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Abstract: Link prediction in complex networks has attracted considerable attention from
interdisciplinary research communities, due to its ubiquitous applications in biological networks,
social networks, transportation networks, telecommunication networks, and, recently, knowledge
graphs. Numerous studies utilized link prediction approaches in order sto find missing links or predict
the likelihood of future links as well as employed for reconstruction networks, recommender systems,
privacy control, etc. This work presents an extensive review of state-of-art methods and algorithms
proposed on this subject and categorizes them into four main categories: similarity-based methods,
probabilistic methods, relational models, and learning-based methods. Additionally, a collection of
network data sets has been presented in this paper, which can be used in order to study link prediction.
We conclude this study with a discussion of recent developments and future research directions.

Keywords: complex networks; graph analysis; proximity; supervised link prediction; unsupervised
link prediction

1. Introduction

Online social networks [1], biological networks, such as protein–protein interactions and
genetic interactions between organisms [2], ecological systems of species, knowledge graphs [3],
citation networks [4], and social relationships of users in personalized recommender systems [5],
are all instances of graphs of complex interactions, which are also referred to as complex networks.
While these networks are almost always dynamic in nature, a vital query is how they change over time.
More specifically, what are the future associations between entities in a graph under investigation.
The problem of link prediction in graphs is one of the most interesting and long-standing challenges.
Given a graph, which is an abstraction of relationships among entities of a network, link prediction
is to anticipate future connections among entities in the graph, with respect to its current state.
Link prediction models might

(i) exploit the similarity metrics as the input features,
(ii) embed the nodes into a low dimensional vector space while preserving the topological structure

of the graph, or
(iii) combine the information that is derived from the two aforementioned points, with the node

attributes available from the data set.

All of these models rely on the hypothesis that higher similarity between nodes results in a higher
probability of connection [6].
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Applications of link prediction include analyzing user–user and user–content recommendations
in online social networks [5,7–9], reconstruction of the PPI (protein–protein interaction) network
and reducing the present noise [10–12], hyper-link prediction [13], prediction of transportation
networks [14], forecasting the behavior of terrorism campaigns and social bots [15,16], reasoning and
sensemaking in knowledge graphs [17], and knowledge graph completion while using data
augmentation with Bidirectional Encoder Representations from Transformers (BERT) [18,19].
Link prediction in these applications has been mostly investigated through unsupervised graph
representation and feature learning methods that are based on the node (local) or path (global)
similarity metrics that evaluate the neighboring nodes. Common neighbors, preferential attachment,
Jaccard, Katz, and Adamic Adar are some of the most widely used similarity metrics that measure the
likelihoods of edge associations in graphs. While these methods may seem to be dated, they are far from
being obsolete. Despite the fact that these methods do not discover the graph attributes, they have
remained popular for years, due to their simplicity, interpretability, and scalability. Probabilistic
models, on the other hand, aim to predict the likelihood of future connections between entities in an
evolving dynamical graph with respect to the current state of the graph. Another context under which
the problem of link prediction is raised is relational data [20–23]. In this context, when considering the
relational data set in which objects are related to each other, the task of link prediction is to predict
the existence and type of links between pairs of objects [24]. However, the availability of labeled data
allows for the supervised machine learning algorithms to provide new solutions for the link prediction
task, including neural network-based methods for link prediction [25], which allow for learning a
suitable heuristic than assuming strong relationships among vertices.

Similar surveys on the topic of link prediction exist, and this survey has benefited from them.
The work of [26] provides a comprehensive review of the problem of link prediction within different
types of graphs and the applications of different algorithms. Other related review papers on this topic
include the works of [27,28]. The work of [28] reviews the progress of link prediction algorithms
from a physical perspective, applications, and challenges for this line of research. While some of
these reviews only focus on a specific set of methodologies that are proposed for link prediction,
such as the work of [27], which presents an extensive review on relational machine learning algorithms,
specifically designed for knowledge graphs, some important related methodologies are overlooked in
the aforementioned studies. For instance, [28] does not discuss some important graph feature learning
and neural network-based techniques that have been recently developed. Our effort has been to provide
a review that includes the most recent approaches for the problem of link prediction that demonstrate
promising results, but are not fully covered by exceptional similar surveys, such as the works
of [26–28]. Thus, we believe that our study provides comprehensive information on the topic of link
prediction for large networks, and it can help to discover the most related link prediction algorithms
that are deliberately categorized into the proposed taxonomy. This study reviews similarity-based
methods, including local, global, and quasi-local approaches, probabilistic and relational methods
as unsupervised solutions to the link prediction problem, and, finally, learning-based methods,
including matrix factorization, path and walk based link prediction models, and using neural networks
for link prediction.

2. Background

A graph (complex network), denoted as G = 〈V, E〉, can be defined as the set of vertices (nodes)
V, and the interactions among pairs of nodes, called links (edges) E, at a particular time t. It should be
noted that in this problem setting, self-connections, and multiple links between nodes are not allowed
and, accordingly, are not taken into account in the majority of link prediction problem settings [28].
The main idea behind applying feature extraction or feature learning-based methods for the link
prediction problem is to use the present information regarding the existing edges in order to predict
the future or missing link that will emerge at time t

′
> t. The types of graphs can be classified into

two main categories according to the direction of the information flow between interacted nodes;
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directed and undirected graphs. Although many of the discussed methods in the next sections of
this paper can provide solutions to the link prediction problem in directed graphs, the majority of
the reviewed methods in this survey address the problem of link prediction for undirected graphs.
The difference between the link prediction problem for these two graph categories arises from the
additional information that is required for the directed graphs. This information refers to the origin of
the associated link in directed graphs, in which 〈vx, vy〉 conveys the existence of a directed edge from
node vx to vy and 〈vx, vy〉 6= 〈vy, vx〉 [29]. However, edges in undirected graphs have no orientation,
and the relations among the node pairs are reciprocal. The set of nodes that are connected to node
vx ∈ V are known as the “neighbors” of vx, denoted as Γ(vx) ⊆ V, and the number of edges that are
connected to the node vx is referred to as |Γ(vx)|. Link prediction algorithms necessitate training and
test sets to be compared in the case of model performance, similar to other machine learning methods.
However, one cannot know the future links of a graph at time t

′
, given the current graph structure.

Therefore, a fraction of links from the current graph structure is deleted (Figure 1), and taken as the test
set; whereas, the remaining fraction of edges in the graph is used for the training purpose. A reliable
link prediction approach should provide higher probabilities for the edges that belong to the set of
true positives than the set of nonexistent edges [30]. Apparently, by treating the link prediction task as
a binary classification problem, conventional evaluation metrics of binary classification in machine
learning can be applied in order to evaluate the performance of link prediction. Within the context
of the confusion matrix, TP (True Positive), FP (False Positive), TN (True Negative), and FN (False
Negative) metrics can be used in order to assess performance. In this context, sensitivity, specificity,
precision, and accuracy are computed, as follows ([31]):

Sensitivity (Recall) =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

Accuracy =
TP + TN

TP + TN + FP + FN

(1)

The most common standard metric that is used to quantify the performance of the link prediction
algorithms is “the area under the receiver operating characteristic curve (AUC)” [32]. The AUC value
represents the probability that a randomly selected missing link between two nodes is given a higher
similarity score than the randomly selected pair of unconnected links. The algorithmic calculation of
AUC is given by:

AUC =
n′ + 0.5n′′

n
(2)

where n is the number of total independent comparisons and n′ is the number of comparisons in which
the missing link has a higher score than the unconnected link, while n′′ is the number of comparisons
when they show equal scores.

Figure 1. Imaginary representation of (a). Directed whole graph (b). Undirected whole graph (c).
Undirected training graph.
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One of the applications of link prediction is in recommender systems [5,33] that exploit
information on users’ social interactions in order to find their desired information according to
their interests and preferences. Therefore, within this context, the following evaluation metrics are also
used [34–36]:

Precision at n =
r
n

Recall at n =
r
R

Mean Reciprocal Rank =
1
|Q|

|Q|

∑
i=1

1
ranki

Average Precision =
n

∑
k=1

P(k)∆r(k)

Mean Average Precision =
∑Q

q=1 AveP(q)

Q

(3)

In the above equations, Precision at n shows the number of relevant results (r) among the top n
results or recommendations. In Recall at n, R presents the total number of relevant results. In order to
calculate Mean Reciprocal Rank, first, the inverse of the ranking of the first correct recommendation is
calculated ( 1

ranki
) and, then, an average over the total queries (Q) is taken. In order to calculate Average

Precision, Precision at a threshold of k in the list is multiplied by the change in recall from items k− 1 to
k, and this process is summed over all of the positions in the ranked sequence of documents. The Mean
Average Precision is then the average of all Average Precisions over total queries (Q).

