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Abstract: Stability of feature selection algorithm refers to its robustness to the perturbations of the
training set, parameter settings or initialization. A stable feature selection algorithm is crucial for
identifying the relevant feature subset of meaningful and interpretable features which is extremely
important in the task of knowledge discovery. Though there are many stability measures reported in
the literature for evaluating the stability of feature selection, none of them follows all the requisite
properties of a stability measure. Among them, the Kuncheva index and its modifications, are widely
used in practical problems. In this work, the merits and limitations of the Kuncheva index and
its existing modifications (Lustgarten, Wald, nPOG/nPOGR, Nogueira) are studied and analysed
with respect to the requisite properties of stability measure. One more limitation of the most recent
modified similarity measure, Nogueira’s measure, has been pointed out. Finally, corrections to
Lustgarten’s measure have been proposed to define a new modified stability measure that satisfies
the desired properties and overcomes the limitations of existing popular similarity based stability
measures. The effectiveness of the newly modified Lustgarten’s measure has been evaluated with
simple toy experiments.

Keywords: stability; feature selection; Kuncheva index; Lustgarten index

1. Introduction

Feature selection is one of the most fundamental issues in developing efficient models
for classification, prediction or regression in the area of pattern analysis, machine learning
or data mining. Recently, due to the emergence of high dimensional data in various
practical fields, the importance of feature selection is increasing [1]. The main objective
of the feature selection algorithm is to find out the optimum feature subset by retaining
the relevant and discriminatory features while discarding redundant features from the
available feature set to achieve better classification or prediction accuracy with lesser
computational cost. The authors of [2] developed a new feature selection approach based
on fuzzy entropy with a similarity classifier for chatter vibration identification. Compared
to other diagnostic techniques, this feature selection can improve classification accuracy
as well as reduce computational time. Monitoring the wind speed in the wake zone to
detect wind farm faults is proposed in [3], in which a feature selection algorithm finds the
significant information and increases the classification accuracy. In the case of Multi-sensor
data fusion for the milling chatter detection task, the approach in [4] incorporates the
recursive feature elimination method to find the important chatter features. The effect of
feature selections in finding key biomarkers from Microarray Datasets is studied in [5]. It
is found that feature sections select important genes and improve classification accuracies.

In many real life domains, especially for medical or business data, identifying the
subset of meaningful and interpretable features is of prime importance for further exper-
imental research. Thus, in addition to the effectiveness of the selected feature subset’s
ability for accurate classification, the other important criterion for the evaluation of feature
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selection algorithm is its stability. Stability of an algorithm characterizes the repeatability
of its outcome given different sets of input from the same data generating process i.e., with
the same underlying probability distribution. A stable feature selection algorithm should
not produce radically different feature preferences in the form of ranked lists or subsets of
features with different groups of the same training data.

The concept of measuring the stability of classification algorithm is examined by
Turney [6] in which he introduced a method for quantifying stability, based on a measure
of the agreement between classification concepts induced by the algorithm on different
sets of training data. The stability of a feature selection algorithm is related to the change
in the selected feature subset due to perturbation of training data or different settings of
algorithmic parameters or initialization of the algorithm with different random seeds. A
stable feature selection algorithm is more important for knowledge discovery as it exhibits
a good confidence level to the domain expert for example, to separate the disease associated
genes from microarray studies [7], proteins from mass spectrometry (MS)-based proteomics
studies [8], or single nucleotide polymorphism (SNP) from genome wide association (GWA)
studies [9]. It is possible that different training sample sets produce different feature subsets
which may lead to the same classification concept due to a high level of redundancy in
the initial feature set. In this case, contrary to the classification algorithm which can be
considered stable, feature selection algorithm produces different outputs. So technically,
the concept of stability measurement of a classification algorithm can not be used for
stability measurement of any feature selection algorithm. The first published work on the
extensive analysis regarding the stability of feature selection algorithm is presented in [10].

Generally, feature selection algorithms provide feature preferences in either a ranked
or weighted feature list or an optimum subset of selected features. Depending on the dif-
ferences of representing feature preferences in the outcome of feature selection algorithms,
the assessment of their stabilities is different. Accordingly, various stability measures
suitable for evaluating the stability of different categories of feature selection algorithms
are developed. Here stability measures related to feature subset-based feature selection
algorithms are studied. While there are various stability measures for feature subset selec-
tion algorithm, similarity based measures, especially Kuncheva’s consistency index [11] is
quite popular and widely used. To overcome the main limitation of the Kuncheva index
i.e., its inability to cope with feature subsets of different cardinalities, a few modified
similarity measures related to the Kuncheva index are also available in the literature. In
this work, the Kuncheva index and its existing modifications (Lustgarten, nPOG, Wald,
and Nogueira) are studied, their merits, demerits, and limitations are analyzed. One more
limitation of the most recent modified similarity measure, Nogueira’s measure, has been
pointed out. Finally, corrections to Lustgarten’s measure have been proposed to define
a new modified stability measure that satisfies the desired properties and overcomes the
limitations of existing popular similarity based stability measures. The effectiveness of the
newly modified Lustgarten’s measure has been evaluated with simple toy experiments.

