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Abstract: In this effort, we propose a new deep architecture utilizing residual blocks inspired by
implicit discretization schemes. As opposed to the standard feed-forward networks, the outputs
of the proposed implicit residual blocks are defined as the fixed points of the appropriately chosen
nonlinear transformations. We show that this choice leads to the improved stability of both forward
and backward propagations, has a favorable impact on the generalization power, and allows for
control the robustness of the network with only a few hyperparameters. In addition, the proposed
reformulation of ResNet does not introduce new parameters and can potentially lead to a reduction
in the number of required layers due to improved forward stability. Finally, we derive the memory-
efficient training algorithm, propose a stochastic regularization technique, and provide numerical
results in support of our findings.
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1. Introduction and Related Works

A large volume of empirical results has been collected in recent years illustrating the
striking success of deep neural networks (DNNs) in approximating complicated maps by
a mere composition of relatively simple functions [1]. Universal approximation property
of DNNs with a relatively small number of parameters has also been shown for a large
class of functions [2,3]. The training of deep networks nevertheless remains a notoriously
difficult task due to the issues of exploding and vanishing gradients, which become more
apparent and noticeable with increasing depth [4]. These issues accelerated efforts of the
research community in an attempt to explain this behavior and gain new insights into the
design of better architectures and faster algorithms. A promising approach in this direction
was obtained by casting evolution of the hidden states yt ∈ Yt of a DNN as a dynamical
system [5], i.e.,

yt+1 = Φt(γt, yt), t = 0, ..., T − 1,

where for each layer t, Φt : Γt ×Yt → Yt+1 is a nonlinear transformation parameterized by
the weights γt ∈ Γt, and Yt, Γt are the appropriately chosen spaces. In the case of a very
deep network, when T → ∞, it is convenient to consider the continuous time limit of the
above expression such that

y(t) = Φ
(
γ(t), x

)
, t > 0,
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where the parametric evolution function Φ : Γ×Y → Y defines a continuous flow through
the input data y(0) = x ∈ Y. Parameter estimation for such continuous evolution can be
viewed as an optimal controlling problem [6], given by

min
γ(t)

Eµ

[
L
(
y(T), f (x)

)
+
∫ T

0
R
(
γ(t), y(t)

)
dt
]

, (1)

subject to y(t) = Φ
(
γ(t), x

)
, (2)

where L
(
y(T), f (x)

)
is a terminal loss function, R

(
γ(t), y(t)

)
is a regularizer, and µ is

a probability distribution of the input–target data pairs (x, f (x)). More general models
additionally consider continuity in the “patial” dimension as well by using differential [7]
or integral formulations [8]. A continuous time formulation based on ordinary differential
equations (ODEs) was proposed in [9] with the state Equation (2) of the form

ẏ(t) = Φ
(
γ(t), y(t)

)
. (3)

In the work [9], the authors relied on the black-box ODE solvers and used adjoint sensitivity
analysis to derive equations for the backpropagation of errors through the continuous
system.

The authors of [10] concentrated on the well-posedness of the learning problem for
ODE-constrained control and emphasized the importance of stability in the design of
deep architectures. For instance, the solution of a homogeneous linear ODE with constant
coefficients

ẏ(t) = Ay(t)

is given by

y(t) = QeΛtQTx,

where A = QΛQT is the eigendecomposition of a matrix A, and Λ is the diagonal matrix
with the corresponding eigenvalues. The similar equation holds for the backpropagation
of gradients. To guarantee the efficient propagation of information through the network,
one must ensure that the elements of eΛt have magnitudes close to one. This condition,
of course, is satisfied when all eigenvalues of the matrix A are imaginary with real parts
close to zero. In order to preserve this property, the authors of [10] proposed several time
continuous architectures of the form ẏ(t) = Φ1

(
γ1(t), y(t), z(t)

)
,

ż(t) = Φ2
(
γ2(t), y(t), z(t)

)
.

(4)

When Φ1(y, z) = ∇z H(y, z), Φ2(y, z) = −∇y H(y, z), the equations above provide an
example of a conservative Hamiltonian system with the total energy H.

In the discrete setting of the ordinary feed forward networks, the necessary conditions
for the optimal solution of (1) and (2) recover the well-known equations for the forward
propagation (state Equation (2)), backward gradient propagation (co-state equation), and
the optimality condition, to compute the weights (gradient descent algorithm); see, e.g, [11].
The continuous setting offers additional flexibility in the construction of discrete networks
with the desired properties and efficient learning algorithms. Classical feed forward net-
works (Figure 1, left) is just the particular and the simplest example of such discretization,
which is prone to all the issues of deep learning. In order to facilitate the training process, a
skip-connection is often added to the network (Figure 1, middle) yielding

y = x + h ·Φ(γ, x), (5)
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where h is a positive hyperparameter. Equation (5) can be viewed as a forward Euler
scheme to solve the ODE in (3) numerically on the time grid with step size h. While it was
shown that such residual layers help to mitigate the problem of vanishing gradients and
speed-up the training process [12], the scheme has very restrictive stability properties [13].
This can result in the uncontrolled accumulation of errors at the inference stage reducing
the generalization ability of the trained network. Moreover, the Euler scheme is not capable
of preserving geometric structure of conservative flows and is thus a bad choice for the
long time integration of such ODEs [14].

γ, Φx y
γ, Φx y

γ, Φx y

Figure 1. From left to right: feed forward layer, residual layer, proposed implicit residual layer.