In order to provide a few visualization examples for complex networks, Figure 2 demonstrates the
network structure of the two different hashtag co-occurrence graphs (#askmeanything and #lovemylife)
of the Instagram posts from 04/01/2020 to 04/08/2020. These two different figures clearly demonstrate
the variability of the network structure, even in the same fields, i.e., Figure 2a. shows different
sub-communities with its more sparse structure, while Figure 2b. represents a densely connected
network example.

a. b.

Figure 2. Hashtag co-occurrence graph (via Gephi) of (a). #askmeanything (757 nodes and 16046 edges),
(b). #lovemylife (2748 nodes and 63413 edges). Each network is colored by the modularity ranking.
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3. Similarity Based Methods

Similarity-based methods, which mainly focus on the topological structure of the graph, are the
most straightforward and oldest link prediction metrics. These methods try to figure the missing links
out by assigning similarity score, s(vx ,vy), between node pairs (vx and vy) using the structural property
of the graphs. These methods can be investigated under three main categories: local, quasi-local,
and global approaches.

3.1. Local Similarity-Based Approaches

Local similarity-based approaches are based on the assumption that, if node pairs have common
neighbor structures, they will probably form a link in the future. Because they only use local topological
information based on neighborhood-related structures rather than considering the whole network
topology, they are faster than the global similarity-based approaches. Many studies also showed
their superior performance, especially on the dynamic networks [37]. However, they are restricted to
compute the similarity of all possible combinations of the node pairs, since they only rank similarity
between close nodes with a distance of less than two.

3.1.1. Common Neighbors (CN)

CN is one of the most extensive information retrieval metrics for link prediction tasks, due to its
high efficiency, despite its simplicity. The idea behind CN is very intuitive; the probability of being
linked for two nodes in the future is affected by the number of their common neighboring nodes, i.e.,
two nodes will highly probably establish a link if they have more shared nodes. The score of this
metric can be defined, as follows:

sCN
(vx ,vy)

= |Γ(vx) ∩ Γ(vy)| (4)

where Γ(.) represents the set of adjacent nodes.
It should be noted that the resulting score using CN is not normalized, and only shows the relative

similarity of different node-pairs by considering shared nodes between them. Newman used CN in
order to show that the probability of collaboration between two scientists in the future can be estimated
by their previous common collaborators [38].

3.1.2. Jaccard Index (JC)

The metric not only takes the number of common nodes into account as in CN, but it also
normalizes it by considering the total set of numbers of shared and non-shared neighbors. The equation
of this score that is proposed by Jaccard [39] is:

sJC
(vx ,vy)

=
|Γ(vx) ∩ Γ(vy)|
|Γ(vx) ∪ Γ(vy)|

(5)

3.1.3. Salton Index (SL)

SL is the metric that is also known as cosine similarity. It calculates the cosine angle between the
two columns of the adjacency matrix and it is identified as the ratio of the number of shared neighbors
of vx and vy to the square root of inner-product of their degrees [40], as follows:

sSL
(vx ,vy)

=
|Γ(vx) ∩ Γ(vy)|√
|Γ(vx)|.|Γ(vy)

(6)

Wagner & Leydesdorff [41] showed that SI is an efficient metric, especially when the aim is to
visualize the constructional pattern of relations in a graph.
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3.1.4. Sørensen Index (SI)

The index, which is very similar to JC, is generated to make a comparison between different
ecological samples [42], such that:

sSI
(vx ,vy)

=
|Γ(vx) ∩ Γ(vy)|
|Γ(vx)|+ |Γ(vy)|

(7)

The difference in using the summation of the degrees instead of the size of the union of their
neighbors makes SI less outlier sensitive when compared to JC [43].

3.1.5. Preferential Attachment Index (PA)

Motivated by the study by Barabasi & Albert [44], new nodes joining the network are more likely
to connect with the nodes with higher connections (hub) than the nodes with lower degrees, PA can be
formulated as:

sPA
(vx ,vy)

= |Γ(vx)|.|Γ(vy)| (8)

3.1.6. Adamic-Adar Index (AA)

The metric is employed for the necessity of the comparison of two web-pages by Lada Adamic
and Eytan Adar [45]. It simply uses the idea of giving more weight to the relatively fewer common
neighbors, such that:

sAA
(vx ,vy)

= ∑
vz∈(Γ(vx)∩Γ(vy))

1
log |Γ(vz)|

(9)

where vz refers to a common neighbor for nodes vx and vy (connected/linked to both).
Although this metric has similarities to CN, the vital difference is that the logarithm term penalizes

the shared neighbors of the two corresponding nodes. It should be noted that while the other metrics
include only two nodes (vx and vy) and/or their degrees in their equations so far, AA also relates
familiar neighbors (vz) to these two nodes (vx and vy).

3.1.7. Resource Allocation Index (RA)

Motivated by the physical process of resource allocation, a very similar metric to AA was
developed by Zhou et al. [46] which can be formulated as:

sRA
(vx ,vy)

= ∑
vz∈(Γ(vx)∩Γ(vy))

1
|Γ(vz)|

(10)

The difference in the denominator (|Γ(vz)|) of RA rather than its logarithm (log|Γ(vz)|) as in AA
penalizes the contribution of common neighbors more. Many studies show that this discrepancy is
insignificant, and the resulting performances of these two metrics are very similar when the average
degree of the network is low; however, RA is superior when the average degree is high [47].

3.1.8. Hub Promoted Index (HP)

The index is proposed for assessing the similarity of the substrates in the metabolic networks [48],
and it can be defined, as follows:

sHP
(vx ,vy)

=
|Γ(vx) ∩ Γ(vy)|

min(|Γ(vx)|, |Γ(vy)|)
(11)

HP is determined by the ratio of the number of common neighbors of both vx and vy to the
minimum of degrees of vx and vy. Here, link formation between lower degree nodes and the hubs is
more promoted, while the formation of the connection between hub nodes are demoted [6].
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3.1.9. Hub Depressed Index (HD)

The totally opposite analogy of HP is also considered by Lü and Zhou [28], and it is determined
by the ratio of the number of common neighbors of both vx and vy to the maximum of degrees of
vx and vy. Here, the link formation between lower degree nodes and link formation between hubs
is promoted. However, the connection between hub nodes and lower degree nodes are demoted,
such that:

sHD
(vx ,vy)

=
|Γ(vx) ∩ Γ(vy)|

max(|Γ(vx)|, |Γ(vy)|)
(12)

3.1.10. Leicht-Holme-Newman Index (LHN)

The index, which is very similar to SI, is defined as the ratio of the number of shared neighbors of
vx and vy to the product of their degrees (the expected value of the number of paths of length between
them) [49]. It can be represented by:

sLHN
(vx ,vy)

=
|Γ(vx) ∩ Γ(vy)|
|Γ(vx)|.|Γ(vy)|

(13)

The only difference in the denominator as compared to SI shows that SI always assigns a higher
score than LHN, i.e., |Γ(vx)|.|Γ(vy)| ≤ |Γ(vx) ∩ Γ(vy)| .

3.1.11. Parameter Dependent Index (PD)

Zhou et al. [50] proposed a new metric in order to improve the prediction accuracy for popular
links and unpopular links. PD can be defined as:

sPD
(vx ,vy)

=
|Γ(vx) ∩ Γ(vy)|
|Γ(vx)|.|Γ(vy)|β

, (14)

where β is a free parameter and it can be tuned to the topology of the graph. One can easily recognizes
that PD is degraded to CN, SL, and LHN when β = 0, β = 0.5, and β = 1, respectively.