In summary, the contributions of the paper are highlighted below:

• Critical analysis of existing similarity based stability measures and their desired
properties

• Newly pointing out a limitation of Nogueira’s measure and a part of Wald’s measure
• Proposed correction to Lustgarten’s measure to overcome its limitation
• Proposal of a novel extension of Lustgarten’s measure which overcomes the limitations

of the existing measures

The remainder of this paper is arranged as follows: Section 2 describes stability mea-
sures for feature selection algorithm in brief. The background and critical analysis of
Kuncheva’s measure and its several modifications are presented in Section 3. The next
section describes the results and the analysis of toy experiments for better illustration of the
limitations of Kuncheva and other stability measures. Section 5 contains our proposed cor-
rections of Lustgarten’s measure to define the new measure which removes the limitations
of the existing measure. Finally, Section 6 presents the summarization and conclusion.
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2. Stability Measures for Feature Selection Algorithms

Feature selection algorithms can be broadly classified into filter, wrapper and embed-
ded methods. Filter methods assign a score to a feature or feature subset based on some
intrinsic properties of the data independent of any classifier, wrapper methods evaluate
a feature or feature subset by its classification capability related to a particular classifier.
Filters or wrappers use search procedures to find out the best feature subset from all the
possible feature subsets based on their respective evaluation scores. Embedded methods
incorporate feature selection as an integral part of learning a prediction or classification
model. The output of a feature selection algorithm is either a weighting on the features, a
ranking on the features or a subset of features. As the sorting of weights can provide the
ranking and selecting top-k ranked features can produce a subset of features, the output
of any weighting or ranking based method can be treated as a subset based method in a
similar way though the reverse process is not true.

Depending on the output of the feature selection algorithms, stability of feature
selection measures are categorized into three groups. These are stability by rank, stability
by weight and stability by similarity [12,13]. In the stability by rank approach, stability of
feature selection algorithms, whose output is ranked lists of features, are evaluated by the
correlation between two ranked feature lists. Weight based stability [10] use the weight of
features in the subset for measuring the stability. However, unlike stability by similarity,
the other two approaches cannot deal with the feature subsets containing different number
of features, respectively. In this work we have dealt with the stability by similarity only
which is described in detail in the next subsection.

Stability by Similarity

In similarity based approach, first introduced by Dunne et al. [14], stability is measured
by the similarity between two selected feature subsets. For M, the number of feature subsets,
stability measure Φ(Z) is calculated as the average pairwise similarity Φ, between the
M(M− 1) possible pairs of feature subsets in Z as follows [15,16]:

Φ(Z) =
1

M(M− 1)

M

∑
i=1

M

∑
j=1,j 6=i

SI(Si, Sj) (1)

where, SI is a function taking two feature subsets Si and Sj as inputs and return a similarity
value as the output. Similarity can be measured in a variety of ways like the ratio of
the intersection to the union of two selected feature subsets, or the amount of overlap
between the overall subset of selected features [12,17]. Dunne et al. [14] proposed relative
Hamming Distance between two feature subsets as the similarity measure. Kalousis et al.
published the work of stability of feature selection algorithms in 2005 [16] with an extensive
discussion on stability measures. Jaccard index was proposed as a similarity based stability
measure of feature selection between selected feature subsets in [10]. Other similarity based
stability measures used in the literature are the Dice-Sørenson index, first introduced by
Yu et al. in 2008 [18], the Ochiai index [19], the POG (Percentage of Overlapping Genes)
index [20]. In 2007, Kuncheva analyzed the performance of different existing stability
measures [11] and proposed a new property based similarity measure. A set of 3 properties,
which is fundamental for any stability measure, has been introduced in her work. Our
study is related to similarity based stability measures, especially Kuncheva index, and
some modified measures related to Kuncheva index.

In many research works, ensemble techniques are employed to enhance the stability of
feature selection algorithms like, Bayesian model averaging [21,22], aggregating the results
of a collection of feature ranking methods [23,24], and aggregating the results of the same
feature selection method from bootstrapped subsets of samples [25–27].

3. Analysis of Kuncheva Index and Its Extensions

Several similarity based stability measures according to Equation (1) are found to
be biased by the number of features in the selected feature subset. The stabilities of two
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feature selection algorithms selecting two identical feature subsets of eight features from
a feature set of cardinality 10 and eight features from a feature set of cardinality 100 do
not possess the same significance. The later one is more stable having lesser possibility of
selecting exactly same 8 features by chance. Kuncheva [11] analyzed this anomaly and,
to correct the bias, proposed a similarity measure having the property of correction for
chance. Kuncheva’s measure has become the most popular and pioneer work on assessing
stability of feature subset selection. In the following subsections, Kuncheva index and its
popular extensions with their limitations are discussed.

3.1. Kuncheva Index

Kuncheva proposed a similarity measure based on the consistency between a pair of
feature subsets according to three desirable properties which are monotonicity, limits and
correction for chance. Kuncheva index is defined as follows [11]:

SIK(Si, Sj) =
r− E[r]

max(r− E[r])
=

r− k2

n

k− k2

n

=
rn− k2

k(n− k)
(2)

where, n represents the total number of features, r = |Si ∩ Sj|, is the cardinality of intersec-
tion of two selected subsets of features Si and Sj and k = |Si| = |Sj|, is the cardinality of
the selected feature subsets. The maximum limit of Kuncheva index is 1, which is achieved
when r = k, i.e., when the two selected feature subsets are identical. The minimum value is
−1 only when r = 0 provided k = n/2. For other values of k, with r = 0, Kuncheva index
does not produce the minimum value −1. Beside this, Kuncheva index is not defined for
k = 0 and k = n, in both the cases Kuncheva index is set to 0. The term, k2

n is very important
part of this measure that corrects the bias due to the chance of selecting the features which
are common between the two randomly chosen subsets. In this case, if the stability index is
zero, it expresses that the overlap between two subsets is almost due to chance [17].