Memory efficient explicit reversible architectures can be obtained by considering time
discretization of the partitioned system of ODEs in (4). The reversibility property allows
for recovering the internal states of the system by propagating through the network in both
directions and thus does not require one to cache these values for the evaluation of the
gradients. First, such architecture (RevNet) was proposed in [15], and, without using a
connection to discrete solutions of ODEs, it has the form{

y1 = x1 + Φ1(γ, x2),
y2 = x2 + Φ2(γ, y1),

←→
{

x2 = y2 −Φ2(γ, y1),
x1 = y1 −Φ1(γ, x2).

It was later recognized as the Verlet method applied to the particular form of the system
in (4), see [10,16]. The leapfrog and midpoint networks are two other examples of reversible
architectures proposed in [16].

Other residual architectures can be also found in the literature including Resnet in
Resnet (RiR) [17], Dense Convolutional Network (DenseNet) [18] and linearly implicit
network (IMEXNet) [19]. For some problems, all of these networks show a substantial
improvement over the classical ResNet but still have an explicit structure, which has limited
robustness to the perturbations of the input data and parameters of the network. Instead,
in this effort, we propose new fully implicit residual architecture, which, unlike the above
mentioned examples, is unconditionally stable and robust.

As opposed to the standard feed-forward networks, the outputs of the proposed
implicit residual blocks are defined as the fixed points of the appropriately chosen nonlinear
transformations as follows:

y = x + Φ(γ, x, y). (6)

The right part of Figure 1 provides a graphical illustration of the proposed layer. One can
immediately recognize the feedback loop which is typical for recurrent neural networks
(RNN). The standard approach to train RNNs is by backpropagation through time, the
algorithm which requires substantial memory resources for deep unrolled recurrent net-
works. The authors of [20,21] utilized related to our idea of implicit layers to cope with this
issue by directly learning the equilibrium points of “infinite” depth recurrent models with
a constant memory complexity. The main difference of our approach is that we design the
feedback loop with a specific goal of driving the output of the implicit layer to the stable
fixed point. We will discuss the choice of the nonlinear transformation Phi in (6) and the
design of the training algorithm in the next section. It is also worth noting that the idea of
learning fixed points is not quite new and is rooting way back to the Hopfield networks
and content-addressable (“associative”) memory [22,23].
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After the first version of this manuscript has appeared, another work proposed the
similar idea of implicit Euler skip connections to enhance the adversarial robustness
of residual networks [24]. The authors of [24] modified the original residual block by
complementing it with a fixed number of steps of the gradient descent algorithm and
applied adversarial training to the modified architecture. While both efforts are inspired
by implicit numerical schemes for integrating ODEs, our approach is more general as
we ensure the convergence of the proposed implicit layer to the stable fixed point. As
discussed above and unlike the work in [24], in addition to the enhanced stability properties,
this approach does not increase the memory complexity of the original residual networks.
We also propose an initialization and regularization strategies which allow for training the
network efficiently and admit simple interpretation.

The preliminary results for the work proposed in the current manuscript have been
presented at the Second Symposium on Machine Learning and Dynamical Systems in the
Fields Institute [25]. Here, we provide a completely revised version of this work including
an in-depth description of the method, a new regularization approach, and much extended
numerical results.

2. Description of the Method

We first motivate the necessity for our new method by letting the continuous model
of a network be given by the ordinary differential equations in (4) that is: ẏ(t) = Φ1

(
γ1(t), y(t), z(t)

)
,

ż(t) = Φ2
(
γ2(t), y(t), z(t)

)
.

An s-stage Runge–Kutta (RK) method for the approximate solution of the above equations
is given by

ki = Φ1

(
γ1(t0 + cih), y0 + h

s

∑
j=1

aijk j, z0 + h
s

∑
j=1

âijlj

)

li = Φ2

(
γ2(t0 + ĉih), y0 + h

s

∑
j=1

aijk j, z0 + h
s

∑
j=1

âijlj

)
i, j = 1, .., s (7)

y1 = y0 + h
s

∑
i=1

biki, z1 = z0 + h
s

∑
i=1

b̂ili.

The order conditions for the coefficients aij, bi, ci, âij, b̂i, and ĉi, which guarantee that
convergence of the numerical solution is well known and can be found in any topical
text, see, e.g., [13]. Note that, when aij 6= 0 or âij 6= 0 for at least some j ≥ i, the scheme
is implicit and a system of nonlinear equations has to be solved at each iteration which
obviously increases the complexity of the solver. Nevertheless, the following example
illustrates the benefits of using implicit approximations.

2.1. Linear Stability Analysis

Consider the following linear differential system:

ẏ(t) = −ω2z(t), ż(t) = y(t) (8)

and four simple discretization schemes [13]:
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Forward Euler: y1 = y0 − hω2z0, z1 = z0 + hy0,

Backward Euler: y1 = y0 − hω2z1, z1 = z0 + hy1,

Trapezoidal: y1 = y0 −
hω2

2
(
z0 + z1

)
, z1 = z0 +

h
2
(
y0 + y1

)
,

Verlet: y0.5 = y0 −
hω2

2
z0, z1 = z0 + hy0.5, y1 = y0.5 −

hω2

2
z1.

Due to linearity of the system in (8), the numerical solution after n steps can be
written as (

yn
zn

)
= Rn(hω)

(
y0
z0

)
. (9)

The long time behavior of the discrete dynamics is hence determined by the spectral
radius of the matrix R(hω) (called the stability matrix), which needs to be less than or
equal to one for the sake of stability. For example, we have λ1,2 = 1± ihω for the forward
Euler scheme, and the method is unconditionally unstable. The Backward Euler scheme
gives λ1,2 = (1± ihω)−1 and the method is unconditionally stable. The corresponding
eigenvalues of the trapezoidal scheme have a magnitude equal to one for all ω and h.
Finally, the characteristic polynomial for the matrix of the Verlet scheme is given by
λ2 − (2− h2ω2)λ + 1, i.e., the method is only conditionally stable when |hω| ≤ 2.

