-SMILES
structural descriptors have been shown to be reduced in size by array length encoding (k
clustered binary numbers, explained in Section 2.2) while preserving the structural pecu-
liarities. Thus, the training convergence time when using VLA-SMILES-based structural
representation was shown to be k2 lower compared to the binary SMILES representation
format. Two datasets involving small active molecules targeting the human angiotensin
II receptor (ATR) of both type 1 and type 2 (Dataset#1) and human immunodeficiency
virus-1 (HIV-1) protease receptor (Dataset#2) were generated and used for validation and
testing of the designed models. The candidate molecules with corresponding bioactivity
data were extracted from the open-access ChEMBL database, the largest publicly available
resource of compound bioactivity data [28,29]. The obtained diverse datasets contain both
agonist and antagonist ligands of the ATR and inhibitors of HIV-1 protease, which showed
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activity in either active or inactive receptor conformation states. The VLA-SMILES were
implemented and tested in 199 different types of neural network-based QSAR models,
including MLP-based models with one and two hidden layers, as well as deep learning
models based on autoencoders. In addition to the varied VLA-SMILES input format of
molecular structures, the QSAR models also differed by the rational type of the database
train–test split algorithms introduced (ranking by activity and Kennard–Stone-based), acti-
vation functions (Sigmoid, Tanh, and ReLU), and the learning approaches implemented
(ATransformedBP, iRPROP, and Adam).

Figure 1. Flowchart of our MLP-based QSAR modeling using variable-length-array numerical
SMILES-based descriptors. Batch-trained affine transformed BP (ATransformedBP), epoch trained
resilient propagation (iRPROP−), and Adam optimizer learning algorithms form the foundation of
the developed MLP models.

To quantitatively validate the predictive ability and robustness of developed QSAR
models using VLA-SMILES-based descriptors, we utilized the standard parameter-based
QSAR validation approach, as well as a newly developed statistical H0 hypothesis testing
methodology. The standard parametric approach includes the calculation of the coefficient
of correlation R (Pearson’s), the square of the coefficient of correlation R2, the determination
coefficient R2

0 (R2
0
′), a slope coefficient k (k’) for the linear regression through the origin (ideal

regression), and the determination coefficient q2 for linear regression between real and
observed activities in the testing phase [30,31]. On the basis of activity prediction results
derived for nearly 160 QSAR models, Golbraikh and Tropsha proposed quantitative criteria
for these parameters, where the satisfaction of these criteria signifies good prediction ability
of a particular model of interest [30]. While Alexander and Tropsha later reported the root-
mean-square error (RMSE) and R2 parameters to be enough for estimating the practical
usefulness of a model, the previously defined standard parameters of model validity
were still referred to as relevant for measuring a model’s predictive ability if properly
applied [31]. As an alternative to the standard QSAR validation approach proposed by
Golbraikh and Tropsha, the possibility of F1,n−2 (with n being the volume of the testing set)
distribution function was reported toward acceptance of the statistical H0 hypothesis of
not-better-than-average activity prediction. In addition to the abovementioned method,
herein we propose new criteria of statistical H0 hypothesis testing of the linear regression
between real and observed activities based on 2D probability density distributions for the
regression coefficients. The validity proofs, as well as correct implementation conditions
of the current criteria, are provided by Kendall and Stuart [32]. Thus, calculated critical
values t1−α for the F2,n−2 -statistics (with two and n − 2 degrees of freedom) were found to
correlate well with the statistical criteria of the QSAR predictability validation approach, as
well as with the root-mean-square error (RMSE) parameter for the testing phase.

As rational approaches for dataset partitioning have been demonstrated to provide
more diverse results, we formulated the training and testing sets employing rational
train–test splitting approaches, Kennard–Stone-based and ranking by activity [20]. For the
entire set of VLA-SMILES-based description strategies, MLP-based QSAR models featuring
Kennard–Stone splitting yielded better predictive ability than those based on ranking by
activity splitting. In addition to dataset splitting optimization, the MLP models were
developed using several learning optimizers including affine transformed backpropagation
ATransformedBP [27], resilient backpropagation [33], and Adam optimizer [34].
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The entire set of VLA-SMILES-coded MLP QSAR models were developed using a C++
codebase. Such self-developed software facilitates flexible and adaptive ML-based model
investigation, particularly inner-parameter variability and optimization, which would be
more restricted in plug-in-play modules or library packages.

2. Materials and Methods
2.1. Dataset Description

The original datasets of the bioactive compounds were obtained from the ChEMBL
database (ver. 25) which includes close to 1.8 million chemical structures [28,29]. Both
receptor families, angiotensin II and protease, are multifunctional enzymes that play
important roles in organism functioning while regulating many biological processes. The
ChEMBL pool of compounds targeting the intensively studied human receptor target
of angiotensin II receptor type 1 (AT1R) and type 2 (AT2R) consists of 3462 structures.
Both AT1R and AT2R play role in the regulation of blood pressure, as well as in sodium
excretion [35,36]. Inhibition of AT1R and AT2R reduces the risk of hypertension due to the
regulation of cardiovascular and electrolyte homeostasis; activation was recently proposed
to be an effective treatment of neurological cognitive disorders, including Alzheimer’s
disease [37]. The ChEMBL pool of human protease active ligands consists of 1935 structures.
Proteases play an essential role in cell behavior and survival, which makes them one of the
main drug targets, and they are of interest as prognostic biomarkers of cancer, inflammatory,
and cardiovascular diseases [38]. Inhibition of HIV-1 protease is an effective treatment in
COVID-19 [39], by stopping the virus’s lifecycle, and, for over 30 years, in highly active
antiretroviral therapy (HAART) against AIDS [40].

The logarithmic values of the activity parameter in the original human angiotensin
II (ATR) receptor database, pAct, span from unknown and 0 to 10.9. Compounds with
unknown pAct and pAct = 0, as well as duplicates, oligomers, or structures with high
molecular weight, were excluded in the data curation phase. The final Dataset#1 consisted
of 1005 ATR active drug-like compounds with a pAct value in the range 3.8–10.9. The
same data curation procedures were applied for the human HIV-1 protease receptor pool
giving final Dataset#2 of protease active structures with known affinities, consisting of
1378 drug-like compounds with a pAct value in the range 2.7–13.6. Since a compound
is considered to be active if revealing pAct > 6, both generated Dataset#1 and Dataset#2
preserved high diversity, while containing ligands with low activity and high activity of
pAct being in a range from ~2 to ~10 and higher [41]. While the database also reported
other types of activity data (IC50, Kd, Ki, and Kb) for some structures, only pAct values
were available for all the compounds. An example compound, its chemical structure, and
its SMILES and VLA-SMILES representations, together with the corresponding activity
value, pAct, is depicted in Figure 1.

