
Citation: Najafi, B.; Parsaeefard, S.;

Leon-Garcia, A. Missing Data

Estimation in Temporal Multilayer

Position-Aware Graph Neural

Network (TMP-GNN). Mach. Learn.

Knowl. Extr. 2022, 4, 397–417.

https://doi.org/10.3390/make4020017

Academic Editor: Andreas Holzinger

Received: 10 April 2022

Accepted: 27 April 2022

Published: 30 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

Missing Data Estimation in Temporal Multilayer
Position-Aware Graph Neural Network (TMP-GNN)
Bahareh Najafi * , Saeedeh Parsaeefard and Alberto Leon-Garcia

Department of Electrical and Computer Engineering, University of Toronto, BA4120, 40 St. George Street,
Toronto, ON M5S 3G4, Canada; saeideh.fard@utoronto.ca (S.P.); alberto.leongarcia@utoronto.ca (A.L.-G.)
* Correspondence: bahareh.najafi@mail.utoronto.ca

Abstract: GNNs have been proven to perform highly effectively in various node-level, edge-level, and
graph-level prediction tasks in several domains. Existing approaches mainly focus on static graphs.
However, many graphs change over time and their edge may disappear, or the node/edge attribute
may alter from one time to the other. It is essential to consider such evolution in the representation
learning of nodes in time-varying graphs. In this paper, we propose a Temporal Multilayer Position-
Aware Graph Neural Network (TMP-GNN), a node embedding approach for dynamic graphs that
incorporates the interdependence of temporal relations into embedding computation. We evaluate
the performance of TMP-GNN on two different representations of temporal multilayered graphs.
The performance is assessed against the most popular GNNs on a node-level prediction task. Then,
we incorporate TMP-GNN into a deep learning framework to estimate missing data and compare the
performance with their corresponding competent GNNs from our former experiment, and a baseline
method. Experimental results on four real-world datasets yield up to 58% lower ROC AUC for the
pair-wise node classification task, and 96% lower MAE in missing feature estimation, particularly for
graphs with a relatively high number of nodes and lower mean degree of connectivity.

Keywords: node embedding; Position-Aware Graph Neural Network; spatio-temporal measurements;
temporal multilayer graph; missing data analysis

1. Introduction

Graph neural networks (GNN) have recently been used as a standard in developing
machine learning methods for graphs. These graphs have been formed from sources such
as transportation networks [1–4], brain networks [5], social media community networks,
etc. The GNN architecture has effectively combined the node/edge features and graph
topology to build a distributed representation. The resulting representation can be used
to solve node-level, edge-level [6] and graph-level prediction tasks [5]. Several recent
works have been applied to represent nodes, edges and graphs in many domains, such as
bioinformatics, natural language processing and transportation. In [7], the authors used a
hybrid method of a decomposed LSTM and a GCN to predict next period prescription. The
authors in [8] proposed a GCN-based Relational Fusion Network (RFN) for speed limit
classification and speed estimation in road networks. The study introduced the notion of
volatile homophily in the road segments of adjacent regions and enumerated the substantial
differences between the road networks and other networks previously learned by GCN.
The underlying differences include a smaller number of node attributes, potential abrupt
behavioral changes among the neighboring segments and a lower mean node degree.
Another study [9] learned the graph representation by applying LSTM autoencoders on
graph sequences generated from random walks, and utilized it for the classification task.

The goal of node embedding methods is to identify a vector representation that
captures the node location within a broader topological structure of the graph. Most node
embeddings learned from GNN architectures focus on single static graphs. These methods
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assume that the number/position of nodes as well as their interactions do not change
over time. However, in many applications, we tackle spatio-temporal measurements
collected over time, wherein the necessity of time-varying graphs emerges. In such graphs,
the number of nodes, their connecting edges and the edge weights vary from time to time;
thus, dynamic node embedding should be learned accordingly from the graph. Node
embedding approaches in such graphs can be mainly categorized as temporal-first [10,11]
and structural-first [12,13] according to [14], in which the former and the latter prioritize
learning temporal and structural information in their framework first and then feed static
topological and dynamic temporal features into their model, respectively. Time-varying
graphs can be defined as continuous- or discrete-time dynamic graphs, in which the
latter can be represented as a sequence of interdependent time layers. Each layer is a
graph building from existing nodes and weighted edges corresponding to a given time.
For instance, the study in [5] proposed a graphSAGE-based graph representation learning
for time-variant EEG signals to apply brain state classification, where the dynamic graph is
modeled as a sequence of individual graphs per one time stamp. Another work [8] combines
temporal, spatial and semantic views to predict taxi demands at a future time stamp.

One straightforward way of computing node embedding in discrete time-varying
graphs is to use a static GNN-based node embedding for each individual time layer
and aggregate the results of corresponding layers through recurrent neural network vari-
ants. However, this method would compute an embedding for each layer independently,
and consequently ignore the inter-layer correlation. In this paper, we present TMP-GNN,
a Temporal Multilayer Position-Aware GNN-based node embedding, which is an extension
of its static version, Position-Aware GNN (P-GNN) [15]. The goal of P-GNN is to learn
position-aware node embeddings that utilize the local network structure and the global net-
work position of a given node with respect to randomly selected nodes called anchor sets,
which enables us to distinguish among isomorphic nodes—nodes that are based in very
different parts of the graph but have topologically the same structure. The distinguishing
power will improve if the node/edge features are available. The resulting embeddings can
be later used to approximately calculate the shortest path distance among the embedded
nodes in the graph. The contributions of the paper are summarized as follows:

(1) We learn the short-term temporal dependencies, global position and feature infor-
mation of the graph jointly through our TMP-GNN embedding component and utilize the
derived representation in a missing data estimation framework.

(2) Instead of modeling a dynamic graph via multi-graph, we exploit a supra-adjacency
matrix to encode a temporal graph with its intra-layer and inter-layer coupling in a single
graph, which facilitates faster learning and a higher area under the receiver operating
characteristic curve (ROC AUC) for pair-wise node classification.