While Kuncheva index is very efficient for measuring the stability of feature selec-
tion algorithms, a major drawback is, it cannot be used for selected feature subsets with
different sizes. Several modifications are proposed to overcome the limitation, which are
analyzed below.

3.2. Extensions of Kuncheva Index

There are three popular extensions of Kuncheva Index for selected feature subsets
of different cardinalities. All the measures are of the same general form as Kuncheva,
differing in the denominator of the respective measures.

3.2.1. Lustgarten’s Measure

In 2009, Lustgarten et al. proposed a modification of Kuncheva index by dividing the
value of numerator by its range. Lustgarten’s measure satisfies the property of correction
by chance and is applicable to different cardinality of selected feature subsets [28]. It
is popularly used as the modified version of Kuncheva index in different works [12,29].
In [28], Lustgarten’s measure is defined as:

SIL(Si, Sj) =
r− E[r]

max(r− E[r])−min(r− E[r])
(3)

If two selected feature subsets Si and Sj are of cardinalities ki and k j, respectively, then

E[r] =
kikj

n and hence the above equation becomes

SIL(Si, Sj) =
r− kikj

n
max(r− E[r])−min(r− E[r])

=
r− kikj

n
max(r)−min(r)

(4)
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Now max(r) = min(ki, k j) and min(r) = max(0, ki + k j − n), the above equation
reduces to:

SIL(Si, Sj) =
r− kikj

n
min(ki, k j)−max(0, ki + k j − n)

(5)

This measure has a value in the interval (−1,1). For random feature subset selection,
Lustgarten’s measure provides a value of 0. Like Kuncheva index, Lustgarten’s measure
produces a positive value when feature selection method is more stable than random
feature selection and produces a negative value when feature selection method is less stable
than random feature selection. If Si or Sj or both have no features or Si or Sj or both contain
all the feature in the domain, then Equation (5) is undefined, and in this case it is set to 0,
same as in the case of Kuncheva index.

The main drawback of this measure is that Lustgarten’s measure does not provide the
fixed maximum value of +1 (even when the condition of maximum stability i.e., ki = k j = r
occurs) rather it depends on the variation of ki and k j; the maximum value close to +1 is
achieved when both ki and k j are either very small or very close to n. Similarly, it cannot
reach the minimum value of −1 for the condition when the cardinality of intersection
between feature subsets is zero, i.e., r = 0. In above two cases, Kuncheva index provides
the maximum and minimum stability value of +1 and −1, respectively.

3.2.2. Wald’s Measure

Wald et al. in 2013, proposed another modification of Kuncheva’s index by dividing
the numerator by its maximal value [30] (same as Kuncheva) and is defined as:

SIW(Si, Sj) =
r− E[r]

max(r− E[r])
=

r− kikj
n

min(ki, k j)−
kikj

n

(6)

This measure provides the maximum value of +1 when the overlap between the two
feature subsets is maximum i.e., ki = k j = r and it attains the minimum value of −1 for the
condition ki = k j =

n
2 and r = 0. This measure also provides the value of 0 when overlap

between the two subsets is equal to what would be expected by random chance.
The limitations of Wald’s measure are as follows:

1. When one of the feature subset is a proper subset of the other i.e., Si ⊂ Sj, ki < k j
and ki = r or Sj ⊂ Si, k j < ki and k j = r, this measure returns the value of +1. In this
case, two feature subsets are not identical and all the elements of two feature subset
are not the same. This condition is illustrated by the following example. Suppose,
in a feature selection problem, one selected feature set is, Si = {a, c} and other is
Sj = {a, b, c, d, f , g}. Therefore, Si is a proper subset of Sj and ki < k j. Let the total
number of feature, n equal to 10. The cardinality of intersection of two feature sets
is, r = 2 and ki = r. Therefore, min(ki, k j) = ki = 2, kik j/n = 6/10 = 3/5 and the
Wald’s measure is

SIW(Si, Sj) = (r−
kik j

n
)/(min(ki, k j)−

kik j

n
) = (2− 3/5)/(2− 3/5) = 1.

2. This measure does not guarantee the lower bound of −1 and depends on ki, k j and n.
It is −1 only when ki = k j = n/2. For a given n, the minimum of Wald’s measure is
1− n, provided, ki = n− 1 and k j = 1 or vice versa with r = 0.