2.2. Data Encoding: Variable-Length-Array (VLA) SMILES-Based Descriptors

SMILES, a single-line spaceless representation, is the most common machine-readable
format due to the reversibility and generality of features [22]. The SMILES notation is a
conventional form describing chemical structures and is widely used in computer modeling
and ML. Thus, one-dimensional SMILES representation has been utilized in predicting the
structure–activity or structure–property relationships in the fields of material science [42],
biochemistry [43], polymers [44,45], and drug discovery [46]. While the classical SMILES
notation is based on a fixed alphabet and follows a set of rules achieving a linear string
format, variations of SMILES-type syntax representations demonstrated good performance
in structure–activity relationship [47] and generative model [47,48] studies. SELFIES
(self-referencing embedded strings) as a string-based molecular representation approach
improved memory storage capabilities while retaining the robustness and user-friendliness
of SMILES [49]. Variable dictionary-featured text-based representations have shown to be
useful when mapping chemical structure information, e.g., CUSTODI (custom tokenization
dictionary) [50]. However, implementation of CUSTODI requires nontrivial preprocessing
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of the dataset. Other expansions of the SMILES string language include dot-separated
CurlySMILES [51] (Curly-braces enhanced Smart Material Input Line Entry Specification),
eclectic-featured quasi-SMILES [52], and substructure-extended SMARTS [53].

In this work, we designed and used a variety of numerical representations of machine-
readable SMILES notation. Initially, all molecular structures in the dataset were defined in
the canonical SMILES notation, and the largest string was found to consist of 234 characters.
We denote the length of the longest string as Lmax = 234. Subsequently, all SMILES entries
in the dataset were padded with zeros to ensure a consistent length of strings (L = 234).
The obtained vectors were then mapped with ASCII decoding tables to represent the
atomic composition in SMILES byte-type numerical format of range 0–255. Figure 2 depicts
an example flowchart of all steps in the variable-length-array encoding of a molecular
structure. This two-step conversion is illustrated in the example of the methoxy group, a
common structural motif readily available in the majority of chemical libraries. A methoxy
group in SMILES is defined as representation (1) (Figure 2, step (B)).

SSMILE = {C o c}. (1)

Figure 2. Data encoding using the variable-length-array-featured SMILES notation (VLA-SMILES).
(A) Examples of compounds carrying a methoxy functional group, a common structural motif in the
dataset. (B) SMILES representation of one example. The methoxy group and its SMILES code are
highlighted in red. (C) Binary mapped SMILES representation with zero padding at the end of the
sequence. Transformation of the obtained arrays D2 (k = 2) and D6 (k = 6).
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In the first step of the VLA encoding, the SMILES string of the methoxy-group (rep-
resentation (1)) is converted to the SMILES numerical format using ASCII tables with the
following transformation into the binary SMILES having a length of 24 digits (Figure 2,
step (C)):

Dbin = D1 = {01000011 01, 001, 111 01100011}. (2)

The SMILES format in binary representation in ASCII codes can be clustered by two,
three, and more binary values to be represented in other numerical formats. In the case of
Dataset#1 and Dataset#2, the lengths of the resulting vectors in binary representation were
equal to d1 = 1872 and d2 = 1192 correspondingly. Clustering by the k-th sequenced binary
symbols produces numerical sequences with a length of d/k, where k is an array length and
an integer factor of d (herein, for Dataset#1 with d1 = 1872, we used k = 1, 2, 4, 6, 8, 12, and
16, whereas, for Dataset#2 with d2 = 1192, only the values of k = 1, 2, 4, and 8 were possible).
A common representation for the resulting vector unit is defined as

Sj,k = ∑k−1
i=0 aj,k+i2

i, (3)

where aj,k+i is a binary unit (either “0” or “1”) in the j-th array with j (= 0, 1, 2, . . . , d/k−1)
being an index of an array-based element in the VLA-featured SMILES notation.

For the example of the SMILES-encoded methoxy-group (1), representation (3) can be
defined as D2 variable-length-array-based SMILES representation (array length k = 2).

D2 = {100310331203}. (4)

Thus, any chemical structure can be described in the VLA-based binary SMILES format
using Equation (5).

→
Dk =

{
S0,k, S1,k, S2,k, . . . , Sl,k

}
, (5)

where l = 8Lmax/k− 1, and 0 ≤ Sj,k ≤ 2k − 1.
One of the promising characteristics of the VLA-featured representation is its advanced

intermolecular bond description with increasing value of the array k-group. The modeling
studies revealed that array-based VLA-SMILES representation enhances the information
content of the chemical substructure features compared to SMILES byte-type numerical
format. The VLA-type representation can, thus, improve the predictive ability of MLP

models that utilize text-based notation as input data. The obtained Sj,k values in
→
Dk were

normalized by a range-scaling procedure to distribute their values within the range −0.5 to
0.5 as

Ŝj,k =
(Sj,k − 0.5· (Sj,k(max) + Sj,k(min) ))

(Sj,k(max) − Sj,k(min) )
, (6)

where Sj,k(max) and Sj,k(min) are the maximum and minimum values of elements of
→
Dk.

2.3. Theoretical Background: Multilayer Perceptron and Statistical Metrics of the Model
Prediction Ability

The multilayer perceptron (MLP) architecture with classical gradient learning al-
gorithms (e.g., backpropagation [54], RPROP [33], Adam [34]) is considered the basis of
variable ANNs, e.g., recurrent (RNN) [27], convolutional (CNN) [55], and graph (GNN) [56].
Here, various MLPs with one, two, and three hidden layers and the abovementioned learn-
ing procedures were designed to solve QSARs for a set of active ATR (Dataset#1) and HIV-1
protease ligands (Dataset#2). A typical schematic representation of the MLP architecture
is depicted in Figure 3. The block scheme of the MLP includes an input layer, hidden
layers with various activation functions F(Y), and an output layer. Input and hidden layers
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comprise l neurons with l weighing parameters. The output signals from the first hidden
and second layer are determined as

Y(1)
(m)i =

→
W

(1,m)→
S

T

(k)i + T(1)
(m)i, (7)

Y(2)
(m)i =

→
W

(2,m)→
X

T(1)

(m)i + T(2)
(m)i, (8)

where
→
S (k)i =

(
S(0,k)i, S(1,k)i, . . . , S(l,k)i

)
is an input row vector with the dimension l for

the i-th ligand, X(1)
(m)i = F(Y(1)

(m)i) and X(2)
(m)i = F(Y(2)

(m)i) are the outputs of an activation

function for the first and second hidden layers,
→
W

(1,m)
=

(
ω
(1,m)
0 , ω

(1,m)
1 , . . . , ω

(1,m)
l

)
and

→
W

(2,m)
=
(

ω
(2,m)
0 , ω

(2,m)
1 , . . . , ω

(2,m)
l

)
are row vectors of the weighting parameters

(m = 0,1, . . . ,l), and T(2)
(m)i and T(1)

(m)i are biases (not shown in Figure 3).