(3) We deploy the concept of conditional centrality derived from eigenvector-based
centrality to distinguish nodes of higher influence and integrate it in message aggregation
across the graph.

(4) We identify a new experimental setting to enhance the training of the multi-graph
deployment of dynamic graphs so that it can better trace the behavioral changes of nodes
in the graph.

(5) We use hidden states learned from bi-directional GRU (bi-GRU) to learn the long-
term temporal dependencies in both forward and backward directions to estimate miss-
ing values.

(6) We conduct several experiments using four real-world datasets, with a wide range
of node numbers, degrees of connectivity, edge dynamics and areas of study. The re-
sults illustrate that TMP-GNN improves the area under the ROC curve significantly for
classification tasks as compared to the best baseline, and it reduces the MAE of missing
data estimation.
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2. Notations and Preliminaries

Before presenting the details of our proposed architecture, we provide some back-
ground on temporal multilayer graphs.

2.1. Notation

Figure 1 illustrates a temporal multilayer graph. We can represent the graph as
G(t) = (V , ρ(E×t), E (t), Ẽ), where V are the set of nodes {v, ∀v ∈ V}. Here, ρ(E×t) indicate
whether a given edge is present at a given time t. E (t) shows intra-layer weighted edges
at time t, E (t) = {e(t)uv , ∀u, v ∈ V}. Ẽ indicates inter-layer edges {(t, t′, x̃tt′) ∈ ε̃}, where x̃tt′

is the edge weight between time layers (t, t′). The multilayer graph is also denoted by a
sequence of adjacency matrices A(t) ∈ RN×N , where A(t)

uv denotes the directed edge from
node u to v in time layer t, as follows :

A(t)
uv =

{
x(t)uv , if u, v are connected at time t
0, otherwise.

(1)

where x(t)uv is the feature vector associated with e(t)uv . In scenarios where the node attributes
are available, another set is defined as W(t) = {w(t)

v , ∀t ∈ NT}, where w(t)
v is the feature

vector associated with node v in time layer t.

Figure 1. A dynamic multilayer graph.

The set Ẽ encodes the weight and topology of the coupling of individual instances of
the same nodes between pairs of time layers (t, t′).

The inter-layer coupling described above is diagonal and uniform [16], which means
that the existence of inter-layer edges is restricted between separate instances of the same
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nodes from one layer to another. For instance, there is no edge from node v in t to node u
in t′. The corresponding layers are uniformly coupled, meaning that the inter-layer edge
weight between two layers is identical for all nodes in those layers. Please note that this
assumption can be generalized so that different inter-layer edge weights are assigned to
different subsets of nodes; that is, x̃u

tt′ 6= x̃v
tt′ .

There are two possible ways to form the coupling between the layers: directed and
undirected chain. The former couples the adjacent time layers by neglecting the directional-
ity of time as in the following equation:

Ã(tt′)
uv =

{
1 ∀u, v if u = v, |t′ − t| = δ
0 otherwise

(2)

where δ is the sampling rate. The latter not only respects the time direction, but also
includes weighted undirected connections between the same nodes of all pairs of time
layers as in:

Ã(tt′)
uv =

{
1 + γ, ∀u, v if u = v, |t′ − t| = δ
γ otherwise,

(3)

where Ã is a T × T inter-layer matrix, and γ is the node teleportation probability [17].
In this paper, we have used the former approach for inter-layer coupling. The inter-layer
coupling of the same nodes decrease as |t′ − t| increases, and we adjust δ according to the
data characteristics and inter-sequence correlation in our experiments.

A node embedding function, e.g., SAGE, can be represented as f : V (t) → Z (t), which
maps a given node v to d-dimensional vector z in layer t, where Z (t) = {z(t)v , ∀v, t ∈
N|V|,NT}, z(t)v ∈ Rd. Once the node embedding is computed, the corresponding edge

embedding can be calculated as z(t)uv = g(z(t)u , z(t)v ), where the g function is equal to mean
in the case of our study.

2.2. Supracentrality Matrix for Temporal Multilayer Position-Aware Graph

As explained, a temporal graph is represented through a sequence of adjacency ma-
trices, each of which refers to one layer of a dynamic network at a specific point of time.
Then, we construct a supracentrality matrix C(ω) by linking centrality matrices across time
layers through a weighted inter-layer parameter called ω, which is used to adjust the extent
of coupling strength among pairs of time layers. The entries of the dominant eigenvector of
C(ω) show joint centrality, the importance of every node–layer pair (v, t). Additionally,
marginal and conditional centralities are defined to represent the relative importance of a
node compared to other nodes at time layer t.

The supracentrality framework is mainly focused on eigenvector-based centrality,
which is obtained by calculating the centralities as the elements of the dominant eigenvector
corresponding to the largest-magnitude eigenvalue of a centrality matrix C(A), which is
defined as a function of network adjacency matrix A. We have selected a centrality measure
from one of the most popular choices to be equal to adjacency matrix (C(A) = A).

C(ω), a supracentrality matrix for a dynamic graph, is a group of matrices formed
as below:

C(ω) = Ĉ+ ωÂ, (4)

where

Ĉ =


C(1) 0 0 · · · 0

0 C(2) 0 · · · 0
0 0 C(3) · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · C(T)

,
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and

Â =


Ã(11) I Ã(12) I Ã(13) I · · · Ã(1T) I
Ã(21) I Ã(22) I Ã(23) I · · · Ã(2T) I
Ã(31) I Ã(32) I Ã(33) I · · · Ã(3T) I
· · · · · · · · · · · · · · ·

Ã(T1) I Ã(T2) I Ã(T3) I · · · Ã(TT) I

.