We have defined a generalized lower bound as follows:

• For the case when (ki + k j) = n,
Let us consider, ki = q, k j = n − q, ki ≤ k j and r = 0, and the value of q has
the range as q = 1, 2, 3, . . . n/2, then Wald’s measure provides, SIW(Si, Sj) =
1− n/q.
This can be proved as following:
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If, ki = q = 1, k j = n− q and r = 0, then SIW(Si, Sj) = 1− n
ki = q = 2, k j = n− q and r = 0, then SIW(Si, Sj) = 1− n/2
ki = q = 3, k j = n− q and r = 0, then SIW(Si, Sj) = 1− n/3
. . . . . .
ki = q = n/2, k j = n− q and r = 0, then SIW(Si, Sj) = 1− n/(n/2) = −1

• For the case when (ki + k j) < n,

−1 < SIW(Si, Sj) < 0

3.2.3. Average nPOG and Average nPOGR

Percentage of overlapping Gene/Features (POG) is defined as the stability measure
in [20]. POG is not symmetric, POG(Si, Sj) 6= POG(Sj, Si). The measure is defined as:

POG(Si, Sj) =
|Si ∩ Sj|
|Si|

=
r
ki

or, POG(Sj, Si) =
|Si ∩ Sj|
|Sj|

=
r
k j

(7)

POG does not consider the correlation between features in the selected feature subsets.
POGR is introduced by Zhang et al.which considers the correlated features, defined as
in [31],

POGR(Si, Sj) =
r + Zi,j

ki
or, POGR(Sj, Si) =

r + Zj,i

k j
(8)

where, Zi,j (or Zj,i) represents the number of features in feature subset Si(orSj), which
is significantly positively correlated with at least one feature in feature subset Sj (or Si).
Normalized POG (nPOG) and normalized POGR (nPOGR) are defined as:

nPOG(Si, Sj) =
POG(Si, Sj)− E[POG(Si, Sj)]

1− E[POG(Si, Sj)]

=

r
ki
− E[r]

1− E[r]
=

r− E[r]
ki − E[r]

=
r− kikj

n

ki −
kikj

n

(9)

nPOGR(Si, Sj) =
POGR(Si, Sj)− E[POGR(Si, Sj)]

1− E[POG(Si, Sj)]

=
r + Zi,j − E[r]− E[Zi,j]

ki − E[r]− E[Zi,j]

(10)

It is seen from Equation (9) that the measure nPOG is same as Wald’s measure, suffer-
ing from the same drawbacks as of Wald’s measure in addition to being non-symmetric.

3.2.4. Nogueira and Brown’s Measure

Nogueira and Brown (in 2015) proposed another modification of Kuncheva index
by dividing the numerator by its maximal absolute value [32] so that its value belongs to
the range [−1, 1] to overcome the limitation of Wald’s measure. This measure is defined
as follows:

SIN(Si, Sj) =
r− E[r]

max(|r− E[r]|) =
r− E[r]

max[−min(r− E(r)); max(r− E(r)]

=
r− kikj

n

max[−max(0, ki + k j − n) +
kikj

n ; min(ki, k j)−
kikj

n ]

(11)

Nogueira’s measure can be considered as a generalization of Kuncheva index for
different cardinalities of the selected feature subset and its value for ki = k j = k matches
with the value of Kuncheva index. The authors in [32] claimed that this measure is bounded
by −1 and +1 and reaches its maximum value when the two feature subsets are identical.
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The authors also showed that this measure satisfies the desired properties (1 to 6 of the list
in the next subsection) of a stability measure.

However in our experiments with several data sets, we have found the following
limitation of this measure:

1. If one feature subset is a proper subset of the other, i.e., Si ⊂ Sj, ki < k j and ki = r or
Sj ⊂ Si, k j < ki and k j = r, this measure returns the maximum value of +1, which
should not be the case as the two feature subsets are not identical. Moreover, we noted
that unlike Wald’s measure, Nogueira’s measure does not produce the maximum
value +1 for all the cases whenever the condition of proper subset (one of the feature
subset is the proper subset of the other) occurs. We have elaborated this findings by
toy example and experiment in the next section.

2. Nogueira’s measure gives the minimal value of −1, for the conditions ki = q, k j =
n− q, ki ≤ k j, or vice versa, and r = 0 with q in the range q = 1, 2, 3...n/2. For other
cases, when ki + k j < n and r = 0, Nogueira’s measure, like Wald’s measure, lies
between −1 and 0 i.e., −1 < SIN(Si, Sj) < 0.

In the next subsection, the desired properties of any stability measure are listed and
Kuncheva index and its modifications are examined.

3.3. Desired Properties of Stability Measure

Kuncheva first introduced the consistency based stability measure depending on three
desired properties [11]. Beside this, Zucknick et al. also highlighted the three properties of
similarity based stability measure in their work [19], which are symmetry, homogeneity
and bounds/limits. Later Nogueira identified some properties from literature and listed
in [15,32,33]. Based on the research works so far, we have summarized the important
desired properties of stability measures as follows:

1. Fully Defined: This property demonstrates that a stability measure should be able to
handle any collection of feature subsets, irrespective of its size. Stability measures
without this property can not be defined for the class of feature selection algorithms
which produce variable size feature subsets.

2. Limits/bounds: The stability measure should be bounded by values that do not
depend on the size of the feature subset. The significance of any stability value is
much understood when it has a finite range compared to the range of [−∞, ∞].

3. Maximum-minimum value: The stability measure should reach its maximum value
when all the selected feature subsets are identical, the minimum value should be
reached when the intersection of the feature subsets is zero. Interestingly, it does not
happen for all the measures.