Figure 3. Schematic representation of the multilayer perceptron (MLP) neural network architecture

(with two hidden layers) utilizing the VLA-featured binary SMILES input
→
D(k).

The message function for the predicted activity can be expressed as

ˆpActi =
→
W

(3)→
X

T(2)

(m)i + T(3)
i , (9)

where
→
W

(3)
is a one-dimensional row vector, and T(3)

i is the bias for the output layer (not
shown in Figure 3).

The activation function F(Y) is critical for achieving a high prediction ability in QSAR.
We used three commonly applied activation functions:

Hyperbolic tangent, Tanh : F(Y) = Tanh(Y), (10)

Sigmoid : F(Y) = 1/
(

1 + e−Y
)

, (11)

Rectified Linear Unit, ReLU : F(Y) =

{
0, Y ≤ 0
Y, Y > 0

. (12)

To determine the prediction ability of MLP models, one needs to evaluate the accuracy
of the nonlinear mapping of the variable-length-array SMILES into the predicted values
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of the activity p̂Act. We used the error parameter, root-mean-square error (RMSE), as
evaluation criteria for predictive ability, as well as the learning efficiency, which is referred
to as the loss function.

RMSE =

√
1
n ∑n−1

i=0

(
pActi − ˆpActi

)2. (13)

As addition error measures, the relative standard deviation parameter (RSD) with the max-
imum and average values were used. They are defined in Equations (14) and (15), respectively.

RSDmax = (max|
i

(1−
ˆpActi

pActi
)|)× 100 (%), (14)

RSDav =
1
n ∑n−1

i=0 |(1− ˆpActi/pActi)| × 100 (%). (15)

2.4. Formation of Training and Testing Sets: Method of Rational Splitting

To evaluate the predictive ability of the QSAR model, one needs to split the origi-
nal dataset into training and testing sets. For smaller datasets, the leave-one-out cross-
validation splitting procedure can be used [57]. Larger databases require the use of random
or rational partitioning methods. QSAR modeling relying on random train–test split
methodologies tends to perform less effectively if the molecules in the testing set are
structurally very different from those in the training set, which can be easily achieved
for a random split [58]. More rational division algorithms, i.e., rational selection of the
training and test sets, are crucial for developing accurate and robust models that lead to
superior generalization characteristics [59–61]. Multiple algorithms have been reported
for intelligent dataset division including sphere exclusion [62], Kennard–Stone [63], and
ranking by activity methods [64]. The Kennard–Stone algorithm allows the selection of a
very diverse subset of compounds in terms of the Euclidean distance between the descrip-
tors. It constitutes the basis of various clustering methods and training set generation for
the validation of QSAR models. The ranking of compounds by activity with subsequent
separation into equal-sized groups is another commonly used algorithm for intelligent
training/testing set generation [64]. Ranking methods are based on cluster preprocessing of
the input descriptors. The evolution of the data clustering theory and clustering algorithms
covers an independent area of research [65–67]. For this work, we performed and tested
two types of data partitioning methods (Figure 4):

• Splitting 1: train–test split using Kennard–Stone algorithm [63],
• Splitting 2: train–test split using ranking by activity [64].

In the case of the Kennard–Stone protocol, VLA-based SMILES representations were

used as structure-based descriptors. First, two reference samples
→
Dm and

→
Dn, which had

the largest distance between corresponding descriptors, were selected. These reference

samples should exhibit max
m,n

ρ (
→
Dm,

→
Dn ) in Euclidean metrics are defined as

ρ (
→
Dm,

→
Dn ) =

√
∑l−1

j=0 (Sj,m − Sj,n )2, (16)

where n and m are selected indices of the entries in the original dataset. These two entries
are automatically selected for the training set. The next sample i needs to be chosen to

satisfy the maximal criteria, max
i

(min(ρ (
→
Di,

→
Dm ), ρ (

→
Di,

→
Dn ) )). The remaining samples

are ranked in the descending order of conformity with max
i

(min
j

ρ (
→
Di,

→
Dj ) ), where j refers

to the samples that have already been ranked. The first 95% samples of the generated
pool were selected as the training (learning) set, while the remaining 5% constituted the
testing set.
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For the ranking-based train–test splitting method, we used the activity parameter
pAct as descriptor values for clustering [64]. The samples were sorted in descending order
of pAct. The sorted list was then divided into 50 groups, each containing 20 samples sorted
in descending order of pAct (Figure 4). The first 19 samples of each group were assigned to
the training set (95% of the dataset), whereas the remaining samples formed the testing set
(5% of the dataset).

Figure 4. Pseudocode of the dataset partitioning splitting methods. (A) Train–test splitting using
Kennard–Stone algorithm. (B) Ranking by activity train–test splitting algorithm. Due to the 5%/95%
partitioning ratio with regard to the original dataset, we elaborated with the first n = 1000 (Dataset#1)
and n = 1370 (Dataset#2) samples to have a feasible round number for the train–test splitting.

2.5. Training Algorithms

Optimized backpropagation (ATransformedBP), resilient propagation RPROP, and
Adam optimizer learning algorithms were used for the training of MLP models. These
recurrent learning methods comprise the family of gradient-based ML algorithms [68].