Figure 2 illustrates this behavior for the particular case of ω = 50. Notice that the
flows of the forward and backward Euler schemes are strictly expanding and contracting;
if one had to fit the exact flow of the system in (8) using either of these methods, this would
result in an inherently ill-posed problem. On the contrary, the implicit trapezoidal and
explicit Verlet schemes seem to reproduce the original flow very well, but the latter is
conditional on the size of the step h. Another nice property of the trapezoidal and Verlet
schemes is their symmetry with respect to the exchanging yn ↔ yn−1 and zn ↔ zn−1. Such
methods play a central role in the geometric integration of reversible differential flows
and are handy in the construction of the memory efficient reversible network architectures.
Conditions for the reversibility of general Runge–Kutta schemes can be found in [14].

Forward Euler Trapezoidal Backward Euler Verlet

Figure 2. Phase diagrams of different numerical solutions of the system in (8).

The discussion above highlights the importance of the appropriate choice for both the
structure of a dynamical system (DS) and the corresponding time integrator. The stability
of a general Runge–Kutta method is often studied in application to the simpler scalar
test equation

ẏ(t) = λy, (10)
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and by analogy with (9) its stability function is given by

R(z) =
det

(
I − zA + z1bT)

det
(

I − zA
) , z = hλ,

where 1 = (1, ..., 1)T and A = (aij)
s
i,j=1, b = (bj)

s
j=1 are the parameters of the RK method

in (7) with the remaining parameters set to zero for the scalar test equation. From this
expression, one can see that the stability function of any explicit Runge–Kutta method is a
polynomial and hence is bounded only for z in a finite region of the complex plane. The set
of all such z with R(z) < 1 is called the stability region of the method.

2.2. Implicit ResNet

Motivated by the discussion above, we propose an implicit residual layer in (6) with a
nonlinear map Φ(γ, x, y) given by

Φ(γ, x, y) := (1− θ)F(γ, x) + θF(γ, y), θ ∈ [0, 1], (11)

or Φ(γ, x, y) := F(γ, (1− θ)x + θy), (12)

where x, y, γ are the input, output, and parameters of the layer, and F(γ, x) is a vector field
to be estimated. Table 1 shows the derivatives of the nonlinear maps in (11) and (12) with
respect to their arguments.

The stability function of the layers in (11) and (12) is given by

R(z) =
1 + (1− θ)z

1− θz
. (13)

The corresponding stability regions are illustrated in Figure 3 indicating the improved
stability of implicit layers for increasing θ.
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Figure 3. Stability regions (grey) and the contours of the stability function of implicit residual layers;
the corresponding regions where layers are contractive are shown in red while the hatched circles
contain the spectrum of the spectrally normalized 1-Lipschitz function F(γ, x).

Table 1. Derivatives of the nonlinear maps in (11) and (12).

Φ(γ, x, y) (1− θ)F(γ, x) + θF(γ, y) F(γ, z), z = (1− θ)x + θy
∂Φ(γ,x,y)

∂x (1− θ) ∂F(γ,x)
∂x (1− θ) ∂F(γ,z)

∂z
∂Φ(γ,x,y)

∂y θ
∂F(γ,y)

∂y θ
∂F(γ,z)

∂z

∂Φ(γ,x,y)
∂γ (1− θ) ∂F(γ,x)

∂γ + θ
∂F(γ,y)

∂γ
∂F(γ,z)

∂γ

Additionally, instead of a single layer in (6), one might consider a block of implicit
layers on a given “time interval” t ∈ [0, T]

yt = yt−1 + Φ(γt, yt−1, yt), t = 1, . . . , T, (14)

y0 = x.
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Note that, by viewing (14) as a numerical ODE integrator and to get the above expressions,
we have assumed that the ODE coefficients γ(t) are piecewise constant cádlág functions,
see Figure 4.

0 1 2 3 4 5

0

2

4

6

8

10

Figure 4. Cádlág function.

We will use (12) as the definition of implicit layers in the rest of this work.

2.2.1. Forward Propagation

Assume that the fixed point in (6) exists and can be computed. To solve the corre-
sponding nonlinear equation, consider the equivalent minimization problem

min
y
‖r(y)‖2, r(y) := y− x−Φ(γ, x, y). (15)

One way to construct the required solution is by applying the descent algorithm

yk+1 ← yk − λksk, k = 0, 1, 2, ...

where sk is the descent direction and λk is the corresponding step size. Several common
choices are summarized in Table 2.

Table 2. Common descent algorithms [26].

Method sk λk Parameters

gradient descent
Λk · ∇y‖r(yk)‖2 +

mk/λk Wolfe conditions scaling matrix Λk

momentum vector mk

quasi-Newton (Hk)−1 · ∇y‖r(yk)‖2 Wolfe conditions approximate Hessian
Hk

conjugate
gradient

∇y‖r(yk)‖2 − βksk−1 arg minλ
‖r(yk + λsk)‖2

conjugate direction
parameters βk

The required gradient of the residual norm can be computed as

∇y‖r(y)‖2 = 2 · ∂r(y)
∂y

T
· r(y), (16)

where the Jacobian of the residual vector is given by (c.f. Table 1)

∂r(y)
∂y

= I − ∂Φ(γ, x, y)
∂y

.
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The expression in (16) can be efficiently computed with the automatic differentiation
capabilities of any standard deep learning framework making it possible to interface
existing iterative solvers. However, optimized implementations of the gradient descent
algorithms are readily provided by any such framework. Hence, the forward propagation
for implicit layers can be easily implemented using built-in tools native to each framework
and without interfacing external solvers. Listing 1 shows the PyTorch pseudocode of the
implicit layer and the left part of Figure 5 illustrates its corresponding computational graph.

x
nsolve fpmap

ŷ y

γ

∇xL
nsolve fpmap

∇yL

∇γL

Figure 5. Forward and backward computational graphs of the implicit layer.