4. Monotonicity: This property is highlighted in Nogueira’s work [15,32]. It states
that the stability measure should be an increasing function of the similarity of the
feature subsets.

5. Correction for chance: Kuncheva first introduced this property to reduce the effect of
size of the selected feature subset. It confirms that the expected value of the stability
measure should be constant when the subsets are independently selected at random.

6. Symmetry: Stability measure should be symmetrical irrespective of the order of the
feature subsets taken for measurement.

7. Homogeneity: This property represents that, the stability measure should not change
if the same constant value is multiplied to the different features in the feature sub-
sets [19].

8. Redundancy awareness: This property reveals that, if the features are redundant in
a feature selection problem, then the stability measure of feature selection should
be able to calculate the true amount of redundant information between the feature
subsets [32]. In the present work, this property is not considered.

Table 1 shows the properties of different similarity based stability measures.
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Table 1. Properties of stability measure of feature selection algorithm.

Stability Measure Fully
Defined Limits Max-Min

Value Monotonicity Correction
for Chance Symmetry Homogeneity

Jaccard X X X X X X

Dice-Sørenson X X X X X X

Ochiai X X X X X X

Hamming distance X X X X X X

POG X X X X X
Kuncheva X X X X X X

Lustgarten et al. X X X X X X

Wald et al. X X X X X X

nPOG X X X X X

Nogueira and Brown X X X X X X X

4. Experiments for Illustration of the Drawbacks

In the previous section, we analyzed the merits, demerits and the limitations of
different extended version of Kuncheva index. To have a better understanding, we design
toy experiments of feature subset selection where different stability measures are used to
evaluate similarity between the different pairs of the selected feature subsets Si, Sj. Here
we present the experiments, their results and analysis for the cases arising from different
cardinalities of the selected subsets.

1. For the case when the two selected feature subsets are such that Si ⊂ Sj or Sj ⊂ Si.

Let, the total number of features in this experimental problem is n = 20. Feature
subsets of different cardinalities can be selected from the set of 20 features as a result of
the several run of a feature selection algorithm. Among the selected feature subsets from
multiple runs of the algorithm, 20 different pairs of feature subsets are considered for
stability measurement where each pair contains one feature subset that is a proper subset of
the other feature subset. Table 2 and Figure 1 represent the values of similarity of different
measures for different pairs of feature subsets.

Figure 1. Similarity measures for the case when Si ⊂ Sj or vice versa.
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Table 2. Similarity values for the case when Si ⊂ Sj or vice versa.

Index of
Feature
Subset

Pair

Cardinality
of One
Feature

Subset ki

Cardinality
of Other
Feature

Subset kj

Cardinality of
Intersection
of Feature
Subsets, r

Lustgarten’s
Measure,

SIL(Si , Sj)

Nogueira’s
Measure,

SIN(Si , Sj)

Wald’s
Measure,

SIW (Si , Sj)

1 18 1 1 0.1 0.11 1
2 16 2 2 0.2 0.25 1
3 14 3 3 0.3 0.43 1
4 12 4 4 0.4 0.67 1
5 10 5 5 0.5 1 1
6 8 6 6 0.6 1 1
7 6 7 6 0.65 1 1
8 4 8 4 0.6 1 1
9 2 9 2 0.55 1 1

10 1 10 1 0.5 1 1
11 3 11 3 0.45 0.81 1
12 5 12 5 0.4 0.67 1
13 7 13 7 0.35 0.54 1
14 9 14 9 0.45 0.81 1
15 11 15 11 0.55 1 1
16 13 16 13 0.65 1 1
17 15 17 15 0.75 1 1
18 17 18 17 0.85 1 1
19 19 19 19 0.95 1 1
20 1 1 1 0.95 1 1

From Table 2 it is found that Wald’s measure always produces maximum value +1
while one feature subset is proper subset of the other which means that the two subsets are
not identical. Nogueira’s measure randomly produces maximum value +1 in some cases
but not in all the cases when one subset is proper subset of the other. In this case of stability
measurement, Wald’s measure and Nogueira’s measure produces incorrect result, because
this is not the condition for getting maximum stability. Lustgarten’s measure shows more
consistent result except for two cases (feature subset pair 19 and 20) when the two feature
subsets are identical and the value should be +1. Figure 2 also highlights this condition. In
our next experiment, we considered the case when two feature subsets taken for similarity
measurement are completely identical with different cardinalities.

Figure 2. Similarity values when two feature subsets are identical.
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2. For the case when Si and Sj are identical.

Here we design another experiment for feature subset selection in which each selected
feature subset pair consists of two identical feature subsets. The total number of features is
same as before, n = 20 and we considered 19 different pairs of the selected feature subsets
with different cardinalities.

Table 3 shows the values of the different similarity measures for the case considered
here. It is found that as the two stability measures, Nogueira’s measure and Wald’s measure
provide the accurate result for similarity calculation as expected. The other measure,
Lustgarten’s measure, cannot provide the maximum stability of +1. While Lustgarten’s
measure cannot provide the exact value of +1, it provides a value within a known finite
range [0.5, +1). The graphical representation of Table 3 is shown in Figure 2. It is noted that
Nogueira’s measure provides the same values as the Wald’s measure, resulting overlap of
this two lines in the figure. The next experiment has been conducted for the case when the
similarity value between two feature subsets is minimal i.e., there is no common feature
between the two subsets.