The backpropagation (BP) algorithm is one of the most widely used supervised learn-
ing algorithms in neural networks [54]. It continuously updates the weighting parameters

for the row-vectors
→
W

(p,m)

and biases, e.g., for MLP with p hidden layers as illustrated in
Figure 3. Overtraining and local minimum trapping are the most common issues of the
learning phase [69]. Overtraining remains a challenge when a model’s generalizability
becomes substantially lower when achieving excessive accuracy during training [70]. Thus,
the decreased RMSE (Equation (13)) for a larger number of epochs during the training
phase does not guarantee a similar performance in the testing phase due to overtraining.
At the same time, a large RMSE value in the learning phase inevitably results in a high
value of RMSE for the testing set, indicating a poor predictive ability of the model. The
problematic overtraining can be overcome using a regularization method, particularly early
stopping, where the learning is terminated at the minimum of the loss function in the test
phase and the corresponding weighting parameters are recorded [70–72]. On the other
hand, trapping in a local minimum may be mitigated utilizing resilient backpropagation
(RPROP), Adam optimizer, and ATransformedBP (a modification of the BP algorithm with
input affine transformation).
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We showed that the ATransformedBP approach paired with an affine transform opti-
mization strategy for the input sequence exhibits superior performance for the prediction
of polymer dielectric constants using traditional Elman-type recurrent neural networks
(RNNs) [27]. The ATransformedBP approach is based on the preprocessing of the SMILES-

based input, in our case, the variable-length-array-featured
→
Dk vector,

→
D
′
ki

= γ·
(→

Dki
−
〈→

Dki

〉)
, 1 ≤ i ≤ n, (17)

where γ is the affine-transformation factor.
The optimal value of γ for each of the VLA-based binary SMILES representations was

found to satisfy the minimum criteria of the loss function in the testing set,

γopt = min
α

〈
E
( ˆpActi − pActi

)〉
. (18)

The input vector data of the variable-length-array SMILES was used under the optimal
value of the hyperparameter α before testing the prediction abilities of the MLP-based
models using ATransformedBP (Table S1).

Resilient backpropagation (RPROP) was also implemented to solve the convergence
and local minimum problems. Previous comparative studies based on RNN modeling
using iRPROP, one of the four types of RPROP learning methods, showed superior results
in comparison to backpropagation [27,73–76].

Another learning method that is frequently used in ML-based models is the Adam
stochastic gradient-based optimization strategy [34]. This method performs weight updates
recursively via calculation of the bias-corrected first and second adaptive moments estimations.

In addition, we designed a deep neural network (DNN)-based QSAR model based
on an MLP Autoencoder [77]. The Autoencoder implements phases of the rough setting
of the weighting parameters and fine-tuning. Our model consisted of three hidden layers
using Adam optimizer as a learning algorithm for the first and second phases of an
Autoencoder realization.

The internal parameters of all QSAR models for the structure–activity studies are
summarized in Table S1. The design of MLP-based QSAR models involved optimization
of several hyperparameters, such as learning rate, γ affine transform parameter, and the
number of the epochs, which depended on the array-featured molecular representation,
learning algorithm, and NN architecture.

2.6. Statistical Criteria for Predictive Ability of QSAR Models

A model is considered robust and of high predictive capability when the above-
mentioned quantities satisfy the following criteria for a testing set: q2 > 0.5, R2 > 0.6,∣∣R2

0 − R′20
∣∣< 0.3 , 0.85 ≤ k ≤ 1.15 or 0.85 ≤ k′ ≤ 1.15 [30]. Here, R2

0 and k are the determina-
tion coefficients and slope values for linear regression through the origin between the actual
and predicted, whereas R′20 and k′ are the corresponding determination coefficients between
predicted and actual activities for the testing phase. These conditions are determined on
the basis of a linear regression assumption between the observed and predicted values of a
specific parameter, in our case, the biological activity pAct. The values of the parameters for
the QSAR model predictive ability validation described above were found to be correlated
with the RMSE and were used for a comprehensive analysis of model performance.

As a more rigorous criterion to analyze the model’s predictive ability, we used sta-
tistical hypothesis testing [32]. The H0 hypothesis assumes a resemblance of the linear
regression ˆpAct = â + b̂·pAct to the ideal linear regression with values â ≈ 0, b̂ ≈ 1.



Mach. Learn. Knowl. Extr. 2022, 4 725

The point estimations of the intercept â and the slope b̂ for the predicted vs. actual data
regression are defined as follows [78]:

â =
∑n

i=1 pAct2
i ·∑

n
i=1

ˆpActi −∑n
i=1 pActi ∑n

i=1 pActi ˆ·pActi

n·∑n
i=1 pAct2

i − (∑n
i=1 pActi)

2 , (19)

b̂ =
n·∑n

i=1 pActi ˆ·pActi −∑n
i=1 pActi ∑n

i=1
ˆpActi

n·∑n
i=1 pAct2

i − (∑n
i=1 pActi)

2 , (20)

where n is the size of the testing set (in our case, n = 50 for Dataset#1 and n = 70 for
Dataset#2).

Validity of the H0 hypothesis is defined by the confidence intervals y(±)0 (pAct) with the
significance level α. It is based on the fact that ideal linear regression is within the upper and
lower limit for all the predicted p̂Act values of the testing set. To accept the H0 hypothesis,
the regression values p̂Act should be within the range

[
y−0 (pAct), y+0 (pAct)

]
[32].

y(−)0 (pAct) ≤ â + b̂·pAct ≤ y(+)
0 (pAct). (21)

where, y(+)
0 (pAct) and y(−)0 (pAct) are upper and lower curve limits, defined as follows [32]:

y(±)0 (pAct) = â + b̂·pAct±
√

2·t1−α{
s2

n
+

s2 pAct2

∑n
i=1 pAct2

i
}

2

, (22)

where t1−α determines a critical value for the Fm1,m2 distribution with m1 = 2 and m2 = n− 2 de-

grees of freedom, for α = 0.001, t1−α = 8.01 [78], and s2 = 1
n−2

n
∑

i=1

(
p̂Acti −

(
α̂ + b̂·pActi

))2
.

A lower t1−α value for the H0 hypothesis to be valid (Equation (22)) indicates a higher
predictive ability of the QSAR model.

3. Results

RMSE for the learning phase tends to decrease with the increasing values of epochs,
whereas the testing set RMSE minimum values depend on the epoch number and defined
regularization approach for QSAR modeling. Thus, the RMSE values corresponding to the
last epoch of the training phase, as well as the minimum RMSE of the testing phase, were
recorded for each prediction model. Depending on the k value of the length-array-featured
SMILES representation, the duration of training depended on the epoch referred to as the
characteristic minimum of the testing RMSE (Supplementary Materials, Tables S2–S10).
The predictive ability comparison included the models with D1 VLA-SMILES encoding
where the clustering was made by k = 1 (D1) sequenced binary symbols, which is commonly
referred to as binary SMILES representation.