Here, C(ω) consists of two components in (4): Ĉ and ωÂ. The former (diagonal) component,
Diag[C(1), · · · , C(T)], represents a set of T weighted centrality matrices of individual layers,
and the latter (off-diagonal block), Â = Ã⊗ I, encodes the uniform and diagonal coupling
with strength parameter ω between the time layers, where Ã is defined in (2); ⊗ is the
Kronecker product, and I is a N × N identity matrix, since we only consider the coupling
among the same nodes between consecutive pairs of layers. We study the dominant
eigenvector V(ω) of C(ω) corresponding to the largest eigenvalue λmax as in:

C(ω)V(ω) = λmax(ω)V(ω). (5)

The elements in the dominant right eigenvector of V(ω) are interpreted as scores that
measure the importance of node–layer pairs (v, t). As such, the eigenvalue entity Wv,t(ω)
in the following Equation (6), called the joint centrality, is a d-dimensional vector, reflecting
the centrality of node v at layer t, where VN(t−1)+n(ω) is the N(t− 1) + n-th entity of the
largest eigenvalue V(ω) and n refers to node order vn, which is omitted here for simplicity.

Wv,t(ω) = VN(t−1)+n(ω). (6)

Inspired by probability theory, the authors in [16] defined marginal layer centrality
(MLC) and conditional centrality in the following Equations (7) and (8). MLC indicates the
average joint centralities over all nodes at time layer t. The conditional centrality of node v
shows the importance of the node relative to other nodes at layer t.

MLCv(ω) =
|V|

∑
v=1

Wv,t(ω), (7)

CCv(ω) =
Wv,t(ω)

MLCv(ω)
. (8)

Choice of ω for Steady-State Node Ranking

A number of factors should be taken into account while choosing the value of ω.
The choice of ω should be appropriate for the targeted application or the research question.

When ω→ ∞, the centrality measures change slowly over time. On the other hand,
in the presence of small ω, the CCv(ω) fluctuates from one time layer to the other.

We considered ω at a strong coupling regime. If ω is too large (e.g., ω > 100),
the CCv(ω) becomes stationary, which is equal to the average CCv(ω) over all time lay-
ers [18]. Moreover, the dominant eigenvalue of C(ω) converges to the same values of Â.
That is, λmax(ω) → µ̃1, where λmax and µ̃1 are the dominant eigenvalues of C(ω) and
Â, respectively.

Through the power iteration method of eigenvector measurements [19], we found
the minimum value of ω that satisfies the above requirements (Algorithm 1). In the next
section, we utilize stationary CCv(ω) to distinguish highly important nodes belonging to
P-GNN anchor sets, and then exploit it to aggregate the information across the anchor sets.
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Algorithm 1 Find the appropriate value of ω

Require: Initialize the value of ω for ω ≥ 0 (we start from ω = 10), construct B = ωÂ,
C = C(ω)
choose a random number for bk, ck′ as the initial value for the largest eigenvector of B
and C. We set bk, ck′ = [11 · · · 1] with its length equal to the number of columns of B, C,
which is N × T in our case.
bk ← bk

||bk ||
, ck′ ←

ck′
||ck′ ||

λk ← b∗k Bbk, µk′ ← c∗k Cck
k=0
while |λk − µk′ | < 0.01 do

while |λk+1 − λk| < 0.01 do
k← k + 1

bk =
Bbk
||Bbk ||

λk = b∗k Bbk
end while
return λk, bk
while |µk′+1 − µk′ | < 0.01 do

k′ ← k′ + 1

ck′ =
Cck′
||Cck′ ||

µk′ = c∗k′Cck′

end while
return µk′ , ck′

end while
return ω

2.3. TMP-GNN: Multilayer Position-Aware-Based Graph Neural Network

Several GNN methods are distinguished by the way in which they aggregate nodes’
information from their neighborhood to form a node representation at each layer k. The ap-
proach can be summarized as two functions, AGGREGATE and COMBINE [20], in which
the former decides on how the information is aggregated from adjacent nodes, and the latter
updates the node representation from the previous layer k− 1 to layer k. The underlying
functions can be combined and jointly represented for some GNNs, as follows:

a(k)
vn = AGGREGATE(k)({h(k−1)

un : un ∈ neighbors(vn)}),

h(k)
vn = COMBINE(k)(h(k−1)

vn , a(k)
vn ), (9)

where h(k)v is the feature representation vector of node v at iteration k/k-th layer of GNN,
and Neighbors(v) is the set of nodes adjacent to v in G.

We use a position-aware GNN, which, instead of aggregating the information from
the nearest neighbors, aggregates the positional and feature information of each node with
a randomly selected number of nodes called anchor sets. Then, the computed message
is aggregated across the anchor sets for each node to incorporate the global topological
information of the graph in node embedding. Figure 2 illustrates in detail how the node
representation is learned through one P-GNN layer. The goal is to find the best position-
aware embedding zt

v with minimum distortion for a given node v at time layer t.



Mach. Learn. Knowl. Extr. 2022, 4 403

Figure 2. The input to our TMP-GNN layer is a temporal graph G(t), presented as a supragraph
and the corresponding supracentrality matrix C(ω). As the first step, anchor sets, a subset of graph
nodes with different sizes, are randomly selected according to Bourgain’s theorem [21] (Reproduced
with written permission) R = R1, R2, . . . , RJ . In order to compute the embedding for vn, feature
information of node vn and another node from anchor set Rj, is fed into a message computation
function F with output aggregated through AGGM to produce Mvn [j], j = 1, 2, .., J corresponding
to Rj. Then, Mvn [j] is further aggregated through AGGR to output hvn , which is passed to the next
P-GNN layer. The embedding zvn at the last layer is generated by applying the nonlinear σ to the
inner product of Mvn and weight vector w (You, J., Ying, R. and Leskovec, J., 2019 [15]—modified,
permission is obtained).

We have made the following modifications to P-GNN:

• Generalization of P-GNN to Time-Varying Graphs:
We adopt the input of P-GNN as supracentrality matrix C(ω), which represents a
temporal multilayer graph with N × T number of nodes. We compute an embedding
for all nodes in all time layers, since euv/xuv/wuv defined in (1) can change from t to
t′. The embedding zt

v will then be aggregated from an RNN-based representation to
estimate missing data.