Listing 1. PyTorch pseudocode of the implicit residual block.

import torch

c l a s s fpmap ( torch . Function ) :
@staticmethod
def forward ( ctx , γ, x, ŷ ) :
y = x + Φ(γ, x, ŷ)
c t x . save_for_backward ( y, ŷ )
return y

@staticmethod
def backward ( ctx ,∇yL ) :
y, ŷ = c t x . saved_tensors
return (I − ∂y/∂ŷ)−T∇yL

def I m p l i c i t R e s i d u a l B l o c k ( x ) :

nsolve = lambda γ , x : arg minz ‖z− fpmap(γ, x, z)‖2

ŷ = nsolve(γ.detach(), x.detach())

return fpmap . apply ( γ, x, ŷ )

2.2.2. Backpropagation

We now show that, even though the nonlinearity in (6) adds to the complexity of
the forward propagation, the direct backpropagation through the nonlinear solver is not
required. Firstly, using the chain rule, we can easily find the Jacobian matrices of the
implicit residual layer as follows:

∂y
∂x

= I +
∂Φ(γ, x, y)

∂x
+

∂Φ(γ, x, y)
∂y

∂y
∂x

=

(
I − ∂Φ(γ, x, y)

∂y

)−1(
I +

∂Φ(γ, x, y)
∂x

)
,

and

∂y
∂γ

=
∂Φ(γ, x, y)

∂γ
+

∂Φ(γ, x, y)
∂y

∂y
∂γ

=

(
I − ∂Φ(γ, x, y)

∂y

)−1 ∂Φ(γ, x, y)
∂γ

.
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The backpropagation formulas then follow immediately:

∇xL =

(
I +

∂Φ(γ, x, y)
∂x

)T
∇yL and ∇γL =

∂Φ(γ, x, y)
∂γ

T
∇yL,

where ∇yL is the solution to the linear system(
I − ∂Φ(γ, x, y)

∂y

)T
∇yL = ∇yL. (17)

Note that the custom backpropagation for the fpmap function in Listing 1 is responsible
for the linear solve in (17). The gradients of the loss with respect to the parameters and
the input are then computed automatically by the deep learning framework. Finally, DL
frameworks allow for the cheap computation of the vector-Jacobian products in (17) and
hence for the efficient implementation of iterative linear solvers. For example, we utilize
restarted GMRES as a linear solver in our implementation.

2.3. fpResNet

Sophisticated solvers are not required for the nonlinear and linear systems in (15) and
(17) when Φ(γ, x, y) is a contractive mapping, i.e., when

Lip(Φ) := sup
y

∥∥∥∥∂Φ(γ, x, y)
∂y

∥∥∥∥
2
= θ sup

y

∥∥∥∥∂F(γ, y)
∂y

∥∥∥∥
2
< 1, (18)

where ‖ · ‖2 is the spectral norm of the matrix equal to its largest singular value. The red
color in Figure 3 is used to highlight the part of the complex plane {z : |z| < θ−1}, where
the above condition is satisfied for the Dahlquist test equation in (10). In this case, the
Banach fixed-point theorem ensures the convergence of the recurrence relation

yk+1 = x + Φ(γ, x, yk), k = 0, 1, ...

during the forward propagation. The same condition guarantees the validity of the Neu-
mann series expansion for the matrix inverse required for the backpropagation; one gets

∇yL =

(
I − ∂Φ(γ, x, y)

∂y

)−T
∇yL =

∞

∑
i=0

(
∂Φ(γ, x, y)

∂y

T
)i

∇yL =
∞

∑
i=0
∇i

yL,

with

∇i
yL =

∂Φ(γ, x, y)
∂y

T
∇i−1

y L, ∇0
yL = ∇yL.

Similarly to (17), each∇i
yL has a form of the vector-Jacobian product which can be efficiently

evaluated with any deep learning framework. In practice, however, such simple iterations
converge linearly with the rate proportional to the Lipschitz constant Lip(Φ) which can be
rather inefficient when Lip(Φ) ≈ 1.

2.4. Regularization

One way to ensure the stability of the neural network when viewed as a nonlinear
DS is by imposing a hard constraint on its parameters to make it globally dissipative or
conservative. This approach has been utilized, for instance, in [7,10] and applied to several
explicit, and hence only conditionally stable, residual network architectures. Another
approach that we employ here is by imposing the structure by regularization. In this
section, we review some common regularization techniques and propose a new one that
suits the presented implicit architecture.
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2.4.1. Lipschitz Continuous Architectures

Enforcing Lipschitz continuity of neural networks has been recognized as an im-
portant component in many applications. For instance, explicit bounds on the Lipschitz
constants of the loss function have been utilized to improve the robustness and establish
the generalization error of large margin classifiers and GAN discriminators in [27–30],
respectively. Lipschitz continuity has also been considered implicitly in [31,32] to improve
the adversarial robustness of DNNs and in [33] for the design of contractive auto-encoders.
In all these works, bounding the Lipschitz constants was implemented by penalizing the
norm of the Jacobian matrix of the network on the training dataset.

Spectral normalization of weight matrices can be used to provide the uniform bound
on the Lipschitz constant of the network. It has been applied to improve the stability
of deep networks in [34–36] and to construct invertible normalizing flows of probability
distributions in [37]. To justify the method, consider the common choice of F(γ, x) in (11)
as a composition of affine maps and contractive nonlinear activations, i.e.,

F(γ, x) = φn ◦ φn−1 ◦ ... ◦ φ1 ◦ x with φi ◦ x = σ(γi ◦ x + bi) s.t. ‖σ‖ ≤ 1.