3.1.12. Local Affinity Structure Index (LAS)

LAS shows the affinity relationship between a pair of nodes and their common neighbors.
The hypothesis is that a higher affinity of two nodes and their common neighbors increases the
probability of getting connected [51], such as:

sLAS
(vx ,vy)

=
|Γ(vx) ∩ Γ(vy)|
|Γ(vx)|

+
|Γ(vx) ∩ Γ(vy)|
|Γ(vy)|

(15)

3.1.13. CAR-Based Index (CAR)

When a node interacts with another neighbor node, it is called a first-level neighborhood; whereas,
the interaction between the first-level neighbor node and its neighbor node is called the second-level
neighborhood for the seed node. According to the local community paradigm (LCP) of Cannistraci [52],
the researchers mostly consider the first-level neighborhood, because the second-level neighborhood is
noisy; however, the second-level neighborhood carries essential information regarding the topology
of the network. Therefore, CAR filters these noises and considers nodes that are interlinked with
neighbors mostly. The similarity metric can be calculated, as follows:

sCAR
(vx ,vy)

= |Γ(vx) ∩ Γ(vy)| ∑
vz∈(Γ(vx)∩Γ(vy))

|Γ(vz)|
2

. (16)
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3.1.14. The Individual Attraction Index (IA)

Dong et al. [53] proposed an index that relates not only to the common neighbors of the nodes
individually, but also the effect of the sub-network created by those. The IA score can be formulated as:

sIA
(vx ,vy)

= ∑
vz∈(Γ(vx)∩Γ(vy))

|Γ(vx) ∩ Γ(vy) ∩ Γ(vz)|+ 2
|Γ(vz)|

. (17)

Because IA considers the existence of links between all common neighbors, the algorithm is very
time-consuming. Therefore, a simpler alternative is also proposed as:

sIA∗
(vx ,vy)

= ∑
vz∈(Γ(vx)∩Γ(vy))

|Γ(vx) ∩ Γ(vy)|+ 2
|Γ(vx) ∩ Γ(vy)|.|Γ(vz)|

(18)

3.1.15. The Mutual Information Index (MI)

This method examines the link prediction problem while using information theory, and it
measures the likelihood of conditional self-information when their common neighbors are known [54],
and formulated as:

sMI
(vx ,vy)

= −I(evx ,vy |vz), (19)

where vz ∈ Γ(vx) ∩ Γ(vy) and I(.) is the self-information function for a node and it can be calculated
by (20). Here, I(evx ,vy |vz) means conditional mutual self-information of the existence of a link
between vx and vy and their shared set of neighbors. The smaller value of sMI

(vx ,vy)
means the higher

likelihood to be linked. If all of the link between common neighbors be independent of each other, the
self-information of that node pair can be calculated as [6]:

I(evx ,vy |vz) = log 2
|{evx ,vy : vx, vy ∈ Γ(vz), evx ,vy ∈ E}|

1
2 |Γ(vz)|(|Γ(vz)| − 1)

. (20)

3.1.16. Functional Similarity Weight (FSW)

This index is first used by Chou et al. in order to understand the similarity of physical or
biochemical characteristics of proteins [55]. Their motivation is based on the Czekanowski–Dice
distance that is used in [56] in order to estimate the functional similarity of proteins. This score can be
defined as:

sFSW
(vx ,vy)

=

(
2|Γ(vx) ∩ Γ(vy)|

|Γ(vx)− Γ(vy)|+ 2|Γ(vx) ∩ Γ(vy)|+ β

)2

. (21)

Here, β is used to penalize the nodes with very few common neighbors, and it is defined as:

β = max(0, |Γavg| − (|Γ(vx)− Γ(vy)|) + (|Γ(vx) ∩ Γ(vy)|)), (22)

where |Γavg| is the average number of neighbours in the network.

3.1.17. Local Neighbors Link Index (LNL)

Motivated by the cohesion between common neighbors and predicted nodes, both attributes, and
topological features are examined in [57], as:

sLNL
(vx ,vy)

= ∑
vz∈(Γ(vx)∩Γ(vy))

w(vz), (23)

where w(vz) is the weight function that can be measured by:
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w(vz) =
∑vu∈Γ(vx)∪vx δ(vz, vu) + ∑vv∈Γ(vy)∪vy δ(vz, vy)

|Γ(vz)|
. (24)

Here, δ(a, b) is a boolean variable that is equal to 1 if there exists a link between a and b; otherwise,
it equals to 0.

3.2. Global Similarity-Based Approaches

Global similarity-based approaches, contrary to local ones, use the whole topology of the network
to rank the similarity between node pairs; therefore, they are not limited to measure the similarity
between nodes that are locating far away from each other. Although considering the whole topology
of the network gives more flexibility in link prediction analysis, it also increases the algorithm’s time
complexity. Because an ensemble of all paths between node pairs is used, they can also be called
path-based methods.

3.2.1. Katz Index (KI)

The metric, which is defined by Katz [58], sums over the sets of paths and is exponentially damped
by length to be counted more intensively with shorter paths. This index can be formulated with a
vector space:

sKI
(vx ,vy)

=
∞

∑
i=1

βi.|A〈i〉vxvy)|. (25)

Here, A is the adjacency matrix and β is a free parameter (β > 0) that is also called a “damping
factor”. One can realize that KI yields to a very similar score when β is low enough as the paths
that have higher lengths contribute less, and the similarity index is simply determined by the shorter
paths [28].

In the case of β < 1
λA

1
, where λA

1 is the largest eigenvalue of the adjacency matrix, the similarity

matrix can be written, as follows:
SKI = (I − βA)−1 − I, (26)

where I is the identity matrix.

3.2.2. Global Leicht-Holme-Newman Index (GLHN)

The idea behind GLHN is very similar to that of KI, since it also considers a high similarity for
the nodes if the number of paths between these corresponding nodes is high [49], such that:

SGLHN = β1(I − β2 A)−1, (27)

where β1 and β2 are free parameters, and a smaller value of β2 considers higher importance for the
shorter paths, and vice versa.

3.2.3. SimRank (SR)

This index computes the similarity starting from the hypothesis “two objects are similar if
they are related to similar objects”, and it is recursively defined [59]. SR is equal to 1 when node
vx = vy, otherwise:

sSR
(vx ,vy)

= γ.
∑vz1∈Γ(vx) ∑vz2∈Γ(vy) sSR

(vz1 ,vz2 )

|Γ(vx)|.|Γ(vy)|
, (28)

where γ ∈ [0, 1] is called decay factor and it controls how fast the effect of neighbor node pairs (vz1

and vz2 ) reduces as they move away from the original node pairs (vx,vy). SR can be explained in terms
of a random walk process, which is, sSR

(vx ,vy)
measures how long the two random walkers are expected
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to meet on a particular node, starting with the vx and vy nodes. Its applicability is constrained on large
networks due to its computational complexity [47,60].

3.2.4. Pseudo-Inverse of the Laplacian Matrix (PLM)

Using Laplacian matrix L = D − A rather than Adjacency matrix A gives an alternative
representation of a graph, where D is the diagonal matrix of vertex degrees [61] (Di,j = 0 and
Di,i = ∑j Ai,j). The Moore–Penrose pseudo-inverse of the Laplacian matrix, represented by L+, can be
used in the calculation of proximity measures [62]. Because PLM is calculated as inner product cosine
similarity, it is also called “cosine similarity time” in the literature [47], and can be calculated as:

sPLM
(vx ,vy)

=
L+
(vx ,vy)√

L+
(vx ,vx)

L+
(vy ,vy)

. (29)

3.2.5. Hitting Time (HT) and Average Commute Time (ACT)

Motivated by random walk, as introduced by mathematician Karl Pearson [63], HT is defined
as the average number of steps to be taken by a random walker starting from vx to reach node vy.
Because HT is not a symmetric metric, one may consider using ACT, which is defined as the average
number of steps to be taken by the random walker starting from vx to reach the node vy, and that from
vy to reach node vx. Therefore, HT can be computed by:

sHT
(vx ,vy)

= 1 + ∑
vz∈Γ(vx)

Pvx ,vz sHT
(vz ,vy)

. (30)

Here, Pi,j = D−1 A, where A and D are the adjacency and the diagonal matrix of vertex
degrees [47]. Accordingly, ACT can be formulated as:

sACT
(vx ,vy)

= sHT
(vx ,vy)

+ sHT
(vy ,vx)

. (31)

For the sake of computational simplicity, ACT can be computed in a closed form using the
pseudo-inverse of the Laplacian matrix of the graph, as follows [62]:

sACT
(vx ,vy)

= m(L+
(vx ,vx)

+ L+
(vy ,vy)

− 2L+
(vx ,vy)

). (32)

One challenge of HT and ACT is that it gives very small proximity measures when the
terminal node has high stationary probability πvy , regardless of the identity of the starting node.
This problem can be solved by normalizing the scores as −sHT

(vx ,vy)
.πvy and −(sHT

(vx ,vy)
.πvy + sHT

(vy ,vx)
.πvx ),

respectively [37].