• Modification of Message Computation Function (F):
In an Intelligent Transportation System (ITS), the average speed of neighboring nodes
might correlate more or less at different time layers due to a variety of factors, i.e., dif-
ferent types of residential zone, special events, accidents, etc. Using an attention
mechanism while computing an anchor set’s message with respect to a given node
v can alleviate misinformative messages from the anchor set to influence node v’s
embedding. Therefore, we use the attention mechanism to learn the relative weights
between the feature vector of v and its nearest neighbor from the anchor set. The fact
at different degrees could apply to other application domains as well. As such, we
modify our message computation function to incorporate the attention mechanism.
In P-GNN, we have multi-level aggregations, as demonstrated in Figure 2. First,
the message of each node v is computed with regard to each anchor set Rj through
function F. From each anchor set, only the nodes with an up to two-hop distance to
node v are considered for message computation, as shown in the following equation:
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Mj = {F(u, v, hk−1
u , hk−1

v )|u ∈ Rj, Rj ⊂ R,R ∼ V ,

d(v, Rj) = minu∈Rj d(u, v) ≤ 2},

Mk
v[j] = MEAN(Mj), (10)

where Mk
v[j] indicates the aggregated message of v corresponding to Rj, which is the

average of individual outputs of F(u, v, hk−1
u , hk−1

v ), where F is defined as:

F(u, v, hk−1
u , hk−1

v ) =
1

dq
sp(u, v) + 1

av, (11)

where dq
sp(u, v) is defined as below:

dq
sp(u, v) =

{
dsp(u, v) if dsp(u, v) ≤ q,
∞, otherwise,

(12)

where dsp(u, v) is the shortest path between a pair of nodes (u, v), and we write
av = wc(CONCAT(cv, hv)), where cv is denoted as cv = ∑u′ αvu′hu′ and αvu′ is
computed as follows:

αvu′ =
exp (score(hk−1

v , hk−1
u′ ))

∑u′ exp (score(hk−1
v , hk−1

u′ ))
, (13)

where the score is calculated as:

score(hk−1
v , hk−1

u′ ) = VT(tanh(W1hk−1
v + W2hk−1

u′ )),

where V, W1, W2 and wc are trainable weights. cv and av are the context vector and
attention coefficient, respectively. This is inspired by [22].

• Modification of AGGR:
In P-GNN, Mv[j], associated with anchor set j, is averaged across the anchor sets to
generate hv. We choose to differentiate nodes based on their conditional centrality in
stationary status (CCv(ω)|ω→∞), as higher conditional eigenvector centrality indicates
a higher influence of a given node v and its surrounding nodes compared to the ones
with lower eigenvector centrality. Additionally, corresponding informative anchor
sets contain at least 2-hop neighbor(s) of node v, wherein the ones with higher CCv(ω)
deserve to have higher weights for aggregation. As such, we substitute AGGR by the
weighted mean of Mv[j], where the weights are proportionate to stationary CCv(ω),
as follows:

h(k)
v =

1
J ∑

j
rj Mv[j], ∀j ∈ [1, J] (14)

where rj is calculated as:

rj =
∑u′∈Rj

CCu′ j(ω)

∑J
j′=1 ∑u∈Rj′

CCuj′ (ω)
|ω→∞,

d(v, u′) ≤ 2, (15)

where j is the number of anchor sets. Calculation of the conditional node cen-
trality in stationary condition is implemented separately from the main algorithm,
and the result has been used in AGGR to aggregate the computed messages across the
anchor sets.
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Anchor sets are selected randomly based on Bourgain’s theorem; they come in different
sizes that distribute exponentially. M is computed for node v from anchor set Rj, if Rj
hits v, which means d(v, Rj) ≤ 1. Large anchor sets have a higher probability of hitting
v, but are less informative of the positional information of the node, as v hits at least
one of many nodes in the anchor sets. On the other hand, small anchor sets have a
lower chance of hitting v; however, they provide positional information with high
certainty [15]. In terms of message communication, each node in a P-GNN layer shares
a message with O(n log 2n) number of anchor sets for a graph with n nodes. Suppose
that we have a temporal graph with n′ = (|V| × T) and average anchor set size of m;
the total communicated messages will be O(mn′ log 2n′). This is because each node in
TMP-GNN only communicates with nodes that are up to two-hop distant within each
anchor set Rj, so that m is limited (1 ≤ m << n′).

At the end of the last P-GNN layer, the node embedding zv is calculated after applying
a nonlinear σ to an inner product of a weight vector w and Mv as in zv = σ(wMv).
The output embedding of for all nodes at all layers t can be reformed into a supraembedding
matrix Z as follows:

Z =


z1

v1
z2

v1
z3

v1
· · · zT

v1
z1

v2
z2

v2
z3

v2
· · · zT

v2
z1

v3
z2

v3
z3

v3
· · · zT

v3
· · · · · · · · · · · · · · ·

z1
v|V| z2

v|V| z3
v|V| · · · zT

v|V|

, (16)

where zt
v is the embedding vector of node v at time t. In some scenarios, edge embedding

is needed, rather than node embedding. We estimate e(uv) embedding by averaging the
embedding of the ending nodes as:

zuv =
1
2
(zu + zv) (17)

We utilize the result of TMP-GNN embedding for missing data estimation. Before pro-
ceeding to our proposed architecture, we briefly review the other components of our
framework for missing data.