Table 3. Similarity values for the case when Si and Sj are identical.

Index of
Feature
Subset

Pair

Cardinality
of One
Feature

Subset ki

Cardinality
of Other
Feature

Subset kj

Cardinality of
Intersection
of Feature
Subsets, r

Lustgarten’s
Measure,

SIL(Si , Sj)

Nogueira’s
Measure,

SIN(Si , Sj)

Wald’s
Measure,

SIW (Si , Sj)

1 1 1 1 0.95 1 1
2 2 2 2 0.9 1 1
3 3 3 3 0.85 1 1
4 4 4 4 0.8 1 1
5 5 5 5 0.75 1 1
6 6 6 6 0.7 1 1
7 7 7 7 0.65 1 1
8 8 8 8 0.6 1 1
9 9 9 9 0.55 1 1

10 10 10 10 0.5 1 1
11 11 11 11 0.55 1 1
12 12 12 12 0.6 1 1
13 13 13 13 0.65 1 1
14 14 14 14 0.7 1 1
15 15 15 15 0.75 1 1
16 16 16 16 0.8 1 1
17 17 17 17 0.85 1 1
18 18 18 18 0.9 1 1
19 19 19 19 0.95 1 1

3. For the case when Si ∩ Sj is null (r = 0)

As before, the total number of feature in this experiment is, n = 20. We considered 19
different feature subset pairs with the condition r = 0. Table 4 represents the similarity
values of different measures.

It is seen that, in line with the analysis in the previous section, Nogueira’s measure
and Wald’s measure reach the minimum value of −1, but does not show the value of −1
for all the cases when r = 0. For Wald’s measure, the minimum value is achieved only when
ki = k j = n/2 with r = 0. The values of Wald’s measure in Table 4 also supports the fact we
mathematically proved in the previous section, for example, if ki = q, k j = n− q, ki < k j or
vice versa, r= 0 and q has the range q = 1, 2, 3, . . . n/2, then Wald’s measure provides the
value (1− n/q). Figure 3 represents the graphical view of Table 4. As expected according
to our analysis, Nogueira’s stability measure gives the minimal value of −1, for ki = q,
k j = n− q, ki < k j or vice versa, r = 0 and q has the range q = 1, 2, 3, . . . n/2. For other
cases, when ki + k j < n and r = 0, both Nogueira’s measure and Wald’s measure have
the same value between −1 and 0. For minimal stability condition, Lustgarten’s measure
provides a value between −1 to 0, but never reaches −1.
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Table 4. Similarity values for the case when Si ∩ Sj is null (r = 0).

Index of
Feature
Subset

Pair

Cardinality
of One
Feature

Subset ki

Cardinality
of Other
Feature

Subset kj

Cardinality of
Intersection
of Feature
Subsets, r

Lustgarten’s
Measure,

SIL(Si , Sj)

Nogueira’s
Measure,

SIN(Si , Sj)

Wald’s
Measure,

SIW (Si , Sj)

1 19 1 0 −0.95 −1 −19
2 18 2 0 −0.9 −1 −9
3 17 3 0 −0.85 −1 −5.67
4 16 4 0 −0.8 −1 −4
5 15 5 0 −0.75 −1 −3
6 14 6 0 −0.7 −1 −2.33
7 13 7 0 −0.65 −1 −1.86
8 12 8 0 −0.6 −1 −1.5
9 11 9 0 −0.55 −1 −1.22

10 10 10 0 −0.5 −1 −1
11 9 9 0 −0.45 −0.82 −0.82
12 8 7 0 −0.4 −0.67 −0.67
13 7 7 0 −0.35 −0.54 −0.54
14 6 6 0 −0.3 −0.43 −0.43
15 5 4 0 −0.25 −0.33 −0.33
16 4 4 0 −0.2 −0.25 −0.25
17 3 2 0 −0.15 −0.18 −0.18
18 2 2 0 −0.1 −0.11 −0.11
19 1 1 0 −0.05 −0.05 −0.05

Figure 3. Similarity values when the intersection of the feature subsets is null.

From the results of the above toy experiments it can be stated that, Lustgarten’s stabil-
ity measure provides more systematic results than other extended version of Kuncheva
index except for two conditions, one is when the two selected feature subsets are identical
or stability value should be a fixed maximum value of +1 and another is when intersection
between the feature subsets is zero or the stability value should be a fixed minimum value
of −1. While the Lustgarten’s stability values in these two cases are not appropriate, the
values are bounded by finite numbers. In the next section we propose corrections to the
Lustgarten’s measure to make it appropriate for the conditions of maximal and minimal
stability. The detail proposal is described in the next section.
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5. Proposed Correction of Lustgarten’s Measure

The main shortcomings of Lustgarten’s measure are that it cannot reach its maxi-
mum value of +1, when the feature subsets are identical and similarly cannot reach its
minimum value of −1 when the cardinality of intersection between feature subsets is
zero. Lustgarten’s measure possesses all the desired properties except the property of
maximum-minimum value. Here we have proposed corrections to remove the drawbacks.