3.2.6. Rooted PageRank (RPR)

PageRank (PR) is the metric that is used by Google Search in order to determine the relative
importance of the webpages by treating links as a vote. Motivated by PR, RPR defines that the rank of
a node is proportional to the likelihood that it can be reached through a random walk [47], such that:

sRPR
(vx ,vy)

= (1− β)(1− βPvx ,vy)
−1. (33)

Here, Pi,j = D−1 A, where A is the adjacency matrix and D is the diagonal matrix of vertex degrees.
It should be noted that one can calculate the PR by averaging the columns of RPR [7].
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3.2.7. Escape Probability (EP)

The metric, which can be derived from RPR, measures the likelihood that the random walk
starting from node vx visits node vy before coming back to the node vx again [64]. Let Q(vx, vy) be
equal to (1− βD−1 A)−1 = sRPR

(vx ,vy)
/(1− β); the equation of EP can be written, as follows [7]:

sEP
(vx ,vy)

=
Q(vx, vy)

Q(vx, vx).Q(vy, vy)−Q(vx, vy).Q(vy, vx)
. (34)

3.2.8. Random Walk with Restart (RWR)

In a random walk (RW) algorithm, the probability vector of reaching a node starting from the
node vx can be defined as:

~pvx (t) = MT ~pvx (t− 1), (35)

where M is called the transition probability matrix, and it can be calculated by Ai,j/ ∑k Ai,k, where
A is the adjacency matrix [65]. Because RW does not yield a symmetric matrix, the metric of RWR,
very similar to RPR, looks for the probability that a random walker starting from node vx visits node
vy and comes back to the initial state node vx at the steady-state, such that:

sRW
(vx ,vy)

= ~pvx
vy + ~pvy

vx . (36)

3.2.9. Maximal Entropy Random Walk (MERW)

The basic MERW algorithm, which is based on the maximum uncertainty principle, was proposed
as a result of the necessity in order to define uniform path distribution in Monte Carlo simulations [66].
However, its applications on the stochastic models are very recent [67]. Li et al. [68] proposed MERW,
which maximizes the entropy of a random walk, as follows:

lim
l→∞

−∑At
vxvy∈At p(At

vxvy) ln p(At
vxvy)

t
. (37)

Here, p(At
vxvy) is the multiplication of the iterative transition matrices (Mvxvz .Mvzvq ...Mvqvy ),

where Mij can be calculated, as follows:

Mvivj =
Avivj

λ

ψvj

ψvi

, (38)

where A is the adjacency matrix and ψ is the normalized eigenvector with normalization constant λ [6].

3.2.10. The Blondel Index (BI)

The index is proposed by Blondel et al. [69] in order to measure the similarity for the automatic
extraction of synonyms in a monolingual dictionary. Although BI is used to quantify the similarity
between two different graphs, Martinez et al. show that investigating the similarity of two vertices in a
single graph can also be evaluated in an iterative manner, as:

S(t) =
AS(t− 1)AT + ATS(t− 1)A
||AS(t− 1)AT + ATS(t− 1)A||F

, (39)

where S(t) refers to the similarity matrix in iteration t and S(0) = I. ||M||F is the Frobenius matrix
norm and it can be calculated, as follows:

||Mm×n||F =

√√√√ m

∑
i=1

n

∑
j=1

M2
i,j. (40)
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The similarity metric is obtained when S(t) is converged, such that sBI
(vx ,vy)

= Svx ,vy(t = c),
where t = c denotes the steady state level.

3.3. Quasi-Local Similarity-Based Approaches

The trade-off between the efficiency of the information regarding the whole network topological
structure for the global approaches and the less time complex algorithms for the local-based
methods have resulted in the emergence of quasi-local similarity-based methods for link prediction.
Similarly, these approaches are limited in the calculation of the similarity between arbitrary node
pairs. However, quasi-local similarity methods provide an opportunity for computing the similarity
between a node and the neighbors of its neighbors. Although some of the quasi-local similarity-based
methods consider the whole topology of the network, their time complexity is less than that of global
similarity-based approaches.

3.3.1. The Local Path Index (LPI)

The index, which is very similar to the well-known approaches KI and CN, considers the local
path with a wider perspective by not only employing the information of the nearest neighbors, but also
the next two and three nearest neighbors [46,70], such that:

SLP = A2 + βA3, (41)

where A is the adjacency matrix, β is a free parameter to adjust the relative importance of the neighbors
within the length l = 2 distances and length l = 3 distances. The metric can also be extended for the
higher orders as:

SLP(L)
=

L

∑
l=2

βl−2 Al . (42)

The neighbors within the length of three distances are preferable due to increasing complexity in
the higher orders of LP. One can easily realize that this similarity matrix simplifies to CN when l = 2
and may produce a very similar result to KI given low β values without the inverse transform process.
The similarity between two nodes can be evaluated via sLP

(vx ,vy)
= SLP

vx ,vy .

3.3.2. Local (LRW) and Superposed Random Walks (SRW)

Although the random walk-based algorithms perform well, the sparsity and computational
complexity regarding massive networks are challenging for these algorithms. Thus, Liu and Lü
proposed the LRW metric [71], in which the initial resources for the random walker are assigned based
on their importance in the graph. LRW considers the node degree as an important feature and it does
not concentrate on the stationary state. Instead, the number of iterations is fixed in order to perform a
few-step random walk. LRW can be formulated, as:

sLRW
(vx ,vy)

(tc) =
|Γ(vx)|

2|E|
~pvx
vy (tc) +

|Γ(vy)|
2|E|

~p
vy
vx (tc). (43)

Because superposing all of the random walkers starting from the same nodes may help to prevent
the sensitive dependency of LRW to the farther neighboring nodes, SRW is proposed as:

sSRW
(vx ,vy)

(tc) =
tc

∑
t=1

sLRW
(vx ,vy)

(t). (44)
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3.3.3. Third-Order Resource Allocation Based on Common Neighbor Interactions (RACN)

Motivated by the RA index, Zhang et al. [72] proposed RACN, in which the resources of nodes
are allocated to the neighbors as:

sRACN
(vx ,vy)

= ∑
vz∈Γ(vx)∩Γ(vy)

1
|Γ(vz)|

+ ∑
evi ,vj∈E,|Γ(vj)|<|Γ(vi)|

(
1

|Γ(vi)|
− 1
|Γ(vj)|

), (45)

where vi ∈ Γ(vx) and vj ∈ Γ(vj). The superiority of the RACN over the original RA has been shown
in [25] while using varying datasets.

3.3.4. FriendLink Index (FL)

The similarity of two nodes is determined according to the normalized counts of the existing paths
among the corresponding nodes with varying length L. The formulation for the FL index is as follows:

sFL
(vx ,vy)

=
L

∑
l=1

1
l − 1

|Al
vx ,vy |

∏l
j=2 (|V| − j)

, (46)

where |V| is the number of vertices in the graph. The metric is favorable, due to its high performance
and speed [73].

3.3.5. PropFlow Predictor Index (PFP)

PFP is a metric that is inspired by Rooted PageRank, and it simply equals the probability that the
success of random walk starts from node vx and terminates at node vy in not more than l steps [74].
This restricted random walk selects the links based on weights, denoted as ω [47], such that:

sPFP
(vx ,vy)

= sPFP
(va ,vx)

ωvxvy

∑vz∈Γ(vx) ωvxvy

. (47)

The most important superiority of PFP is its widespread use in directed, undirected, weighted,
unweighted, sparse, or dense networks.

4. Probabilistic Methods

Probabilistic models are supervised models that use Bayes rules. The most important drawback
of some of these models is their being slow and costly for large networks [24]. In the following,
we introduce the five most important probabilistic methods of link prediction.