The Lipschitz constant of F(γ, x) as a function of x can be bounded from above by

Lip(F) := sup
x

∥∥∥∥∂F(γ, x)
∂x

∥∥∥∥
2
≤

n

∏
i=1
‖γi‖2 =

n

∏
i=1

√
ρ(γT

i γi),

where ‖ · ‖2 is the spectral norm and ρ(A) denotes the spectral radius of a linear map A.
Hence, to ensure that Lip(F) ≤ α, it is enough to take

γ̃i =
γi

max
(

1,
‖γi‖2

αi

) s.t.
n

∏
i=1

αi ≤ α.

The exact calculation of the operator norm is expensive and one usually appeals to approx-
imate techniques such as the power iteration method [38]. According to this method, the
dominant singular vector v and the singular value µ of a linear operator A are estimated
iteratively as

vk+1 =
AT Avk

‖AT Avk‖
, µk =

√
(vk)T AT Avk = ‖Avk‖.

In practice, it is enough to take a fixed number (usually 1) of iterations at each weight
evaluation during the training stage since the parameters are not expected to change much
close to the convergence of the training loop. By observing that

AT Avk =
1
2

∂‖Avk‖2

∂vk =
1
2

∂(µk)2

∂vk ,
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Algorithm 1 provides a simple implementation of this approach.

Algorithm 1 Power iteration method

Input: linear map A, max iterations kmax
Initialize v0

v0 ← v0/‖v0‖
for k = 1, ..., kmax do

µ← ‖Avk‖
vk+1 ← 0.5 · ∂µ2/∂vk

vk+1 ← vk+1/‖vk+1‖
end for
Output: µ

More generally, spectral normalization allows for controlling the spread of the Jacobian

matrix
∂F(γ, x)

∂x
, i.e., the largest distance between its eigenvalues

s
(

∂F(γ, x)
∂x

)
:= max

i,j

{
|λi − λj|

}
.

By definition of the spectral radius, one has

ρ

(
∂F(γ̃, x)

∂x

)
≤
∥∥∥∥∂F(γ̃, x)

∂x

∥∥∥∥
2
≤ 1 → Re

(
λi
)
∈ [−1, 1] ∀i.

Hence, by denoting F−1,1(γ, x) := F(γ̃, x), we obtain

Fα,β(γ, x) =
α + β

2
x +

β− α

2
F−1,1(γ, x) → Re

(
λi
)
∈ [α, β] ∀i,

so that all eigenvalues of the Jacobian
∂Fα,β(γ, x)

∂x
are located in the disc with radius

(β− α)/2 centered at (α + β)/2. In practice, we use the more flexible form of this definition

Fα,β(γ, x) =
α + β

2
x +

β− α

2
S(ϑ)� F−1,1(γ, x), (19)

where � is the Hadamard product, ϑ are additional learnable parameters, S(ϑ) has the
same dimensionality as F−1,1(γ, x), and each Si(ϑi) ∈ (0, 1) is the sigmoid function.

2.4.2. Trajectory Regularization

The Lipschitz constant of the proposed residual block in (6) is defined as

Lip(y) := sup
x

∥∥∥∥∥
(

I − ∂Φ(γ, x, y)
∂y

)−1(
I +

∂Φ(γ, x, y)
∂x

)∥∥∥∥∥
2

,

and, for the linear scalar test equation in (10), it is given by the stability function (13) of the
method. The hatched circle in Figure 3 contains the spectrum of the 1-Lipschitz function
F(γ̃, x) and shows that the Lipschitz constant of a residual block can fall outside of its
stability region. Moreover, the pole of (13) is located at z = θ−1 and the stability of implicit
layers might actually degrade with increasing θ ∈ [0, 1] if no additional precautions are
taken to isolate the spectrum of the layers from its vicinity. This can be achieved, for
instance, by setting F(γ, x) := Fα,θ−1

(γ, x) for some α < θ−1.
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Previous works have focused on improving the efficiency of residual and neural ODE
architectures by regularizing their vector fields in a way that leads to a simpler dynamical
behavior. For example, the authors of [39] considered the following regularizer

R(γ) := αK

∫ T

0
‖F(γ(t), y(t))‖2dt + αJ

∫ T

0

∥∥∥∥∂F(γ(t), y(t))
∂y

∥∥∥∥2

F
dt.

The first term encourages the trajectories with origin in the training dataset to follow
straight lines, while the second term reduces overfitting by restricting the vector field to
be nearly constant in the vicinity of each trajectory. A more general approach has been
taken in [40] by directly penalizing the K-th order total derivative of the vector field along
the solution trajectories. It has been shown that, by matching K to the order of numerical
integrator, it is possible to significantly reduce the cost of solving the learned dynamics
without sacrificing the resulting accuracy.

Instead, we consider “discrete-time” regularization of the form

R(γ) :=
1
T

(
T

∑
t=0

′
[

αdiv
d

(
t
T

)p
∇ · F(γt, yt) +

αjac

d2

∥∥∥∥∂F(γt, yt)

∂yt

∥∥∥∥2

F

]
+

αTV
T

T

∑
t=1
‖γt − γt−1‖2

)
, (20)

where ∑ ′ is the trapezoidal quadrature rule, d is the dimension of the vector field F :
Γ×Rd → Rd, p ≥ 0 is some fixed number, and ∇ · F(γt, yt) is the divergence of F(γt, yt).