3.1. Comparison of Kennard–Stone and Ranking by Activity Splitting Methodologies

To compare the Kennard–Stone and Ranking by Activity train–test splitting algo-
rithms, prediction results of QSAR models using both splitting types were evaluated using
Dataset#1 (Tables S2, S3, and S6 (Kennard–Stone-based MLPs), Tables S4 and S7 (ranking
by activity-based MLPs). The applied learning procedures included iRPROP− and Adam
optimizer for QSAR models based on one hidden layer MLP with various activation func-
tions and VLA-SMILES descriptors. When evaluating the evolution of loss function in
testing and training phases, developed QSAR models can be separated into two groups.
The first group includes MLPs with RMSE values not exceeding 0.85. Such QSAR models
are considered of good predictive ability and are applicable for further QSAR analysis with
external datasets. The second group included models with lower RMSE values and are
considered of less predictive ability, whereby their application in the QSAR analysis is
less efficient.
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Table 1 shows the minimum RMSE for testing sets for MLP-based models with
iRPROP− learning and Sigmoid(Y) activation with different train–test splitting for Dataset#1.
For the Kennard–Stone train–test splitting, the models with length-array-featured SMILES
representations D1, D2, and D6 are referred to as the first group of good predictive ability
with the RMSE value not exceeding 0.85. When implementing ranking by activity partition-
ing, all the designed models were in the second group of mild predictive ability, revealing
the RMSE minimum of the testing set to exceed 0.85. Albeit of low prediction ability, the
D12 VLA-SMILES descriptor-based MLP was the only model from the modeling set using
ranking by activity for the train–test splitting that outperformed the D12 VLA-SMILES
descriptors-based MLP model but with Kennard–Stone dataset partitioning.

Table 1. RMSE values for testing sets of MLPs with one hidden layer and iRPROP− learning
procedure: Kennard–Stone vs. ranking by activity-based train–test split (Sigmoid activation function
was used), Dataset#1.

Kennard-Stone-Based Train-Test Splitting

VLA-SMILES format D1
k = 1

D2
k = 2

D4
k = 4

D6
k = 6

D8
k = 8

D12
k = 12

D16
k = 16

iRPROP (Sigmoid(S))

Minimum RMSE for testing set 0.77 0.77 0.88 0.84 0.94 0.95 0.89

Adam (Sigmoid(S))

Minimum RMSE for testing set 0.82 0.79 0.84 0.94 0.93 0.99 0.93

Ranking by Activity-Based Train-Test Splitting

VLA-SMILES format D1
k = 1

D2
k = 2

D4
k = 4

D6
k = 6

D8
k = 8

D12
k = 12

D16
k = 16

iRPROP (Sigmoid(S))

Minimum RMSE for testing set 0.87 0.95 0.88 0.87 1.02 0.87 0.94

Adam (Sigmoid(S))

Minimum RMSE for testing set 1.01 1.18 1.14 1.21 1.29 1.11 1.26

Prognosis and training results for the QSAR models with ReLU and Tanh activations
are shown in Tables S3 and S4. The entire family of VLA-SMILES descriptors-based models
with ranking by activity partitioning and ReLU and Tanh activations belonged to the second
group of mild predictive ability models. Yet, an interesting observation was that MLPs
with D8 VLA-SMILES descriptors revealed the best prediction accuracy compared to other
VLA-SMILES-based MLPs for Tanh and RELU activation sets. With Kennard–Stone-based
splitting, models using variable-length-array-based descriptors D1, D2, and D4 (for ReLU
activation) and D1, D2 (for Tanh activation) exhibited good predictive ability in terms of
RMSE minimum criteria.

The epoch-dependent loss function evolutions in the testing and training phases
generated with Kennard–Stone and ranking by activity partitioning for single-layered
MLPs with variable-length-array-featured SMILES and ReLU, Sigmoid, and Tanh activations,
as well as iRPROP− learning, are shown in Figures S1–S6, respectively.

The same trend in RMSE evolution between the two rational splitting methods was
observed for MLP models using the Adam learning procedure (Tables S6 and S7). Here,
QSAR modeling with ranking by activity splitting and Sigmoid activation showed low
activity prediction with RMSE values above 1.0 for the entire family of the VLA-based
SMILES representations (Table 1). For the MLP with Kennard–Stone partitioning, the
models with D1, D2, and D4 featured array length representations of SMILES descriptors
were the only ones satisfying RMSE minimum criteria for the good prediction ability
modeling group.
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Graphical examples of RMSE evolution for the training and testing phases for the
QSARs with D2-featured array length SMILES representations using Kennard–Stone and
ranking by activity-based splits are shown in Figure 5. Here, testing progress reached 0.77
and 0.79 minimum values for Kennard–Stone-based partitioning with the iRPROP− and
Adam optimizer-based learnings, respectively (Figure 5A). For the models with ranking by
activity train–test splitting, the minimum RMSE for those with the VLA-SMILES D2 reached
0.95 and 1.18 when implementing iRPROP− and Adam learning algorithms, respectively
(Figure 5B).

Figure 5. RMSE parameters for training and testing sets for MLPs with one hidden layer with
iRPROP and Adam learning procedures and Sigmoid activation function using (A) Kennard–Stone
and (B) ranking by activity-based train–test splits, Dataset#1.

The other Adam-based MLPs with ReLU or Tanh activation and Kennard–Stone-based
train–test splitting showed superiority over the corresponding models with ranking by
activity split on the example of Dataset#1 (Tables S6 and S7). For QSAR implementing the
Kennard–Stone algorithm and ReLU activation, R2 and R4 length-array-featured models
had RMSE lower than 0.82, satisfying the requirement for the first group of high-accuracy
models. With Tanh activation, MLPs models based on VLA-SMILES D1, D2, and D4 also
accomplished criteria of good predictive ability modeling. Regardless of the activation
function, the entire family of prediction models with the VLA-based SMILES representa-
tions using the ranking by activity splitting showed a minimum RMSE value of nearly 1.0
and above. Hence, they were in the second group of models with low predictive ability.
The general observation was a reduction of the predictive ability in some VLA-SMILES
descriptor-based models with the increasing k number of sequenced binary symbols during
VLA-encoding. This can be explained by the fact that a higher number of clustered binary
numbers leads to increasing of structural peculiarity mismatching during encoding to
VLA-SMILES from Binary SMILES. The epoch-dependent RMSE in the testing and training
phases of MLPs derived with Kennard–Stone-based and ranking by activity splitting meth-
ods for variable-length-array-featured SMILES using ReLU, Sigmoid, and Tanh activation
functions and Adam-based learning are presented in Figures S10–S15, respectively.

A notable observation was that the training convergence speed increased with increas-
ing values of k in length-array-featured representations Dk. Compared with D1 (k = 1), the
traditional binary SMILES-featured MLP, the convergence time for the MLPs with k > 1
VLA-SMILES notation was proportional to α/k2, where the prefactor α depends on the CPU
(processor made and model, clock speed, number of cores, etc.), as well as the NN model
architecture (number of training epochs, learning algorithm, etc.).