2.4. Bi-Directional Recurrent Neural Network (Bi-GRU)

We use bi-directional GRU as a component in our proposed architecture to estimate
missing points in the temporal multilayer graph G. The Bi-GRU [23] (Figure 3) captures
the temporal correlation within a time layer in both forward and backward directions.
The input to Bi-GRU is a triplet array Y e, Me and ∆e that is produced from the graph feature
set, X = {x1

11, x2
11, . . . , xt

uv, . . . , xT
uv, . . . , xT

u′v′}, where xt
uv is the feature associated with euv at

time layer t. We sometimes refer to xuv as xe interchangeably, where e could be any edge
in the graph. We also assume that the graph nodes are constant. However, the number
of edges and their corresponding features may change from one layer to another. We set
xt

uv to 0, if euv does not exist at time t (ρ(euv×t) = 0). We also choose to randomly remove
missing points and set it to 0 in Y e. Me is called the mask array containing 0 s and 1 s, which
indicates the coordinates of missing and observed points, respectively, corresponding to
Y e. Additionally, each element in ∆e illustrates the time difference between the current and
the last layer at which the measurement is recorded. ∆e is defined to handle the different
sampling rates associated with data heterogeneity from different sources [24,25]. Each edge
contains D streams of features. We use xed to represent stream d of the feature associated
with e, where e is an edge connecting a pair of nodes in the graph G.
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Our goal is to find the best estimate x̂t
ed

with minimum RMSE for a particular missing
point through solving the following optimization problem and finding the function f as
defined below.

min
f

EF

[
T

∑
t=1

D

∑
d=1

(1−mt
ed
)L(X t

ed
, X̂ t

ed
)

]
, (18)

where the loss function is defined asL(X t
ed

, X̂ t
ed
) = ({xt

ed
− f t

ed
(X , T ))2,X = {xt

ed
, ∀e, ∀d, ∀t},

T = {1, 2, . . . , T}. E; f and F indicate expected values for the desired estimator function
and unknown probability distribution that the records are sampled from, respectively. X t

ed
shows stream d of all edges’ features at time t, and med represents one element of the mask
array Me defined above.

Figure 3. Bi-directional gated recurrent unit.

2.5. E-TMP-GNN: Extended TMP-GNN for Missing Data Estimation

Figures 4 and 5 illustrate our proposed hybrid architecture of TMP-GNN and Bi-
GRU. We propose two architectures: E-TMP-GNN I and E-TMP-GNN II. In E-TMP-GNN I,
the input is supracentrality matrix C(ω), which encodes the intra-layer and inter-layer edge
weights of multilayer graph G. The TMP-GNN’s output Z encodes the topological structure
and positional and feature information across the nodes within a layer, and among the same
nodes between consecutive layers. Thereafter, the resulting d-dimensional embedding Z is
used to calculate edge embedding as in (16), which is then passed to the input of Bi-GRU to
merge with existing edge features and form the below array.

XTMP-PGNN = {x(t)edi
, z(t)edi
∀i ∈ ND, ∀e ∈ E (t), ρ(e×t) = 1} (19)

The Bi-GRU is an RNN variant wherein the output of the previous layer is a part
of the current layer’s input. This characteristic allows the information to propagate step
by step [23] and enables the Bi-GRU to capture long-term temporal correlations of edges
in two directions, which is advantageous for missing data imputation. We use one layer
of Bi-GRU and form a triplet array of Me, Y e and ∆e, as explained earlier in this section.
An initial estimation, x̃t

ed
, is made by applying a nonlinear activation function to the last

hidden states of Bi-GRU, h(t)hybrided
, as below:

x̃t
ed
= σ(Ud[

−→
h (t)

hybrided
;
←−
h (t)

hybrided
] + gd), (20)
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where the two arrows indicate the forward and backward direction of Bi-GRU, respectively.
Ud and gd are weight and bias vectors. In order to capture the correlation among sequences
of xedi

|Di=1, a fully connected layer with a hidden dimension equal to the number of feature
streams D is placed afterward. The output of this layer x̂t

ed
is the final estimate of xt

ed
.

x̂(t) = σ(Wh(t) + β0), (21)

where h(t) is defined as follows:

h(t) = φ(Ux(t) + Vy(t) + γ0), (22)

where y(t) is denoted as [x(t), m(t)].
The Bi-GRU and FC components apply interpolation and imputation, respectively,

as they capture the dynamics within a time layer ({xt
ed

, ∀t ∈ NT}), and across the streams

of features ({{x, zT∗}(t)ed , d = {1, 2, · · · , D}}) simultaneously. The combination of Bi-GRU
and FC, named Multi-directional RNN, is inspired by [24] (see Figure 6).

Figure 4. E-TMP-GNN I.
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Figure 5. E-TMP-GNN II.
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Figure 6. M-RNN architecture in time domain based on the theory in [24].
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Our second proposed architecture is illustrated in Figure 4. As can be seen, the two
pipelines have distinct inputs. The input to TMP-GNN is the temporal multilayer network
represented as suppracentrality matrix C(ω), and we feed Bi-GRU through X. The last
h(t)TMP−GNNe

output from TMP-GNN is then passed through a fully connected layer to
reduce the representation dimension as in the following equation:

h′(t)
TMP−GNNe

= σ(wph(t)
TMP−GNNe

+ bp), (23)

where wp and bp are weight and bias vectors, respectively. The output is then merged by

h(t)
Bi−GRUe

= [
−→
h (t)

Bi−GRUe
;
←−
h (t)

Bi−GRUe
] through softmax attention, hpgbe

is generated as follows:

w′
p, w′

b = Softmax(wp, wb), (24)

h(t)
pgbe

= w′
ph′(t)

TMP−GNNe
+ w′

bh(t)
Bi−GRUe

(25)

and an initial estimate of the missing value is made as:

x̃(t)ed = σ(Qdhpgbed
+ αd

0) (26)

A fully connected neural network is used at the end to finalize the prediction of missing
values as follows:

x̂(t)ed = σ(w1hd
pgbe

+ γ1) (27)

The E-TMP-GNN I aims at extracting additional features out of the embedding that is
yielded from TMP-GNN, and use it to further enrich the edge feature sets. We demonstrate
in Section 3 that the added streams provide a significant improvement in MAE compared
to the baseline. TMP-GNN II, however, aims at reducing the number of feature streams
by implementing a softmax layer that obtains h(t)

Bi−GRUe
and h(t)

TMP−GNNe
as inputs, since

h(t)
TMP−GNNe

is expected to contain valuable information about the temporal correlation
among the same nodes of consecutive time layers.