4.1. Hierarchical Structure Model

This model was developed based on the observation that many real networks present a
hierarchical topology [75]. This maximum likelihood-based method searches for a set of hierarchical
representations of the network and then sorts the probable node pairs by averaging over all of the
hierarchical representations explored. The model was first proposed in the work of [76], in which
it develops a hierarchical network model that can be represented by a dendrogram, with |N| leaves
and |N − 1| internal nodes. Each leaf is a node from the original network and each internal node
represents the relationship of the descendent nodes in the dendrogram. A value of pr is also attributed
to each internal node r, which represents the probability with which a link exists between the branches
descending from it. If D is a dendrogram that represents the network, the likelihood of dendrogram
with a set of internal node probabilities (pr) is:

L (D, {pr}) = ∏
r∈D

pEr
r (1− pr)

Lr Rr−Er . (48)
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In the above equation, Er is the number of links that connect nodes that have a node r as their
lowest common ancestor in D. Lr and Rr represent the number of leaves in the left and right subtrees
that are rotted in r, respectively. Setting p∗r = Er

Lr Rr
maximizes the likelihood function (48). Replacing pr

with p∗r in the likelihood function, the likelihood of a dendrogram at its maximum can be calculated by:

L(D) = ∏
r∈D

[
(1− p∗r )

1−p∗r p∗
p∗r

r

]Lr Rr
. (49)

These equations are then utilized to perform link prediction. After a Markov Chain Monte Carlo
method is used to sample a large number of dendrograms with probabilities proportional to their
likelihood, the connection probability between two nodes vi and vj is estimated by averaging over all
the sampled dendrograms. This task is performed for all sampled dendrograms and, subsequently,
the node pairs are sorted based on the corresponding average probabilities. The higher the ranking,
the more likely that the link between the node pair exists. A major drawback of the hierarchical
structural model is its computational cost and being very slow for a network consisting of a large set
of nodes.

4.2. Stochastic Blockmodel

Stochastic block models are based on the idea that nodes that are heavily interconnected should
form a block or community [77]. In a stochastic block model, nodes are separated into groups and the
probability that two nodes are connected to each other is merely dependent on the group to which
they belong [78]. Stochastic block models have been successfully applied to model the structure of
complex networks [79,80]. They have also been utilized to predict the behavior in drug interactions [81].
The work of [82] uses a block model in order to predict conflict between team members. Ref. [83] also
utilizes a stochastic block model in order to develop a probabilistic recommender system.

As noted above, the probability that two nodes i and j are connected depends on the blocks that
they belong to. A block model M = (P, Q) is completely determined by the partition P of nodes
into groups and the matrix Q of probabilities of linkage between groups. While numerous partitions
(models) can be considered for a network, the likelihood of a model AO can be calculated by the
following [78,84]:

L(AO|P, Q) = ∏
α≤β

Q
lO
αβ

αβ (1−Qαβ)
rαβ−lO

αβ . (50)

In Equation (50), lO
αβ is the number of links in AO between nodes in groups α and β of P, and rαβ

is the maximum number of links possible, which is |α||β| when α 6= β and (|α|2 ) when α = β . Setting

Q∗αβ =
lO
αβ

rαβ
maximizes the likelihood function (50). By applying Bayes theorem, the probability

(reliability) of a link with maximum likelihood can be computed.
Similar to the hierarchical structure model that is discussed in Section 4.1, a significant

shortcoming of this method is that it is very time-consuming. While the Metropolis algorithm [85] can
be utilized to sample partitions, this approach is still impractical for a large network. An example of
blockmodel likelihood calculation is illustrate in Figure 3.
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Figure 3. An example of Blockmodel likelihood calculation Here, a probable partitioning is presented.
The block on left is α and the block on right is β. Q∗αα = 1, Q∗αβ = 2

12 , and Q∗ββ = 5
6 . Hence, likelihood

is calculated, as follows: 13 × 1× 2
15

2 × 13
15

13 × 1
2

5 × 1
2

5 ≈ 2.701× 10−6.

4.3. Network Evolution Model

Ref. [86] proposed a network topology based model for link prediction. In this model, probabilistic
flips of the existence of edges are modeled by a “copy-and-paste” process between the edges [86].
The problem of link prediction is defined, as follows: the data domain is represented as a graph
G = (V, s), where V is the set of nodes of the network and s : V ×V → [0, 1] is an edge label function.
s(vi, vj) indicates the probability that an edge exists between i and j. s(t) shows the edge label function
at time t, and its of Markovian nature, i.e., s(t+1) only depends on s(t). The fundamental idea behind
the proposed network edge label copy-and-paste mechanism is that, if a node has a strong influence on
another node, the second nodes association will be highly affected by the second node. The probability
of an edge existing between nodes i and j at time t + 1 is as follows:

st+1(vi, vj) =
1

|V| − 1
( ∑

k 6=i,j
wvkvj s

(t)(vk, vi) + wvkvi s
(t)(vk, vj))+

(1− 1
|V| − 1 ∑

k 6=i,j
wvkvj + wvkvi )s

(t)(vi, vj),
(51)

where wvkvj is the probability that an edge label is copied from node vk to node vj. In Equation (51),
the first term represents the probability that the edge label for (vi, vj) is changed by copy and pasting.
The second term represents when the same edge label is unchanged. The linkages are obtained by
iteratively updating Equation (51) until convergence. The objective function according to which the
parameters are set is solved by an expectation maximization type transductive learning.

4.4. Local Probabilistic Model

The work of [87] proposed a local probabilistic model for link prediction, in which the focus of the
original paper is particularly in the context of evolving co-authorship networks. Given the candidate
link, e.g., nodes vi and vj, first, the central neighborhood set of vi and vj are determined, which is
the set of nodes that are the most relevant to estimating the co-occurrence probability. The central
neighborhood sets are chosen from the nodes that lie along paths of shorter length between vi and
vj. Ref. [87] proposes an algorithm in order to determine central neighborhood set, which is, as
follows: first, collecting all of the nodes that lie on length-2 simple paths, then those on length-3
simple paths, and so on. The paths are then ordered based on the frequency scores and the ones
with the highest scores are chosen [87]. A path length threshold is also considered for the sake
of decreasing computational cost ([87] proposes a threshold of 4 for their specific problem). Next,
they form a transaction dataset that is formed by a chronological set of events (co-authoring articles).
A non-derivable itemset mining is performed on this dataset, which results in all non-redundant
itemsets along with their frequencies. In the end, a Markov Random Field (MRF) graph model is
trained while using the derived dataset. The resulting final model gives the probability of the existence
of each link vi and vj.
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4.5. Probabilistic Model of Generalized Clustering Coefficient

This method that was proposed by [88] focuses on analyzing the predictive power of clustering
coefficient [88]. The generalized clustering coefficient C(k) of degree k is defined as [88]:

C(k) =
number of cycles of length k in the graph

number of paths of length k
(52)

As explained in [88], generalized clustering coefficients describe the correlation between cycles and
paths in a network. Therefore, the probability of formation of a particular link is determined by the
number of cycles (of different lengths) that will be constructed by adding that link [88]. The concept of
cycle formation model is explained, as follows: a cycle formation model of degree k (k ≥ 1) is governed
by k link generation mechanisms, g(1), g(2),..., g(k), which are each described by c1, c2,..., ck. If Pvivjk
shows a path from vi to vj with length k, then ck = P((vi, vj) ∈ E||Pvivjk| = 1) (the probability that
there is a link between i and j, given that there is one path of length k between them). We know
that, if there is more than one path with length k from vi to vj, then the probability that there is a link
between them increases (see Figure 4 for instance). Therefore:

if P((vi, vj) ∈ E||Pvi ,vj ,k| = 1) = ck & |Pvi ,vj ,k| = m →

P((vi, vj) ∈ E||Pvi ,vj ,k| = m) =
cm

k
cm

k + (1− ck)m

(53)

Figure 4. (a) There is only one path of length two from node 1 to node 5 in the network and Pr2((1, 5) ∈
E) = c2 . (b) There are two paths of length 2 from the node 1 to node 5, therefore Pr2((i, j) ∈ E) =

c2
2

c2
2+(1−c2)2 .