CPU(time) = α/k2. (23)
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Table 2 lists the CPU convergence times for the implemented VLA-SMILES-based
MLP with one hidden layer and Adam optimizer. The theoretical CPU times according
to Equation (23) (with α = 66.47× 256 = 17, 016.32) were within 4% with regard to the
experimentally observed values.

Table 2. CPU times for the training convergence of the models with VLA-SMILES representations
(single-layer MLP with Adam learning, Kennard–Stone-based rational train–test splitting, and Sigmoid
activation). The single prefactor in the theoretical CPU time was determined to reproduce the
observed CPU for the MLP with D16 (k = 16) cluster-featured SMILES, Dataset#1.

Adam (Sigmoid (S))
VLA-SMILES Representation

D1
k = 1

D2
k = 2

D4
k = 4

D6
k = 6

D8
k = 8

D12
k = 12

D16
k = 16

CPU time
(theor), s 17,016.32 4254.08 1063.52 472.67 265.88 118.17 66.47

CPU time
(exp), s 17,651.90 4668.33 1199.30 503.09 268.03 116.56 66.47

ATransformedBP based MLP modeling was implemented only with Kennard–Stone-
based partitioning, taking into account its improved performance over ranking by activity.
For activation function Tanh, the evolution of the loss function for the training and testing
phases showed VLA-SMILES D1, D2, and D4 to satisfy the criteria of the first group of
models with good predictive ability (Table 3). For the Sigmoid activation-built models, the
D1 and D2 length-array SMILES based models fitted the group of models with the high
prediction ability, yet minimum RMSE values for these models were the same or lower than
those for Tanh-based models. The affine transform γ parameters spanning in the range of
1–4 for each of the designed models were tested to find an optimal one for best prediction
results. A full set of γ parameters, as well as epochs corresponding to the testing and
training set minimum RMSE values, are reported in Table S2.

Table 3. RMSE values for testing sets for MLP with one hidden layer using ATransformedBP learning
(Tanh and Sigmoid activation functions, Kennard–Stone based train–test split), Dataset#1.

Kennard–Stone-Based Train–Test Splitting

VLA-SMILES format D1
k = 1

D2
k = 2

D4
k = 4

D6
k = 6

D8
k = 8

D12
k = 12

D16
k = 16

iRPROP (Sigmoid(S))

Minimum RMSE for Testing set 0.81 0.80 0.85 0.96 0.90 0.98 0.91

iRPROP− (Tanh(S))

Minimum RMSE for Testing set 0.84 0.80 0.84 0.93 0.90 0.96 0.95

iRPROP− (ReLU(S))

Minimum RMSE for Testing set 0.84 0.82 0.84 0.93 0.93 1.02 0.90

Epoch-dependent RMSE values in the testing and training phases with Kennard–Stone-
based and ranking by activity splitting methods for different length-array-featured SMILES
using Sigmoid, Tanh, and ReLU activation functions and ATransformed-based learning
QSAR are shown in Figures S16–S18, respectively.

When applying the Kennard–Stone-based train–test partitioning strategy for Dataset#2,
the MLP models with D2 and D4-based VLA-SMILES descriptors outperformed D1 length-
array SMILES for all three activation functions implemented (Table S5). Thus, single-layered
MLPs with D2 and D4 VLA-SMILES structural representation and either ReLU or Sigmoid
activation were referred to the first group of models with high predictive ability. The
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epoch-dependent RMSE for the testing and training phases of MLPs derived with the
Kennard–Stone-based splitting method and variable-length-array-featured SMILES using
ReLU, Sigmoid, and Tanh activation functions and iRPROP−-based learning for Dataset#2
are presented in Figures S7–S9, respectively.

The key findings can be summarized as follows:

1. The Kennard–Stone-based train–test splitting was found to be more efficient than
ranking by activity for the investigated QSAR models.

2. The models built on variable-length-array SMILES D1, D2, D4, or D6 showed equiv-
alent prediction when implemented together with the Kennard–Stone partitioning
and were in the first group of models with high predictive ability with RMSE not
exceeding 0.85. All types of VLA-featured SMILES-based models with ranking by
activity partitioning were in the second group of models of low prediction ability.

3.2. Analysis of Predictive Ability Concerning Activation Functions

MLP models with Sigmoid activation exhibited lower RMSE for the majority of variable-
length-array SMILES descriptors regardless of the learning algorithm using Dataset#1
(Tables S3 and S6). For iRPROP− learning and ReLU activated series of single-layer MLPs,
only two models with the VLA-SMILES-featured representations D1, and D2 belonged to
the group of models with high predictive ability, having a minimum RMSE of 0.79 and
0.80, respectively. For the models with Tanh activation, the only MLP model in the first
group of models with high predictive ability was the D1 length-array SMILES-based one.
For comparison, three VLA-based representations D1, D2, and D6 satisfied the rule of the
first group of models when using Sigmoid activation. A similar trend within single-layer
MLPs was observed for models with Adam- and ATransformedBP-based learnings. Thus,
for the majority of the QSAR models with variable-length-array SMILES representations,
Sigmoid activation demonstrated superior prediction results over the ReLU or Tanh.

3.3. MLP Prediction Models with Two Hidden Layers

The predictive abilities of the MLP models with two hidden layers based on iRPROP−

and Adam optimizer learning algorithms were evaluated (Tables S8 and S9). Both types of
two-hidden-layer models led to similar activity prediction results to the prior described
results from single-layered MLPs. Table 4 shows the dependency of the RMSE on variable-
length-array SMILES for double-layered MLP models with Sigmoid activation for the
Dataset#1. When considering iRPROP−-based MLPs, only one out of seven VLA-based
descriptors model, D1-based, was in the first group of models with high predictive ability.
The models with D4 and D8 VLA-featured descriptors resulted in borderline RMSE, thus
assigned to the second group of models with low predictive ability. For Adam-based MLP
architectures, two models with length-array-based SMILES representations D1 and D2
demonstrated compatibility with the first group of models with high predictive ability,
having RMSE not exceeding 0.81.

Table 4. RMSE values for testing sets for MLP with two hidden layers using iRPROP− and Adam
optimizer learning (Sigmoid activation function, Kennard–Stone-based train–test split), Dataset#1.