5.1. Proposed Correction Value for Different Conditions

Different possible cases are considered for correction and are stated below:

1. The correction for maximum value:

The maximum similarity value for the stability measure should occur when the two
feature sets are identical, i.e., ki = k j = r. In this case, Kuncheva index and other
stability measures provide the maximum value of +1, but Lustgarten’s measure
provides different values which are less than +1, depending on the cardinality of the
selected feature subsets. In this work, we propose the correction of the measure based
on three different cases for the cardinality of r.

• Case 1: When 0 < r < n/2
The Lustgarten’s measure for the feature subsets in this case can be written as:

SIL(Si, Sj) =
r− kikj

n
min(ki, k j)−max(0, ki + k j − n)

=
r− r∗r

n
r− 0

= 1− r
n

.

where n is the number of all features.
Correction value = Ideal value − Lustgarten’s measure = 1− (1− r

n ) =
r
n

• Case 2: When r = n/2
In this case, Lustgarten’s measure can be written as:

SIL(Si, Sj) =
r− kikj

n
min(ki, k j)−max(0, ki + k j − n)

=
r− n/2n/2

n
r− 0

=
n/2− n/4

n/2
=

1
2

.

where n is the number of all features.
Correction value = Ideal value − Lustgarten’s measure = 1− 1

2 = 1
2

• Case 3: When n/2 < r < n
For this case, Lustgarten’s measure can be written as:

SIL(Si, Sj) =
r− kikj

n
min(ki, k j)−max(0, ki + k j − n)

=
r− r∗r

n
r− (ki + k j − n)

=
r(n− r)
n(n− r)

=
r
n

.

where n is the number of all features.
Correction value = Ideal value − Lustgarten’s measure = 1− r

n = n−r
n

2. The correction for minimum value:

In this case, selected feature subsets have no common feature, i.e., r = 0. In this
condition, Kuncheva index and some other extension of Kuncheva index should
provide the minimum value of −1. However, for the Kuncheva index and Wald’s
measure, this is satisfied only when ki = k j = k = n/2. We assessed the correction for
the other cases of cardinalities of ki and k j as follows:

• Case 1: When ki + k j = n.
In this case, let us consider, ki = n− p and k j = p, or vice versa, where p =
1, 2, 3...n/2 Lustgarten’s measure can be written as:

SIL(Si, Sj) =
r− kikj

n
min(ki, k j)−max(0, ki + k j − n)

=
0− p(n−p)

n
p− 0

= − (n− p)
n

= −
max(ki, k j)

n
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Correction value = Ideal value – Lustgarten’s measure = −1− (−max(ki ,kj)
n ) =

max(ki ,kj)
n − 1

• Case 2: When ki + k j < n.
In this case, let us consider ki > k j, or vice versa, Lustgarten’s measure can be

written as: SIL(Si, Sj) =
r−

kikj
n

min(ki ,kj)−max(0,ki+kj−n) =
0−

kikj
n

kj−0 = − ki
n = −max(ki ,kj)

n

Correction value = Ideal value – Lustgarten’s measure = −1− (−max(ki ,kj)
n ) =

max(ki ,kj)
n − 1

In all the cases, correction value for the condition r = 0 is same.

5.2. Proposed Corrected Lustgarten’s Measure

Based on the above analysis, here we summarize our newly proposed corrected
Lustgarten’s measure SILnew(Si, Sj) in Equation (12) for defining similarity between two
selected feature subsets Si and Sj having cardinalities ki and k j, respectively, while r, n
being the cardinality of intersection of the selected feature subsets and total number of
features. In Equation (12), r = ki = k j, when r is defined within the range 0 < r < n.

SILnew(Si, Sj) =

r−
kikj

n
min(ki ,kj)−max(0,ki+kj−n) +

r
n , if 0 < r < n/2

r−
kikj

n
min(ki ,kj)−max(0,ki+kj−n) +

1
2 , if r = n/2

r−
kikj

n
min(ki ,kj)−max(0,ki+kj−n) +

n−r
n , if n/2 < r < n

r−
kikj

n
min(ki ,kj)−max(0,ki+kj−n) +

max(ki ,kj)
n − 1, if r = 0

0, if r = n

(12)

5.3. Experiments for Illustration

An experimental illustration have been done, similar to our experiments in the previ-
ous section, for verification of the proposed corrected Lustgarten’s measure. As before, the
total number of features is n = 20. Selected feature subset pairs of different cardinalities are
considered. Various measures along with our proposed corrected Lustgarten’s measures
are used for stability measurement. The results are shown in Table 5.

In Table 5, the 1st to 6th feature subset pairs are formed in such way that each pair
have identical feature subsets, i.e., ki = k j = r. Corrected Lustgarten’s measure, Nogueira’s
and Wald’s measure produce the correct maximum value. For the 7th to 12th feature
subset pairs, the intersection between feature subsets for each pair is zero, so the stability
should be minimum, with value of −1. Corrected Lustgarten’s measure only provides this
minimum stability value for all the feature subset pairs (7th to 12th). For the last eight
feature subset pairs (13th to 20th), one feature subset is proper subset of the other feature
subset i.e., the two subsets are not identical. Wald’s measure gives a stability value of +1.
Nogueira’s measure also gives the stability value of +1 for 3 cases, and less than 1 for
rest of the five cases. Lustgarten’s measure produces value less than 1 for all the cases
which is more appropriate than Nogueira’s measure or Wald’s measure. It can be verified
that corrected Lustgarten’s measure can produce appropriate values in all the different
possible cases.
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Table 5. Comparison of stability measures with proposed corrected Lustgarten’s measure.