Because of the fact that the total link occurrence probability between vi and vj is a result of the
effect of multiple mechanisms of cycle formation model of degree k (CF(k)) is calculated by:

Pm2,...,mk = P((vi, vj) ∈ E||Pvivj2| = m2, ..., |Pvivjk| = mk) =

c1cm2
2 ...cmk

k
(c1cm2

2 ...cmk
k ) + (1− c1)(1− c2)m2 ...(1− ck)mk

(54)

5. Relational Models

One drawback of the previously mentioned methods is that they do not incorporate vertex and
edge attributes to model the joint probability distribution of entities and links that associate them [24].
Probabilistic Relational Models (PRM) [21] is an attempt to use the rich logical structure of the
underlying data that is crucial for complicated problems. One major limitation of Bayesian networks is
the lack of the concept of an “object” [22]. Bayesian PRMs [20,21] include the concept of an object in the
context of Bayesian networks, in which each object can have their attributes and relations exist between
objects and their attributes. Figure 5 is an example of a schema for a simple domain. A relational model
consists of a set of classes, Υ = {Y1, Y2, ..., Yn}. In Figure 5, Υ = {Journalist, Newspaper, Reader}.
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Each class also contains some descriptive attributes, the set of which is shown with A(Y). For example,
Journalist has attributes Popularity, Experience, and Writing skills. In order for objects to be able to
refer to other objects, each class is also associated with a set of reference slots, which is shown by
Y.ρ. Slot chains also exist, which are references between multiple objects (similar to f (g(x))). Pa(Y.A)

shows the set of parents of Y.A. For instance, in Figure 5, a journalist’s Popularity depends on her
Experience and Writing skills. Dependency can also be a result of a slot chain, meaning that some
attributes of a class depend on some attributes of another class. The joint probability distribution in a
PRM can be calculated, as follows [22]:

P(I|σr, S, θS) = ∏
Yi

∏
A∈A(Yi)

∏
y∈σr(Yi)

P(Iy.A|IPa(y.A)) (55)

In Equation (55), I shows an instance of a schema S, which specifies for each class Y, the set of
objects in the class, a value for each attribute y.A, and a value for each reference slot y.ρ. Additionally,
σr is a relational skeleton, which denotes a partial specification of an instance of a schema, and it
specifies the set of objects for each class and the relations that hold between the objects [22].

Figure 5. An example of a relational schema for a simple domain. The underlined attributes are
reference slots of the class and the arrows show the types of objects to which they are referring.

The task of link prediction can then be performed by considering the probability of the existence
of a link between two objects in the relational model [23]. The work of [89] shows that deriving
the distribution of missing descriptive attributes will benefit from the estimation of link existence
likelihood. Besides, a Relational Bayesian Network, in which the model graph is a directed acyclic
graph, the Relational Markov Network is also proposed [90,91], in which the graph model is an
undirected graph and it can be utilized for the task of link prediction. Relational Markov Networks
address two shortcomings of directed models: They do not constrain the graph to be acyclic,
which allows for various possible graph representations. Additionally, they are well suited for
discriminative training [92].

There exist other relational models for the task of link prediction. The DAPER model is a directed
acyclic type of probabilistic entity-relationship model [93]. The advantage of the DAPER model is
being more expressive than the aforementioned models [94]. Other Bayesian relational models in
the literature include stochastic relational model [95], which models the stochastic structure of entity
relationships by a tensor of multiple Gaussian processes [28], relational dependency network [96,97],
and parametric hierarchical Bayesian relational model [98].
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6. Learning-Based Methods

The feature extraction-based methods that are discussed earlier in this paper provide a starting
point for the systematic prediction of missing or future associations available through learning the
effective attributes. Among these effective features for link prediction, employing the topological
attributes that can be extracted from the graph structure is the foundation of all learning-based link
prediction algorithms, from which the pair-wise shortest distance attribute is the most common
topological feature. Besides the topological attributes, some machine learning models benefit from
the node and domain specific attributes, referred to as the aggregated and proximity features,
respectively [99].

The introduction of supervised learning algorithms to the problem of link prediction led to
the state-of-the-art models that achieve high prediction performances [100]. These models view the
problem of link prediction as a classification task. In order to approach the link prediction problem,
supervised models are supposed to tackle a few challenges, including the unbalanced data classes that
result from the sparsity property of real networks, and the extraction of the topological, proximity,
and aggregated attributes as independent informative features [101]. There is extensive literature on
the classification models for link prediction, including the application of traditional machine learning
methods into this field of research. Support Vector Machines, K-nearest Neighbors, Logistic Regression,
Ensemble Learning, and Random Forrest, Multilayer Perceptron, Radial Basis Function network,
and Naive Bayes are just a few of the supervised learning methods that are extensively used in link
prediction. A comparison between a few of these supervised methods has been presented in [99],
where, surprisingly, SVM with RBF kernel is reported to be very successful in the accuracy and low
squared error of the model.

Although the traditional machine learning models for link prediction rely on user-defined feature
encoding, the evolution of these models has led to the generation of automatic feature encoders, which
prevent hand-engineered attributes [101]. These models aim to learn graph encoding, node, and/or
domain-related features into low-dimensional space, and are referred to as representation learning
or graph embedding-based models for link prediction. These methods can be trained while using
neural networks or dimensionality reduction algorithms [102]. The applications of graph analysis
and representation learning has led to the development of advanced language models that focus
on language understanding, relation discovery, and question answering. Knowledge graphs, which
represent sequences of relations between named entities within a textual content, are being widely
investigated for the task of link prediction, relation prediction, and knowledge graph completion [103].
Although many of the reviewed methods in this survey are applicable to different applications and
graph types, knowledge graphs and their embedding methods are dependent to directed relationships.
Examples of recent methods for knowledge graphs are Relational Graph Convolutional Neural
Networks (R-GCN) [104], which are able to extract features from a given data and, accordingly, generate
a directed multigraph, label node types, and their relationships in the generated graph, and, finally,
generate a latent knowledge-based representation that can be used for node classification as well as link
prediction. Other language models, such as Bidirectional Encoder Representations from Transformers
(BERT) [18], which use pre-trained language models, and their variations, including Knowledge Graph
BERT (KG-BERT) [105] and Knowledge-enabled BERT (K-BERT) [103], can extract node and relation
attributes for knowledge graph completion and link prediction [16]. A comprehensive review on
embedding methods that are designed for knowledge graphs is available in [3].

The tasks of vertex representation learning and vertex collocation profiling (VCP) for the purpose
of topological link analysis and prediction were introduced in [106,107], respectively. Comprehensive
information on the surrounding local structure of embedded pairs of vertices vx and vy in terms of
their common membership in all possible subgraphs of n vertices over a set of r relations is available
from their VCP, written as VCPn,r

x,y , and the VCP elements are closely related to isomorphic subgraphs.
Thus, this method helps in the understanding of link formation mechanism from the nodes and
graph representation.
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Mapping the graph to a vector space is also known as encoding. On the contrary, the reconstruction
of the node neighborhood from the embedded graph is referred to as decoding. Graph representation
can be learned via supervised or unsupervised methods while using an appropriate optimization
algorithm in order to learn the embeddings [101]. This mapping can be defined for graph G = < V,
E > as f : vx → vx′ ∈ Rd, ∀x ∈ [n], such that d�| V |, where n denotes the total number of vertices,
vx is a sample node that has been embedded to d-dimensional vector space, and the embedded node is
represented by vx′ . Figure 6 illustrates the procedure of node and graph representation.

Figure 6. An example of node and graph representation. Here the node representation vectors are
aggregated to generate a single graph representation.

Representation learning algorithms for the task of link prediction can be divided into categories
based on their decoder function, a similarity measure for graphs, and the loss function in the
models [101]. Therefore, we categorize these methods into

(i) Matrix Factorization-Based Models,
(ii) Path and Walk-Based Models, and
(iii) Deep Neural Network-Based Methods.

6.1. Matrix Factorization-Based Methods

These methods are able to extract latent features with additional graph features for link prediction.
In these models, the vector representation of the topology-related features produces an N-dimensional
space, where N = |V| is the number of vertices in the network. The main purpose of matrix
factorization-based methods is to reduce the dimensionality while also preserving the nonlinearity and
locality of the graph via employing deterministic measures of node similarity in the graph. However,
the global structure of the graph topology may be generally lost [108].