The total variation (TV) like term in (20) is responsible for the temporal regularity of the
vector field F(γ(t), y(t)). Similarly to the approach of [39,40], the second term penalizes the
Jacobian matrix of the layer producing vector fields which tend to be constant in the vicinity
of the learned trajectories; this results in simpler dynamics and faster convergence. Finally,
the first term in (20) promotes the negative divergence of F(γt, yt) along the trajectories.
By definition of the divergence of the vector field, one has

∇ · F(γt, yt) =
d

∑
i=1

(
∂F(γt, yt)

∂yt

)
ii
= Tr

(
∂F(γt, yt)

∂yt

)
=

d

∑
i=1

λi

(
∂F(γt, yt)

∂yt

)
,

i.e., it is equal to the sum of eigenvalues of the Jacobian matrix. By minimizing this term,
we attempt to push the spectrum of the Jacobian matrix to the negative part of the complex
plane so that we can take advantage of the enhanced stability of implicit layers in this
region. In addition, note that, by definition, the squared Frobenius norm of a matrix is
equal to the sum of its squared singular values

∥∥∥∥ ∂F(γt, yt)

∂yt

∥∥∥∥2

F
=

d

∑
i=1

d

∑
j=1

(
∂F(γt, yt)

∂yt

)2

ij
= Tr

(
∂FT(γt, yt)

∂yt

∂F(γt, yt)

∂yt

)
=

d

∑
i=1

σ2
i

(
∂F(γt, yt)

∂yt

)
.

Hence, the first two terms in (20) are competing with each other, and the coefficient (t/T)p

is used to balance these two components by increasing the level of dissipation along the
trajectories. The divergence term, however, does not impact the off-diagonal part of the
Jacobian matricies, and, for large enough αdiv, this will promote their diagonal dominance.

According to the Gershgorin circle theorem, every eigenvalue of a matrix A lies within
at least one of the Gershgorin discs D(aii, ri) with ri = ∑i 6=j |aij|. This means that the
optimal solution of the optimization problem with the proposed regularizer in (20) will
result in the dynamics that are strongly dissipative in the directions irrelevant for the
accurate representation of the training data effectively reducing the dimension of the state
space. The behavior of the dynamical system in the remaining directions along the so-
obtained low-dimensional state manifold can potentially be arbitrary and, with a proper
balance between the loss and regularization, should not decrease the expressive power of
the network.
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For the efficient evaluation of the divergence and Jacobian regularizers in (20), we
utilize the unbiased stochastic Hutchinson trace estimator [41] to obtain

∇ · F(γt, yt) = Ez∼N (0,1)

[
zT ∂F(γt, yt)

∂yt
z
]

,

∥∥∥∥∂F(γt, yt)

∂yt

∥∥∥∥2

F
= Ez∼N (0,1)

[∥∥∥∥zT ∂F(γt, yt)

∂yt

∥∥∥∥2
]

.

This approach has also been applied in [39,42]. Algorithm 2 provides a more general
variant of Hutchinson algorithm which allows for estimating the diagonal of a matrix [43].
This can be convenient when one needs to control the magnitude of the diagonal elements
rather than just their sum.

Algorithm 2 Stochastic diagonal estimator

Input: linear map A, max iterations kmax
Initialize D0 = 0
for k = 1, ..., kmax do

vk ← N (0, 1)
tk ← tk−1 +

(
A(vk)� vk)

qk ← tk−1 +
(
vk � vk)

Dk ← tk � qk

end for
Output: Approximate diagonal Dkmax of A

3. Results

The source code used to generate all examples below can be found at https://github.
com/vreshniak/ImplicitResNet.

3.1. Example 1. (Regression)

For the first example, we consider the simple problem that can be easily visualized.
The goal is to approximate the one-dimensional sine function in Figure 6 given N = 20 data
points evenly distributed on the interval x ∈ [−5, 5]. Following the approach of [44], we
augment the original one-dimensional data with an additional dimension initialized with
zero. The resulting two-dimensional vector field F(γ, y) : Γ×R2 → R2 is approximated
by a multilayer perceptron using three hidden layers of width 10 and GeLU activation
function, i.e.,

F(γ, y) = γoutσ

(
γ3σ

(
γ2σ

(
γ1σ(γiny + b0) + b1

)
+ b2

)
+ b3

)
,

where γin ∈ R10×2, γout ∈ R2×10, γi ∈ R10×10 and bi ∈ R10×1.

https://github.com/vreshniak/ImplicitResNet
https://github.com/vreshniak/ImplicitResNet
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Figure 6. Training data in Examples 1–3.

We used T = 5 residual layers with shared parameters initialized with a Xavier
uniform initializer and trained the network for 3000 epochs using Adam optimizer and the
regularized loss given by

L(γ) :=
1
N

N

∑
i=1

∥∥∥g(yi
T)− f (xi)

∥∥∥2
+

1
T

T

∑
t=0

′
[

αdiv
d

(
t
T

)2
∇ · F(γ, yi

t) +
0.1
d2

∥∥∥∥∥∂F(γ, yi
t)

∂yi
t

∥∥∥∥∥
2

F

], (21)

where d = 2 is the dimension of the hidden state space and g(yT) gives the last com-
ponent of yT . The initial learning rate was set to 10−3 and reduced dynamically using
ReduceLROnPlateau PyTorch scheduler with patience and cooldown parameters set to
50 epochs.