3. Performance Evaluation

We divide this section to three parts. First, we review our real-world datasets and their
associated characteristics in depth. Then, we discuss two potential inputs to our proposed
TMP-GNN pipeline and their impact on node embedding performance. Thereafter, we
evaluate the performance of E-TMP-GNN I and E-TMP-GNN II on missing data estimation.
We implemented E-TMP-GNN I and E-TMP-GNN II in python using Networkx (https:
//github.com/networkx, accessed on 9 April 2022), PyTorch (https://github.com/pytorch,
accessed on 9 April 2022) and Tensorflow (https://github.com/tensorflow/tensorflo, ac-
cessed on 9 April 2022). We built in and added various components to the P-GNN imple-
mentation [15].

3.1. Datasets

We run our experiment on four datasets: TomTom, COVID-19 Mobility (Mobility) [26],
PhD Exchange (PhD), and the Seattle Inductive Loop Detector (Loop Detector).

TomTom Dataset: This dataset [27] contains space mean speed and average travel time
during peak congestion for hundreds of approximately one-km-long road segments across
the Greater Toronto Area (GTA). The measurements are collected on a one-minute basis
during congestion, where the average space mean speed is less than 70% of the vehicular
speed during free-flow conditions. We select a three-hour interval from 4:30 p.m. to 7:30 p.m.
on Thursday, 8 September 2016, which is expected to have a high proportion of collected
records. During this interval, we select road segments with a significant number of mutual
timestamps, where measurements for a sufficient number of the segments are conducted.
From the point of view of the multilayer network, we select 10 layers of the GTA road

https://github.com/networkx
https://github.com/networkx
https://github.com/pytorch
https://github.com/tensorflow/tensorflo
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network of 1867 nodes and 985 edges, where each node and edge is the start/ending point
of a road segment and a road segment, respectively. We define each edge feature as the ratio
of space mean speed

free-flow speed and free-flow travel time
travel time that is in range of [0, 1]. To reduce the correlation

between the consecutive records and better assess the performance of pair-wise node
classification in TMP-GNN and missing data estimation, the records are downsampled
by a rate of 8

1 (δ = 1
8 ). The edge weights are also normalized so that the features are

comparable during the learning process. Moreover, the weighted adjacency matrix is
created using the highly accurate geolocations of the road segments in the GTA. Once
the node embedding is calculated through TMP-GNN, the edge embedding is estimated
by averaging the embedding of the corresponding nodes that the edge is connected to as
in (17). The resulting embedding will then be used in missing data estimation.

PhD Dataset: This case of study utilizes a network that represents the exchange of
PhD graduates between universities in the fields of mathematical science. The features we
use in our experiments include the graduation year of the students who obtained a doctoral
degree, his/her official academic advisor(s) and the degree-granting university. The aim
of former studies was to estimate the flow of doctorate exchanges between universities,
individuals who graduate from university a and then are hired at the university b. We
consider the years 1950–2010, which result in T = 61 time layers, and there exists a set of
N = 231 connected universities during this time span in the united states. In order to build
the graph, directed intra-layer edges are created to represent a doctoral degree obtained
by a graduate from university a at year t, who is later hired as a professor at university b,
and at least advised one student there. In our case, the edge weight indicates the number
of graduate doctorates from university a in year t who was later hired at university b as a
faculty member. The edge direction opposes the flow of PhD graduates moving between
universities (b→ a) [16,28].

Loop Detector Dataset: Our third case of study is the data collected by inductive loop
detectors on freeways in the Seattle area [3,29]. The dataset contains temporal sequences of
the time mean speed of the freeway system. The speed information at a desired reference
point (milepost) is averaged from multiple loop detectors on the main lanes of the same
direction at the specific reference point. Measurements are recorded every 5 minutes.
The adjacency matrix calculated in [29] is used to convert the data into an undirected graph
where an edge indicates that a pair of reference points are connected, without specifying
the direction of connectivity. We have downsampled the dataset by a rate of 2

1 (δ = 1
2 ) and

selected 11 time layers of the graph.
Mobility Dataset: Our last case of study is the human mobility flow dataset in the

U.S. during the COVID-19 epidemic [26]. To build the graph, a directed intra-layer edge is
constructed to represent the flow of people between pairs of states. Each edge indicates the
ratio of visits to the population count among the states. We focused on January 1st–22nd
2020, which led to 22 time layers.

Table 1 demonstrates the characteristics associated with the graphs built from the
4 selected datasets.

Table 1. Characteristics of the study datasets.

Characteristics TomTom Loop Detector PhD Mobility

|V| 1867 323 231 72
static : |E |, dynamic *: ∑T

t=1 E (t) 985 1001 10,365 * 2692
|V| × T 18,670 3553 14,091 1584
Largest Connected Component (LCC) 50 323 13,847 1144
No. of Isolated Nodes 18,620 3230 244 440

* indicates the graph with a dynamic number of edges over time.

Among all, TomTom and Mobility have the highest and the lowest number of nodes,
respectively. From an edge density perspective, we have ordered the graph from the most
connected to the least connected as follows: Mobility, Loop Detector, PhD and TomTom.



Mach. Learn. Knowl. Extr. 2022, 4 411

From a topological point of view, TomTom and Loop Detector are static graphs. That is,
E (t) = E (t′), t 6= t′ and the change is in the value of x(t)uv /w(t)

v only. However, the PhD
and Mobility graphs change throughout the time layers in terms of |V (t)|, x(t)uv and w(t)

v .
Among the two, PhD has the highest dynamic rate, and turns into the sparsest graph in
multiple time layers. Figure 7 demonstrates |E (t)| per layer t for these graphs.

The third row in the table shows the number of nodes in the temporal multilayered
graph, explained in Section 2.2, which is equal to (|V| × T). TomTom and PhD have
the largest numbers of nodes in the temporal graph given the number of available time
layers. The fourth row indicates the size of the largest connected component (LCC) in
https://www.overleaf.com/project/6251d321650dd619f849d51c (accessed on 9 April 2022)
for the dynamic graph. The parameter is considered as an important topological invariant
of the graph and can be computed using a variant of depth-first search for directed and
undirected graphs [30]. Here, graphs can be ordered according to ratio of LCC

|V| in descending
order as follows: Loop Detector, PhD, Mobility, and TomTom. The entire Loop detector
undirected graph is considered as one connected component; TomTom as a directed graph
has multiple weakly connected components, with each component as small as 2% of the
total |V|. We calculate the number of isolated nodes as the nodes that are not connected
to the largest component by this equation: no. of isolated nodes = N × T − LCC, which
could be another indicator of nodes with lower node degrees and, thus, sparser graphs.
TomTom has the largest number of isolated nodes, as expected.