SVD is one of the commonly used methods as a result of its feasibility in low-rank
approximations [109,110]. Here, the link function L(.) is defined as G ≈ L(UΛUT), where U ∈
R|V|×k, Λ ∈ Rk×k, and k denotes the number of latent variables in SVD. The similarity s(vx, vy)

between the node pairs vx and vy is defined by L(uT
vx Λuvy).

In [111], a latent feature learning method for link prediction has been proposed by defining
a latent vector

# »

lvx and a feature vector #  »avx for each node vx, a weight vector Wv for node features,
a weight vector # »we for edge features, and a vector of features

#        »

bvx ,vy for each edge. This model computes
the prediction of edge formation as:

s(vx, vy) =
1

1 + exp(− # »

lvx
T F

# »

lvy −
#  »avx

TWv
#  »avy −

# »weT #        »

bvx ,vy)
, (56)

where, F is the scaling factor for each edge.
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The inner-product-based embedding models for link prediction embed the graph based on a
pairwise inner-product decoder, such that the node relationship probability is proportional to the dot
product of node embeddings:

DEC(vx′ , vy′) = vT
x′vy′ , (57)

L = ∑
(vx ,vy)∈D

||DEC(vx′ , vy′)− sG(vx, vy)||22. (58)

Graph Factorization (GF) [112], GraRep [113], and HOPE [110] algorithms are examples of the
inner-product-based methods for link prediction. Graph factorization model partitions the graph
by minimizing the number of neighboring nodes, rather than applying edge cuts, as the storage
and exchange of parameters for the latent variable models and their inference algorithms are related
to nodes. HOPE [110] focuses on the representation and modeling of directed graphs, as directed
associations can represent any type of graph. This model preserves the asymmetric transitivity for
directed graph embeddings. The asymmetric transitivity property captures the structure of the graph
by keeping the correlation between the directed edges, such that the probability of the existence of a
directed edge from vx to vy is high if a directed edge exists for the opposite direction. HOPE supports
classical similarity measures as proximity measurements in the algorithm, including the Katz Index
(KI), Rooted PageRank (RPR), Common Neighbors (CN), and Adamic-Adar (AA).

6.2. Path and Walk-Based Methods

The developed models for link prediction that are designed based on random walk statistics
prevent the need for any deterministic similarity measures. In these algorithms, similar embeddings
are being produced for nodes that co-occur on graph short random walks. These algorithms
investigate the node features, including node centrality and similarity via graphs exploration and
sampling with random walks or search algorithms, such as Breadth First Search (BFS) and Depth
First Search (DFS) [114]. The random walk-based models for graphs can be divided into many
different categories, according to varying perspectives. One possible division for these models
includes categorization that is based on their embedding output, for instance, local structure-preserving
methods, global structure-preserving methods, and the combination of the two [115].

Representations with BFS provide information regarding the similarity of nodes in the case of their
roles in the network, for instance, representing a hub in the graph [102]. On the contrary, random walks
with DFS can provide information regarding the communities that nodes belong to. These algorithms
have been recently applied along with generative models to introduce edges and nodes directly to the
graph [116]. Community aware random walk for network embedding (CARE), as introduced in [117],
is another approach for the task of link prediction and multi-label classification. This model builds
customized paths that are based on local and global structures of network, and uses the Skip-gram
model to learn representation vectors of nodes.

In comparison to walk-based methods, link prediction that is based on meta path similarity has
been introduced in [118], which operates a similarity search among the same type of nodes. Thus,
meta path-based methods extend link prediction to heterogeneous networks with different types of
vertices. In this model, a meta path refers to a sequence of relations between object types and defines a
new composite relation between its starting type and ending type. The similarity measure between
two objects can be defined according to random walks used in P-PageRank, pairwise random walk
used in SimRank, P-PageRank, or SimRank on the extracted sub-graph or, finally, using PathSim,
which captures the subtle semantics of similarity among peer objects [118]. PathSim calculates the
similarity of two peer objects as:

s(vx, vy) =
2× |{pvx ,vy : pvx ,vy∈P}|

|{pvx ,vx : pvx ,vx∈P}|+ |{pvy ,vy : pvy ,vy∈P}|
, (59)
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where P refers to the meta path defined on the graph of network schema, pvx ,vy is a path instance
between vx and vy, and pvx ,vx and pvy ,vy are the same concept for vertices vx and vy. An application of
using meta-path for link prediction is in [119], which predicts drug target interactions (DTI) on the
observed topological features of a semantic network in the context of drug discovery.

6.3. Neural Network-Based Methods

In order to avoid strong assumptions for every heuristic related to node similarities and edge
formation, link prediction algorithms that are based on neural networks have been proposed that
automatically learn a suitable heuristic from a given network. In [25], a mapping function for the
subgraph patterns to link existence is being learned by extracting a local subgraph around each target
link. Thus, this model automatically learns a “heuristic” that suits the graph. The powerful capabilities
and simplicity of using neural network-based methods have led to the generation of a family of
complex encoder-decoder-based representation learning models, such as Graph Neural Networks
(GNNs) [120,121] and Graph Convolutional Neural Networks (GCNs) [104,122–124].

Although the general concept of graph neural networks was first presented in [121], many
neural network-based algorithms for representation learning and link prediction have been proposed,
including SEAL [25], which uses GNNs to learn general graph structure features for link prediction
from local enclosing subgraphs. Besides models that consider graph structure features, latent
and explicit features are also investigated in the literature for link prediction. Furthermore,
efficient strategies for capturing multi-modality for graphs, for instance, node heterogeneity, have been
originated from neural network-based models. Another extension for graph embedding methods that
have become achievable by neural networks, is the embedding of subgraphs (S ⊂ V). The attribute
aggregation procedure in different neural network architectures may vary according to their connection
types, and the usage of filters or gates in the propagation step of the models [115].

In order to learn the information on the neighboring nodes, GNNs [121] aim to learn a state
embedding hvx ∈ Rs iteratively, where s is the dimension for the vector representation of node vx.
By stacking the states for all of the nodes, the constructed vectors H, and the output labels O can be
represented as:

H = Fg(H, X), (60)

O = Og(H, XN), (61)

where Fg is the global transition function, Og is the global output function, X refers to the feature
vector, and XN stands for the feature vector for all nodes. The updates per iteration can be defined as:

Ht+1 = F(Ht, X), (62)

where t denotes the t_th iteration. In this algorithm, the learning of the representations can be achieved
by a supervised optimization method, such as the gradient-descent method.

The SEAL [115] algorithm that has been designed for the task of link prediction considers enclosing
subgraph extraction for a set of sampled positive (observed) and negative links in order to prepare
the training data for GNN and uses that information to predict edge formations. The GNN model
receives the adjacency matrix (A) and node information matrix (X) as input, where each row of X
corresponds to a feature vector of a vertex. The process of X preparation for each enclosing subgraph
includes three components of structural node labels based on Double-Radius Node Labeling (DRNL),
node embeddings, and node attributes. Another neural network-based model for the task of link
prediction is HetGNN [120], which considers heterogeneous networks. This model starts with a
random walk with restart strategy and samples a fixed size of correlated heterogeneous neighbors to
group them based upon node types. Subsequently, neural network architecture with two modules
is used in order to aggregate feature information of sampled neighboring vertices. The deep feature
interactions of heterogeneous contents are captured by the first module, which generates content
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embedding for each vertex. The aggregation of content embeddings of different neighboring types is
being done by the second module. HetGNN combines these outputs in order to obtain the final node
embedding.

Multi-layer Perceptrons (MLPs) are neural network-based representation learning algorithms that
approach graph embedding via message passing, in which information flows from the neighboring
nodes with arbitrary depth. Message Passing Neural Networks (MPNNs) [125] further extend GNNs
and GCNs by proposing a single framework for variants of general approaches, such as incorporating
the edge features in addition to the node features.