Figure 7 shows the learned vector fields and eigenvalues of the Jacobian ∂F(γ,y)
∂y along

the learned trajectories for several values of θ and αdiv. Additionally, the top row of Figure 8
depicts the evolution of the loss components in (21), and the number of nonlinear iterations
of the trained network for the selected parameter values. One can see that, with the
Jacobian regularization alone (αdiv = 0, αjac = 0.1), implicit methods demonstrate similar
dynamical behavior for all considered values of θ: (1) the learned vector fields take full
advantage of all two available dimensions and tend to be expansive, note the increasing
divergence in Figure 8, (2) the learned trajectories mostly follow straight lines, and (3) aside
from the fully explicit scheme (θ = 0), the costs of all the methods are nearly identical,
see the bottom row of Figure 8. By increasing αdiv, one starts observing the formation of a
lower dimensional invariant manifold with increasingly dissipative orthogonal dynamics
indicated by the negative part of the spectrum of ∂F(γ,y)

∂y and the evolution of the filled
regions in Figure 7. As the resulting dynamics becomes more restricted and less trivial,
the following observations can be made: (1) the model tends to be less flexible and more
difficult to fit the data, (2) the cost of the model is increasing with αdiv and θ, and (3) the
explicit method demonstrates unstable oscillatory behavior when the level of dissipation
exceeds its stability threshold.
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Figure 8. (Top) Learned vector fields F(γ, y) in Example 1. Blue line is the initial state, red
curve is the final state after T = 5 steps, solid black lines are the trajectories of the training data.
(Bottom) Eigenvalues of ∂F(γ,y)

∂y evaluated along the learned trajectories at times t = 0, ..., T. Red and
blue dots are used for the train and test datasets respectively. Stability regions of implicit layers are
highlighted with grey color and the contours depict the values of the stability function.

Figure 7. (Top) Learned vector fields F(γ, y) in Example 1. Blue line is the initial state, red curve is the final state after
T = 5 steps, solid black lines are the trajectories of the training data. (Bottom) Eigenvalues of ∂F(γ,y)

∂y evaluated along the
learned trajectories at times t = 0, ..., T. Red and blue dots are used for the train and test datasets, respectively. Stability
regions of implicit layers are highlighted with grey color and the contours depict the values of the stability function.
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Figure 8. (Top) Evolution of the training loss components in (21) for Example 1. (Bottom) Nonlinear iterations per residual
layer of the trained network.

3.2. Example 2. (Stiff ODE)

In our second example, we aim to fit the model to the given stiff ODE

ż = −20
(
z− cos(t)

)
, t ∈ [0, 2]. (22)

The training data in Figure 6 consist of 100 trajectories with randomly sampled initial
conditions and the given number of uniformly distributed points along each trajectory as
shown in Figure 9.
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Figure 9. (Top) A single trajectory generated by three trained implicit residual networks for the problem in Example 2.
(Bottom) Continuous-time trajectory generated by the learned vector fields of these residual networks.



Mach. Learn. Knowl. Extr. 2021, 3 50

Since the exact Lipschitz constant of the forcing term is equal to −20, we use
F−25,−15(γ, x) in (19) with the one-dimensional vector field F(γ, x) : Γ×R1 → R1 given by
the multilayer perceptron with 2 hidden layers of width 4 and ReLU activation
function, i.e,

F(γ, y) = γoutσ

(
γ2σ

(
γ1σ(γiny + b0) + b1

)
+ b2

)
,

where γin ∈ R4×1, γout ∈ R1×4, γi ∈ R4×4 and bi ∈ R4×1.
We took T = 20 residual layers initialized with Xavier uniform initializer and trained

the network for 50 epochs using Adam optimizer, batch of size 1, and the regularized loss
given by

L(γ) :=
1

N · {2, 4, 10}
N

∑
i=1

{2,4,10}

∑
j=1

∥∥∥yi
j − zi

(
ti
0 +

j
{1, 2, 5}

)∥∥∥2
+

0.1
T

T

∑
t=1
‖γt − γt−1‖2. (23)

The top row of Figure 9 illustrates the evolution of the single trajectory generated by
three residual models with θ = 0.0, 0.5 and 1.0. Each model was trained using the loss
function in (23) with 2, 4 and 10 points taken along the trajectories of the training dataset.
One can see that the explicit ResNet is unstable as was expected for the stiff system in (22),
and the generated solution becomes increasingly oscillatory along the transient part of the
trajectory as we increase the number of the training points from 2 to 10. This is due to the
model attempting to be increasingly expressive for the data it cannot potentially fit. Once
the dynamical system relaxes to the slow manifold, the accuracy of the model improves
slightly but remains susceptible to the orthogonal perturbations. In order to stabilize the
model, more layers need to be taken which will lead to the increased memory footprint and
computational complexity. At the same time, both implicit residual networks with θ = 0.5
and 1.0 are unconditionally stable and improve their accuracy with increasing number of
the training points as expected.

The bottom row of Figure 9 shows the continuous dynamics generated by the vector
fields learned by three considered implicit models. In this case, the discrete-time stability
is not an issue anymore. However, the corruption caused by the instability of the explicit
method transfers to the inaccurate behavior of the continuous system as well. On the
contrary, both implicit methods lead to the satisfactory approximation of the original vector
field with the midpoint scheme (θ = 0.5) being observably more accurate, likely due to its
higher order of convergence. This suggests the proposed implicit networks as a means for
learning stiff continuous-time ODE systems.