Index of
Feature
Subset

Pair

Cardinality
of One
Feature

Subset ki

Cardinality
of Other
Feature

Subset kj

Cardinality of
Intersection of

Feature
Subsets, r

Lustgarten’s
Measure,

SIL(Si , Sj)

Correction
Value in

Lustgarten’s
Measure

Corrected
Lustgarten’s

Measure,
SILnew(Si , Sj)

Nogueira’s
Measure,

SIN(Si , Sj)

Wald’s
Measure,

SIW (Si , Sj)

1 1 1 1 0.95 0.05 1 1 1
2 2 2 2 0.90 0.10 1 1 1
3 10 10 10 0.50 0.50 1 1 1
4 19 19 19 0.95 0.05 1 1 1
5 12 12 12 0.60 0.40 1 1 1
6 7 7 7 0.65 0.35 1 1 1
7 19 1 0 −0.95 −0.05 −1 −1 −19
8 15 5 0 −0.75 −0.25 −1 −1 −3
9 10 10 0 −0.50 −0.50 −1 −1 −1
10 5 4 0 −0.25 −0.75 −1 −0.33 −0.33
11 3 2 0 −0.15 −0.85 −1 −0.18 −0.18
12 1 1 0 −0.05 −0.95 −1 −0.05 −0.05
13 18 1 1 0.10 0 0.10 0.11 1
14 10 5 5 0.50 0 0.50 1 1
15 4 12 4 0.40 0 0.40 0.67 1
16 14 3 3 0.30 0 0.30 0.42 1
17 1 10 1 0.50 0 0.50 1 1
18 3 11 3 0.45 0 0.45 0.81 1
19 15 17 15 0.75 0 0.75 1 1
20 9 14 9 0.45 0 0.45 0.81 1

6. Conclusions

Feature selection is a necessary step prior to any classification or mining problem
for efficient classification. Stable feature selection algorithm which produce subset of
features as unique as possible, is very important for identifying the most relevant and
interpretable features for further processing. Stability of any feature selection algorithm
refers to its robustness with respect to training set perturbations. Though the idea is simple,
its quantification seems challenging. A lot of stability measures for assessment of feature
selection algorithms have been proposed so far, but most of them do not follow all the
requisite properties of a stability measure.

In this work, at first, we have studied the existing stability measures for evaluation
of feature subset selection algorithms and their requisite properties. A leading property,
the property of correction for chance, is highlighted and fulfilled by Kuncheva index as a
stability measure of feature selection algorithms. However, Kuncheva index is unable to
handle variable sizes of feature subsets. To overcome this shortcoming, several modifica-
tions and extensions of Kuncheva index are proposed by different researchers. Lustgarten’s
measure, Wald’s measure, nPOG and the most recent Nogueira’s measure are the popular
measures for stability assessment of feature subset selection algorithms. However, it has
been found in our study that none of the measures satisfy all the required properties of a
stability measure.

Next, we further investigated Kuncheva index and its modifications and extensions
meticulously, highlighting their merits and limitations. We have summarized the required
properties of a stability measure and examined whether these are satisfied by the existing
popular measures. Finally we have proposed a new modified measure based on the
correction of Lustgarten’s stability measure. It is found by toy experiments that, with the
proposed new correction, corrected Lustgarten’s measure can overcome the limitations of
the other measures and satisfy all the tabulated properties here except the last one which
we have not considered in this work. The error in Lustgarten’s stability measure is found
to be very specific and systematic compared to erratic behaviour of other extensions of
Kuncheva index like Wald’s measure or Nogueira’s measure. So we attempted to correct
Lustgarten’s measure to define the new proposed measure and could be able to achieve a
new measure which produces consistent values. Stability of a feature selection algorithm
can also be considered to have a relationship with the data set. It can be used as a metric for
characterization of any data set. We would like to further explore to find out the suitability
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of any feature subset selection algorithm for a particular data set using our newly proposed
measure as a metric.
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Abbreviations and Symbols

POG Percentage of overlapping genes
POGR Modified POG by Zhang et al.
nPOG Normalized POG
nPOGR Normalized POGR
MS Mass spectrometry
SNP Single nucleotide polymorphism
GWA Genome wide association
M The number of feature subsets
φ(.) Average pairwise similarity
SI Similarity value
Si One feature subset
Sj Another feature subset
Wi Weight of feature subset Si
Wj Weight of feature subset Sj
n Total number of features
r The cardinality of intersection of two feature subsets Si, Sj
k Cardinality of feature subsets (when, |Si| = |Sj|)
E[.] Expected value
max Maximum value
min Minimum value
ki Cardinality of feature subset Si
kj Cardinality of feature subset Sj
SIL Lustgarten’s measure
SIW Wald’s measure
SIN Nogueira’s measure
SILnew Proposed corrected Lustgarten’s measure
Z(i,j) The number of features in feature subset Si
Z(j,i) The number of features in feature subset Sj
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