MLP Two Hidden Layers

VLA-SMILES format D1
k = 1

D2
k = 2

D4
k = 4

D6
k = 6

D8
k = 8

D12
k = 12

D16
k = 16

iRPROP (Sigmoid(S))

Minimum RMSE for Testing set 0.81 0.87 0.85 0.89 0.85 0.98 0.90

Adam (Sigmoid(S))

Minimum RMSE for Testing set 0.81 0.80 0.86 1.01 0.94 0.98 0.90



Mach. Learn. Knowl. Extr. 2022, 4 730

Figure 6 shows the evolution of RMSE as a function of epoch in the training and testing
phases for one- and two-hidden-layer MLPs with iRPROP− and Adam optimizer and the
D4 VLA-featured SMILES descriptors. When using the iRPROP− learning procedure, the
testing set’s loss function reached a similar minimum RMSE of 0.88 and 0.84 for one- and
two-layered MLPs, respectively.

Figure 6. RMSE values as a function of epoch in training and testing sets for iRPROP−-based learning
MLP with one and two hidden layers (Sigmoid activation function, Kennard–Stone-based train–test
splitting), Dataset#1.

MLPs with two hidden layers and iRPROP− but Tanh activation showed D2 and D4
variable-length-arrays SMILES to satisfy criteria of the first group of models with high
prediction ability (Table S8). Adam-based MLPs with Tanh activation allowed only the
D2-based descriptor model to be in the group of high accuracy QSAR (Table S9). The
entire set of epoch-dependent RMSE in the testing and training phases for MLPs with
two hidden layers, variable-length-array-featured SMILES, using iRPROP− and Adam
optimizer learning procedures is provided in Figures S19–S22, respectively. The key finding
is the similarity of the single and two-hidden-layer MLPs models in terms of the prediction
for all types of VLA-featured SMILES representations involved.

3.4. Deep Learning, MLP Autoencoder

This section contains experimental evaluations of prediction results derived with MLP
Autoencoder modeling. For comparison purposes, the QSAR model based on MLP with one
hidden layer, Adam optimizer learning, and Sigmoid(Y) activation was taken as a standard
MLP method (Table 1). MLP Autoencoder with three hidden layers and 20 iterations of
the first phase of rough estimates of the weighting parameters and subsequent fine-tuning
emerged as the deep neural network QSAR model (Table 5). Both standard MLP and
DNN-built models implemented Kennard–Stone-based train–test splitting methodology.
Following comparison studies of RMSE parameters from Tables 1 and 5, the addition of
constituting hidden layers did not improve the predictive ability shown by single-layer
MLP models. MLP Autoencoder models with D1, D2, and D4 length-array SMILES revealed
RMSE minimum satisfying the first group of models with high predictive ability. The same
VLA-SMILES-based models also showed high predictive ability among single- and two-
hidden-layer MLPs.
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Table 5. RMSE values for testing sets of deep learning, MLP Autoencoder with three hidden layers,
and Adam learning procedure (Kennard–Stone-based train-test split, Sigmoid activation), Dataset#1.

VLA-SMILES D1
k = 1

D2
k = 2

D4
k = 4

D6
k = 6

D8
k = 8

D12
k = 12

D16
k = 16

Minimum RMSE for testing set 0.85 0.84 0.88 0.94 0.99 1.03 0.92

Graphical examples of RMSE evolution for the training and testing phases for the
single-layer MLP and DNN with D4 length-array-based SMILES are shown in Figure 7.
Here, the single-layered MLP testing progress reached minimum RMSE at the value of
0.84, which is nearly the same as for the DNN-based model (minimum RMSE = 0.88).
The convergence rate of training for MLP Autoencoder was dependent on the number
of iterations in the first phase of tuning and, in this case, was higher than that for the
single-layer MLP.

Figure 7. Evolution of RMSE as a function of epoch for training and testing sets for Adam optimizer-
based learning MLP with one hidden layer and Autoencoder with three hidden layers (Sigmoid
activation function, Kennard–Stone-based train–test splitting, and D4 VLA-SMILES), Dataset#1.

Epoch-dependent RMSE values in the testing and training phases derived with
Kennard–Stone-based splitting method for variable-length-array SMILES MLP Autoen-
coder models using Sigmoid (S) activation function are presented in Figure S23. A full set of
RMSE parameters, as well as epochs corresponding to the testing phase minimum RMSE
and training set final RMSE values for the three-hidden-layer MLP Autoencoder model,
are reported in Table S10.

Hence, the increase in the number of hidden layers in the architecture of the proposed
VLA-SMILES-based MLP models for QSAR, as well as transition to deep learning, did not
lead to substantial improvement in the activity prediction.

3.5. Statistical Analysis of QSAR Model Prediction Ability

In this section, we report the results of the statistical analysis of the model prediction
ability using (1) common criteria of QSAR model predictive ability, such as determination
coefficients q2 [64] and R2

0 (R2
0
′), the square of the Pearson’s coefficient of correlation R2,

and slope parameters k (k′) [30], and (2) method of statistical hypothesis H0 testing using
F2,n-2 -statistics (Equation (22)).
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Predictive ability evaluation using these criteria was accomplished for MLP models
with one hidden layer and the iRPROP− learning procedure. Following the regularization
approach, the predictive ability was evaluated at the epoch corresponding to the minimum
of the loss function of the testing phase. Common statistical parameters defining the
acceptability of QSAR model with iRPROP− learning and Sigmoid (Y) activation were
calculated and are presented in Table 6. As a reminder, when taking into account only
the minimum RMSE parameter of the testing phase, the MLPs with D1, D2, and D6 VLA-
SMILES were shown to satisfy the first group of models with high accuracy prediction
(Table 1). According to the results of the parametric analysis of the QSAR predictive ability,
the values of the R2 were found to be similar to either R’2

0 or R2
0 for the entire spectra of

the variable-length-array SMILES based MLPs, satisfying the strict condition of the QSAR
high predictive ability. Additionally, the slope coefficients k’ and

∣∣R2
0 −R’2

0
∣∣ of the linear

regression for the testing sets satisfied statistical criteria of model validation for all types of
VLA-SMILES representation-based QSAR. Interestingly, the model with the D4 length-array
SMILES showed a minimum RMSE of 0.88, which was slightly higher than a threshold
value of a good prediction efficiency, suggested by the authors. Thus, on the basis of only
the minimum RMSE criteria, the addition of D4 VLA-SMILES-based MLP to the group of
models with high predictive power was questionable. Meanwhile, following the statistical
criteria of q2 and R2, MLPs based on R4 length-array-featured SMILES (as well as D8, D12,
and D16) did not satisfy requirements for QSAR models with high predictive ability. This
remains in agreement with the results of the minimum RMSE analysis reported beforehand
(Table 1). The error measure parameter RSDmax for the predicted activity for MLPs with D1,
D2, and D6 VLA-featured SMILES reached a level of 23.5%, 24.5%, and 50.5%, respectively,
whereas RSDav did not exceed the level of 8.3%. Overall, the method of prediction ability
estimation via the minimum RMSE criteria was found to be in correlation with the model
validation parametrical approach.