3.3. Example 3. (Periodic ODE)

In this example, we consider the Lotka–Volterra system given by

ż1 = αz1 − βz1z2, (24)

ż2 = δz1z2 − γz2

with α = 2
3 , β = 4

3 , and δ = γ = 1. These equations are used to model the time evolution of
the biological systems with two interacting species one being the prey and the other being
the predator. The model has two equilibrium points when neither of the two interacting
populations is changing. The first equilibrium is at z1 = z2 = 0 and the non-trivial one is
at z1 = γ/δ = 1, z2 = α/β = 1

2 . Other solutions are periodic and lie on the closed curves
in the phase space. Figure 6 shows five such curves; each curve contains 51 points which
are distributed uniformly on the time interval t ∈ [0; 10] and used as the training data for
our example.
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To fit this data, we utilized implicit residual networks with T = 50 layers and the
two-dimensional vector field approximated by the multilayer perceptron with four hidden
layers of width 20 and ReLU activation functions, i.e.,

F(γ, y) = γoutσ

(
γ4σ

(
γ3σ

(
γ2σ

(
γ1σ(γiny + b0) + b1

)
+ b2

)
+ b3

)
+ b4

)
,

where γin ∈ R20×2, γout ∈ R2×20, γi ∈ R20×20 and bi ∈ R20×1. We initialized the network
with Xavier uniform initializer and trained it for 3000 epochs using Adam optimizer, full
batch size, and the loss given by

L(γ) :=
1

50 · N
N

∑
i=1

50

∑
j=1

∥∥∥yi
j − zi(0.2j)

∥∥∥2
.

Note that we did not use any form of weight normalization or regularization.
Figure 10 shows the learned trajectories and eigenvalues of the vector field along

these trajectories for three implicit networks with θ = 0.0, 0.5 and 1.0 on the time interval
t ∈ [0, 10]. At a first glance, all three networks learn very similar vector fields and can
accurately fit the data on the time interval of the training dataset. Moreover, the top row of
Figure 11 shows that all three methods are also successful at extrapolating the dynamics
to the time interval t ∈ [0, 200]. However, the bottom row of the same figure shows that
the midpoint scheme (θ = 0.5) is the only one which produces the vector field accurate for
the long-time integration of the continuous dynamics. This behavior is indeed expected
since the method is a geometrical integrator for this type of system, recall Figure 2 and
the discussion in Section 2. The explicit residual network (θ = 0.0) is strictly expanding
for such conservative systems, and the learned vector field tends to compensate for this
behavior resulting in the dissipative continuous dynamics. The situation is reverse for the
backward Euler integrator (θ = 1.0) since the method is strictly dissipative and hence the
learned vector field is overly expanding.
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Figure 10. (Top) Learned vector fields and trajectories for the system in Example 3 on the time interval t ∈ [0, 10]. (Bottom) Eigenvalues
of the vector fields along these trajectories.
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data θ = 0.0 θ = 0.5 θ = 1.0

Figure 11. (Top) A single trajectory generated by three trained implicit residual networks for the problem in Example 3 on the time
interval t ∈ [0, 200]; (Bottom) continuous-time trajectory generated by the learned vector fields of these residual networks on the same
time interval.

3.4. Example 4. (MNIST Classification)

For the last example, consider the problem of classifying images of handwritten digits
from the subset of MNIST dataset of size 1000. For this purpose, we adopt the standard
preactivation ResNet-18 architecture with eight initial channels and train the network using
the Adam optimizer for 100 epochs with learning rate of 10−2. We used the cross entropy
loss function

L(γ) :=
1
N

N

∑
i=1

[
−yi

label + log

(
9

∑
j=0

exp(yi
j)

)]

and normalized the forcing terms F(γ, x) of all residual layers as F−3,1(γ, x) using (19).
Additionally, the divergence regularization in (20) with αdiv = 0.01 was applied to each
residual layer.

To test the robustness of the trained network, we corrupted the original dataset with
the Gaussian noise of varying standard deviation. Table 3 illustrates the classification accu-
racy for different levels of noise intensity and five different implicit residual networks. The
results show that the implicit architectures with a proper regularization can significantly
improve the robustness properties of trained networks.

Table 3. Classification accuracy in Example 4 for different levels of Gaussian noise corruption.

Noise
Intensity

Top-1 Accuracy Top-2 Accuracy
θ = 0 0.25 0.50 0.75 1.00 θ = 0 0.25 0.50 0.75 1.00

0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.1 98.2 99.6 99.9 99.9 99.9 99.7 100.0 100.0 100.0 100.0
0.2 89.2 95.7 96.3 98.3 98.4 96.7 99.3 99.8 100.0 100.0
0.3 74.7 86.0 89.3 93.2 93.6 89.0 95.2 97.8 99.0 98.8
0.4 59.3 74.1 77.2 81.8 84.7 75.5 89.1 91.1 94.4 95.0
0.5 47.2 60.4 64.7 69.8 73.0 65.7 79.6 83.4 87.1 87.9
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4. Conclusions and Future Work

In this work, we presented a novel implicit residual layer and provided a memory-
efficient algorithm to evaluate and train deep neural networks composed of such layers. We
also proposed a regularization technique to control the spectral properties of the presented
layer and showed that it leads to improved stability and robustness of the trained networks.
The obtained numerical results support our findings.

We see several opportunities for potential improvements to the presented architecture.
For example, implementations of the forward and backward propagation algorithms can
be further optimized to account for the repetitive nature of the training process. This in-
cludes the better estimation of initial guesses for nonlinear solvers and preconditioners
for linear solvers and other ways to reuse available information from previous runs. It is
also interesting to study other, possibly multistep, types of implicit residual layers and
their combinations. In this regard and in addition to the provided examples, we plan to
identify the best use cases and applications for deep residual networks containing implicit
layers. In particular, we are interested in exploring the impact of adversarial training and
the proposed spectral regularization on the properties of the trained implicit networks.
Other applications of interest include the identification of physical systems with known
properties such as energy dissipation/conservation, large horizon time series forecasting,
applications with corrupted and noisy data, etc. Finally, as the proper regularization is es-
sential for the good performance of implicit layers, new regularization approaches tailored
to specific applications should also be analyzed. We intend to study these questions in our
future works.
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