(a) PhD dataset (b) Mobility dataset
Figure 7. Number of edges per time layer.

3.2. Potential Inputs to TMP-GNN: Single Graph vs. Multiple Graphs

There are several ways in which we can feed P-GNN:

• Supracentrality Graph C(ω): In this case, we represent the centrality of a temporal
multilayer graph via a supracentrality matrix that is analogous to a single graph with
N × T number of nodes. The main advantage of this approach is to illustrate the
graph with all weighted intra-layer and inter-layer edges. However, the matrix size
might be relatively large in the presence of a large number of T. In the next section,
we demonstrate that this approach outperforms the one with a multiple-graph input.

• Multiple Graphs: In this approach, a sequence of centrality/adjacency matrices associ-
ated with each time layer, {A(1), A(2), · · · , A(T)}, is fed into P-GNN. That is, the mul-
tilayer graph is treated as individual instances of a single graph without consideration
of inter-layer coupling.

• The input to P-GNN can be a single graph with the entry of its corresponding adjacency
matrix as follows:

auv =

{
[x(1)uv , x(2)uv , · · · , x(T)uv ] : if u, v are connected,
0 : otherwise.

(28)

In this approach, we treat the multilayer graph as a single graph where each element
of the adjacency matrix is a time series of features associated with an euv. In order to

https://www.overleaf.com/project/6251d321650dd619f849d51c
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capture the temporal characteristics of a v/euv, a recurrent neural network is required
before applying function F in Figure 2, which leads to high computational complexity.
We have not implemented this method.

Training: There are two different ways to train the time-varying graph to compute
node embedding. In the case of a single graph, graph nodes are split into training, evalua-
tion, and testing, with 80%, 10%, and 10% respectively. The classification accuracy on the
test set is recorded once the best performance on the evaluation is reached. As for the multi-
ple graphs, there are two techniques to train the graph: first, 80% of the graphs can be used
for training and the remaining for evaluation and the test set. Second, 80% of the nodes of
all available graphs are used for training, and 10% of the remaining nodes in all time layers
of graphs are used for testing, with an equal number for the validation set. Although both
techniques can be utilized for time-invariant multiple graphs, e.g., Protein [15,31], we
exploit the second choice for our multilayer graph task (Figure 8). It enables us to capture
change trajectories throughout the time layers, whereas the first approach splits the graphs
without considering the time ordering, and also the behavioral changes of any of the nodes
in 20% of the graphs are not taken into account. To the best of our knowledge, this is the
first time that such an experimental setting is used for node embedding in multiple graphs.

Figure 8. Train–test split for temporal graph as (a) single graph, (b) a sequence of single-layered graph.

Inductive vs. Transductive Learning: There are two different settings to learn the
node embedding: inductive learning and transductive learning. In the latter setting,
the graph is trained with fixed node ordering. In this technique, the model needs to be
retrained when some additional nodes are added, the ordering has changed or a new
graph is given. Moreover, the node attributes are augmented as one-hot identifiers that
could restrict the generalization ability of the model [32]. The authors in [15] assess the
transductive learning performance of P-GNN on a link prediction task, in terms of whether
a pair of nodes are connected. On the other hand, in inductive learning, the learned
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positional information can be transferred to an unseen graph. In particular, instead of
augmenting the one-hot identifiers of node attributes, an order-invariant scalar could be
assigned to nodes whenever node attributes are not available. We choose to train TMP-
GNN in an inductive learning setting and utilize the pair-wise node classification task,
as in [15], to demonstrate the performance of TMP-GNN embedding.

As discussed in (2), our goal is to compute the embedding for time-varying graphs
with potential changes in edge existence ρ(E×t) or intra-layer edge weights represented in
A(t). Therefore, pair-wise node classification would be a more challenging task than link
prediction, since the node class is determined according to the status of its surrounding
edges and/or the status of other isomorphic nodes that are dynamic in such graphs. When
the learning task requires node positional information too, only using structure-aware
embedding is not sufficient.

Figure 9 illustrates the ROC AUC of TMP-GNN for pair-wise node classification given
the second and first type of input, the sequences of individual graphs with each graph
associated with one layer and a single supragraph, respectively (Section 3.2). All datasets
demonstrate significantly better performance in the presence of a single-graph input ver-
sus a multi-graph input. It is highlighted that a single graph has better represented the
chronological property of a multilayer temporal graph. The difference in performance im-
provement achieved by TMP-GNN is significantly larger in the case of a single supragraph
for the same reason. In the case of TomTom, Loop Detector and PhD, the other four GNNs
perform relatively the same. As for Mobility, all five GNN-based approaches perform
well, with relatively negligible differences in classification accuracy. This could be due to
the lower number of nodes plus lower dynamics in the number of edges per time layer
|E (t)|, as shown in Figure 2, and stronger connectivity within time layers in comparison
to other case studies that are confined to the expressive power of TMP-GNN, being less
distinct from others. TMP-GNN demonstrates the largest difference in AUC improvement
for TomTom from multi-graph to a single supragraph. As noted in Section 3.1, it has the
highest number of nodes, with over 5 times more than PhD, the second largest graph,
in conjunction with the lowest connectivity degree, and the largest number of isolated
nodes, which further underlines the discriminating power of TMP-GNN. It is worth men-
tioning that the TomTom temporal graph, with a relatively larger number of nodes, requires
higher communication message passing in the TMP-GNN layer, as described in Section 2.3,
and thus higher computational effort compared to the other three datasets.

For three out of four case studies in multi-graph implementation (Figure 9a), the best
performer is TMP-GNN; the second most competent is SAGE. The reason could be the
similarity in message computation function F, where the feature information of two nodes
(hv, hu) or the attended message from u towards node v are concatenated as in (11).