The results of the method of statistical H0 hypothesis testing of the linear regression
between real and observed activities for the QSAR model with iRPROP− learning and
Sigmoid activation are reported in Table 6. Herein, estimations of the linear regression
parameters, intercept α̂ and the slope β̂ values, for the predicted vs. original activity data,
are reported. Derived slope parameters β̂ demonstrated MLPs based on D1, D2, D6, and D8
variable-length-array SMILES to be the closest ones to ideal regression criteria revealing
β̂ ≥ 0.6. Thus, none of the models exhibited closeness of β̂ to 1, yet models with D4, D12,
and D16 VLA-SMILES-based descriptors possessed slope values that significantly deviated
from the ideal linear regression (β̂ < 0.6), signalizing poor predictive ability. In addition,
critical values t1−α for F2,l−2-statistics were calculated using Equation (22). MLP models
with D1, D2, D6, and D8 variable-length-array-featured SMILES had t1−α < 13.5, whereas
MLPs with D4, D12, and D16 length-array SMILES representations demonstrated t1−α > 23.
Thus, the method of statistical hypothesis testing revealed single-layer iRPROP−-based
MLP with VLA-featured SMILES descriptors D8 to have high predictive power, despite
being previously considered a model the low predictive ability with minimum RMSE > 0.85.
F-statistics analysis also confirmed D1, D2, and D6 VLA-SMILES-featured models to show
high prediction power, whereas D12 and D16 length-array SMILES MLPs were indeed
members of the second group of models with poor predictive ability. The parity plots, as
well as the limit curves for the testing phase of QSAR models with D1, D2, D6, and D8
VLA-SMILES formats, are depicted in Figure 8. The dotted line corresponds to the linear
regression curve with an intercept α̂ and the slope β̂, the red line signalizes ideal regression,
and the upper and lower limit curves resemble F2,l−2-statistics with t1−α values that set
the requirement for H0 hypothesis satisfaction. Thus, the statistical method of hypothesis
testing was found to be in correlation with the RMSE minimum criteria and parametric
model validation methods.
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Table 6. Statistical parameters derived for model predictive ability assessment (single-layered MLP
with iRPROP learning and Sigmoid activation), Dataset#1.

iRPROP Sigmoid(S))
VLA-SMILES-Based Representation

D1
k = 1

D2
k = 2

D4
k = 4

D6
k = 6

D8
k = 8

D12
k = 12

D16
k = 16

q2 0.58 0.58 0.44 0.57 0.48 0.47 0.47
R2 0.58 0.61 0.40 0.58 0.51 0.48 0.55
k 0.60 0.62 0.46 0.65 0.59 0.47 0.48
k’ 0.95 0.93 0.98 0.89 0.85 1.00 0.98∣∣R2

0 −R’2
0
∣∣ 0.02 0.018 0.039 0.01 0.01 0.02 0.01

R2
0 0.57 0.58 0.40 0.58 0.50 0.47 0.46

R’2
0 0.56 0.56 0.36 0.57 0.49 0.45 0.45

RSDmax, % 23.46 24.47 33.53 50.54 50.47 42.88 40.11
RSDav, % 7.46 7.60 8.75 8.28 9.45 8.96 9.44

α̂ −0.07 −0.17 0.036 −0.04 −0.09 −0.11 −0.28
β̂ 0.62 0.65 0.44 0.66 0.60 0.48 0.53

t1−α 13.27 13.41 23.62 8.69 11.06 26.07 30.49

Related parity plots, regression, and the upper and lower limit curves for the F-
statistics for the testing phase of the corresponding cluster-based single-layered MLPs with
iRPROP− learning are reported in Figure S24.

Figure 8. Linear regression parameters for the testing set, and upper and lower limit curves for
statistical hypothesis H0 verification. MLPs with one hidden layer, iRPROP− optimizer, and Sigmoid
activation for (A) k = 1 (D1), (B) k = 4 (D4), (C) k = 6 (D6), (D) k = 8 (D8) VLA-based SMILES
representation, Dataset#1.



Mach. Learn. Knowl. Extr. 2022, 4 734

4. Conclusions

We developed a variable-length-array SMILES that allows a robust and straightfor-
ward description of the molecular structure contributing to information about intermolecu-
lar connectivity. The essence of VLA-featured SMILES is a combination of a sequence (two,
three, and more) of SMILES symbols in binary representation to be encoded in other digital
formats. The VLA-SMILES descriptors were used for activity prediction with deep learning
models, particularly MLP-based QSAR models. Predictive ability was found to increase
once the optimal length of the VLA-based SMILES was found.

The developed QSAR MLP models built on VLA-SMILES were based on Adam
optimizer, ATransformedBP, and iRPROP− learning algorithms and various activation
functions. The rational splitting procedures for training and testing set generation were
implemented for validation of the obtained MLPs. For Dataset#1, the models built with
D1, D2, D4, or D6 VLA-SMILES descriptors (sequences of k = 1, k = 2, k = 4, and k = 6
binary SMILES digits, respectively) were the most effective in terms of prediction ability
when implemented together with Kennard–Stone partitioning, achieving average RSDav
within 8.3%. For dataset#2, the models with D2, and D4 VLA-SMILES showed the best
prediction ability. Thus, the testing of all possible VLA-SMILES representations for the
dataset of interest is required to discover the best variable-length-array encoding in terms
of prediction accuracy and training convergence rate.

All types of VLA-SMILES representation-based models with alternative partitioning,
i.e., ranking by activity, exhibited lower prediction ability.

Predictive ability was evaluated for MLP models with one and two hidden layers, as
well as for MLP Autoencoder with three hidden layers. In comparison with a single-layer
MLP, addition of the second and third hidden layers did not improve the activity prediction
significantly. When comparing QSAR outcome between MLP with one hidden layer and
deep learning with MLP Autoencoder with three hidden layers, again no substantial
improvement in the activity prediction was observed.

Based on the calculations and statistical analysis presented in this paper, we conclude
that parametric analysis of model validation, as well as the error measure parameter of
minimum RMSE, correlate well with the results of the statistical analysis based on H0
hypothesis testing of an ideal regression verification.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/make4030034/s1: Figures S1–S23: RMSE as a function of epoch
for learning (training) and testing sets; Figure S24: Parity plot and H0 hypothesis testing; Table S1:
Internal parameters of designed neural network-based QSAR models; Tables S2–S10: Training and
prediction results in terms of RMSE.
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• MLP_iRPROP-_1l.cpp file: MLP model with one hidden layer using resilient iRPROP learning
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