Figure 10 reveals the impact of the availability of the edge feature on ROC AUC for
all five GNN-based models for the Loop Detector dataset. From a topological point of
view, Loop Detector is an undirected static graph. When edge features are not available,
all GNNs perform relatively the same. When taking the time-varying edge attributes x(t)uv
into account, it turns into a dynamic graph wherein the node class is also dependent on
time-varying attributes, and TMP-GNN demonstrates its superiority over the other widely
used structure-aware embedding. This is where the power of TMP-GNN is highlighted for
time-varying graphs.
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(a) Temporal multi-graph input (b) Single supragraph
Figure 9. Pair-wise node classification accuracy of TMP-GNN vs. GNNs.

Figure 10. Pair-wise node classification accuracy of TMP-GNN vs. GNNs for Loop Detector dataset
with and without edge feature.

Table 2 shows the percentage of ROC AUC improvement achieved by TMP-PGNN
for multi-graph and single-supragraph implementations, as well as the decrease in MAE
achieved by E-TMP-GNN I and II compared to the baselines for all four datasets. We define
η̂metric

y in the following equation as a measure to calculate the improvement:

η̂metric
y =

∣∣∣ηmetric
y − ηmetric

y’

∣∣∣
ηmetric

y’
× 100, (29)

where η notes the performance, metric indicates ROC AUC or MAE according to the
underlying experiment, and | ∗ | is the absolute value. y represents TMP-GNN, E-TMP-
GNN I, or E-TMP-GNN II, and y’ is the compared baseline method. It is noted that 0
indicates zero or no improvement.

Table 2. Performance Comparison of E-TMP-GNN I, E-TMP-GNN II vs. counterpart methods.

Estimate TomTom Loop Detector PhD Mobility

η̂ROC AUC
Multi-graph(%) 7–42 0–22 18–35 6–20

η̂ROC AUC
Single supragraph(%) 28–41 20–25 30–37 6–58

η̂MAE
E-TMP-GNN I(%) 59–69 0–12 17–27 0

η̂MAE
E-TMP-GNN II(%) 94–96 29–96 0 0–15

In Figure 11, we evaluate the performance of our proposed architectures, TMP-GNN I
and TMP-GNN II, on the estimation of missing data, and compare it to an RNN variant
architecture named M-RNN (Figure 6) and the second best classifier demonstrated in
Figure 9b, which is CGN, GAT, GIN, and SAGE for the TomTom, PhD, Loop, and Mobility
datasets, respectively. We use Mean Absolute Error (MAE) as a measure of estimation
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accuracy and choose to remove missing values on a temporal dimension. The points
are chosen according to uniform distribution in conjunction with a determined missing
threshold τ.

(a) TomTom dataset (b) PhD dataset

(c) Mobility dataset (d) Loop dataset
Figure 11. Performance evaluation of E-TMP-GNN I and II on missing data estimation vs. M-RNN
and counterpart GNN.

All case studies experience a higher MAE as τ increases. Moreover, either TMP-GNN
I or TMP-GNN II outperform both M-RNN and the counterpart GNN for each case. This
is due to the high expressive power of additional features, learning through TMP-GNN
representation. The underlying time-varying features proved to be significantly more
efficient for missing data estimation than the ones derived from the second-best node
classifier in the previous experiment, since it takes position information and inter-layer
coupling into account simultaneously; the latter makes the architecture more powerful
than the ones utilizing the RNN variant for capturing long-term temporal dependencies.
TomTom has the highest MAE compared to others, followed by PhD, Loop and Mobility,
respectively. This follows the same order as their corresponding multi-layer graphs when
ranked according to their degree of connectivity; the sparser the graph is, the larger
the estimation error would be. In addition, the percentage of improvement is larger for
TomTom and PhD compared to the other two, which means that the proposed method is
more effective for graphs with weaker connectivity.

For three out of four datasets (TomTom, Loop, Mobility), E-TMP-GNN II outperforms
E-TMP-GNN I. In the case of the PhD dataset, E-TMP-GNN I is the best performer. The na-
ture of being dynamic is more highlighted in the case of PhD and Mobility, since there is
a significant change in the number of edges per time point (Figure 9), in addition to the
variation in edge weights existing in the two other datasets. In TMP-GNN I, the time-aware
node embedding generated by TMP-GNN will play a more effective role once added to
the existing features of the dataset so that it is fed into the interpolation component im-
plemented by Bi-GRU, whereas E-TMP-GNN II reduces the dimension of TMP-GNN’s
time-aware embedding, and then combines it with Bi-GRU’s generated representation
in an attentive way. In summary, dimension reduction and the softmax function might
reduce the effectiveness of the time-aware embedding, later affecting the level of MAE
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decrease in missing data estimation. The more time-varying the dataset is, the more efficient
time-aware representation is needed to better estimate missing data points.

4. Conclusions

We propose TMP-GNN, a generalized version of P-GNN node embedding, for tem-
poral multilayer graphs. It takes short-term temporal correlations, as well as feature and
positional information, into account. We also incorporate the notion of eigenvector-based
centrality to distinguish nodes with a higher influence on their neighbors. Then, we ex-
tend the design to E-TMP-GNN I and II to tackle the missing data challenge in dynamic
networks with multiple streams of node/edge features. Conducted experiments on four
real-world datasets with diverse characteristics demonstrate significant improvements
in node-level classification and missing data estimation tasks. It would be interesting to
consider formulating the missing data problem directly into an edge representation task
for future work.
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GNN Graph Neural Networks
TMP Temporal Multilayer Position-Aware
ROC Receiver Operating Characteristic
ROC AUC Area Under Receiver Operating Characteristic Curve
ITS Intelligent Transportation System
GRU Gated Recurrent Unit
MAE Mean Absolute Error
MLC Marginal Layer Centrality
RNN Recurrent Neural Network
GTA Greater Toronto Area
LCC Largest Connected Component
CGN Convolutional Graph Neural Network
GAT Graph Attention Network
GIN Graph Isomorphism Network
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