Graph Auto-Encoders (GAE) and Variational Graph Auto-Encoders (VGAE) [123] are another
category of graph neural networks that aim to learn the node representations in an unsupervised
manner. The majority of models based on GAE and its derivations employ Graph Convolutional
Networks (GCNs) for the node encoding procedure. Next, these algorithms employ a decoder in order
to reconstruct the graph’s adjacency matrix A. This procedure can be formally represented as:

Z = GCN(X, A), (63)

where Z is the convolved attribute matrix. GAEs can learn the graph structures while using deep
neural network architectures, and reduce the graph dimensionality in accordance with the number of
channels of the auto-encoder hidden layers [126]. Additionally, GAE-based models are able to embed
the nodes into sequences with diverse lengths. This benefits the auto-encoders not only to achieve high
performances for testing over the unseen node embeddings, but also to aggregate the node attributes in
order to improve their prediction accuracy [101]. GC-MC [124] and Adversarially Regularized Graph
Auto-Encoders (ARGA) are examples of representation models with auto-encoder architectures [127].
Auto-encoders are also being used without neural network architectures, for instance, LINE [108],
DNGR [126], and SDNE [128]. The algorithm in LINE consists of a combination of two encoder-decoder
structures to study and optimize the first and second node proximities in the vector space. Both of the
DNGR [126] and SDNE [128] algorithms embed the node local neighborhood information while using
a random surfing method and approach single embeddings through auto-encoders than pairwise
transformations.

Although the graph representation learning models that are based on GNNs consider both graph
structures and node features to embed the graph, they suffer from computational complexity and
inefficiency in iterative updating of the hidden states. Furthermore, GNNs use the same parameters for
all layers, which limits their flexibility. These architectures are always designed as shallow networks
with no more than three layers, and including a higher number of layers is still being considered to be
a challenge for CNNs [115].

The introduction of neural networks, specially convolutional neural networks, in order to graph
structures, has led to extract features from complex graphs flexibly. Graph Convolutional Networks
(GCNs) [122] tackle the problem of high computational complexity and shallow architectures via
defining a convolution operator for the graph. Furthermore, a rich class of convolutional filter
functions can be achieved through stacking many convolution layers. The iterative aggregation of a
node’s local neighborhood is being used in GCNs to obtain graph embeddings, where this aggregation
method leads to higher scalability besides learning graph global neighborhoods. The features for these
models include the information from the topology of the network aggregated by the node attributes,
when the node features are available from the data domain [115]. Additionally, GCNs can be utilized
for node embeddings, as well as subgraph embeddings [101]. Varying convolutional models have
been derived from GCNs that employ different convolutional filters in their architecture. These filters
can be designed as either spatial filters or spectral filters. The former type of convolutional filters can
be directly operated on the original graph and its adjacency matrix; however, the latter type is being
utilized on the spectrum of the graph Laplacian [114].

In [129], the problem of link prediction is studied while using a combination of two convolutional
neural networks for the graph network of molecules. The molecules are represented as having a
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hierarchical structure for their internal and external interactions. The graph structure transformation
to a low dimensional vector space is obtained from an internal convolutional layer that is randomly
initialized for each node representation and trained by backpropagation. The external convolutional
layer receives the embedded nodes as input to learn over the external graph representations.
Finally, the link prediction algorithm consists of a multilayer neural network, which was accepting the
final representations in order to predict the molecule-molecule interactions by a softmax function.

The algorithms that belong to the family of neighborhood aggregation methods, are also
being referred to as convolutional models. An example is GraphSAGE [130], which aggregates
the information from local neighborhoods recursively, or iteratively. This iterative characteristic leads
the model to be generalizable to unseen nodes. The node attributes for this model might include
simple node statistics, such as node degrees, or even textual data for profile information on online
social networks.

Graph convolutional neural networks for relational data analysis is proposed in [104],
which introduces Relational Graph Convolutional Networks (R-GCNs) for the task of link prediction
and node classification. Because of relational models referring to directed associations, the node
relationships in this models for the graph G = 〈V, E, R〉 are represented as (vx, r, vy) ∈ E, where r ∈ R
is a relation type for both canonical and inverse directions. This model can be considered to be a
special case of simple differentiable message-passing model. In this model, the forward-pass update
for entity vx in a relational multigraph can be propagated by:

h(l+1)
vx = σ

(
∑
r∈R

∑
vy∈Γr

vx

1
cvx ,r

W(l)
r h(l)vy + W(l)

0 h(l)vx

)
, (64)

where σ(.) is an element-wise activation function, l denotes the layer of the neural network, hvx is
the hidden state of node vx, cvx ,r refers to a problem-specific normalization constant, W is the weight
matrix, and Γr

vx denotes the set of neighbor indices of vertex vx under relation r ∈ R. Thus, this model
is different from normal GCNs as the accumulation of transformed feature vectors of neighboring
nodes are relation-specific. For this model, using multi-layer neural networks instead of simple linear
message transformation is also possible. The task of link prediction by this model can be viewed
as computing node representations with an R-GCN encoder and DistMult factorization [131] as the
scoring function, which is a known score function for relation representation with low number of
relation parameters. The triple (s, r, o) for (subject, relation, object) is being calculated in order to
determine the likelihood of possible edges as:

f (s, r, o) = v′Txs Rrvxo , (65)

in which Rr ∈ Rd×d is a diagonal matrix for every relation r. The model can be trained with negative
sampling via randomly corrupting the subject or object of positive examples.

7. Network Data Sets

One of the challenging tasks in network research is the implementation and validation of the
proposed methods and models. In the majority of the network research, the popular collections of
data sets are used as common sense: a friendship network of 34 members of a Karate Club and
78 interactions among them [132], the power network of an electrical grid of western US with 4941
nodes and 6594 edges [133], an internet-based router network with 5022 nodes and 6258 edges [134],
a protein–protein interaction network that contains 2617 proteins and 11855 interactions [135],
a collaboration network of 1589 authors with 2742 interactions [136], an airline network of 332 nodes
and 2126 edges that show the connection between airports (http://vlado.fmf.uni-lj.si/pub/networks/
data/), a social network of 62 dolphins in New Zealand with 159 interactions [137], a biological
network of the cerebral cortex of Rhesus macaque with 91 nodes and 1401 edges [138].

http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
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Data set collection is time-consuming and labor-intensive work. While some studies build their
own data set, the researchers mostly prefer to employ an existing data set. Some popular collections of
network data sets that might be used in link prediction studies are as follows:

• SNAP [139]: a collection of more than 90 network data sets by Stanford Network Analysis Platform.
With biggest data set consisting of 96 million nodes.

• BioSNAP [140]: more than 30 Bio networks data sets by Stanford Network Analysis Platform
• KONECT [141]: this collection contains more than 250 network data sets of various types, including

social networks, authorship networks, interaction networks, etc.
• PAJEK [142]: this collection contains more than 40 data sets of various types.
• Network Repository [143]: a huge collection of more than 5000 network data sets of various types,

including social networks.
• Uri ALON [144]: a collection of complex networks data sets by Uri Alon Lab.
• NetWiki [145]: more than 30 network data sets collection of various types.
• WOSN 2009 Data Sets [146]: a collection of Facebook data provided by social computing group.
• Citation Network Data set [147]: a collection of citation network dat aset extracted from DBLP,

ACM, and other sources.
• Grouplens Research [148]: a movie rating network data set.
• ASU social computing data repository [149]: a collection of 19 network data sets of various types:

cheminformatics, economic networks, etc.
• Nexus network repository [150]: a repository collection of network data sets by iGraph.
• SocioPatterns [151]: a collection of 10 network data sets that were collected by SocioPatterns

interdisciplinary research collaboration.
• Mark Newman [152]: a collection of Network data sets by Mark Newman.
• Graphviz [143]: an interactive visual graph mining and analysis.

8. Taxonomy

According to the methods that were explained earlier in this paper, we propose a taxonomy to
better categorize the link prediction models. In our proposed taxonomy, the link prediction techniques
are mainly categorized under two sections: feature learning and feature extraction techniques
(Figure 7).
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Figure 7. A taxonomy for the feature extraction techniques and feature learning methods in link
prediction literature.
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9. Discussion

This paper presents a comprehensive and state-of-the-art literature review on link prediction
analysis, in which the emerging links or missed associations are predicted in a complex network,
through a custom taxonomy. We classified link prediction techniques under two main categories.
Firstly, feature extraction techniques consist of the methods that start with an initial set of features and
build the required resources by using these raw features in order to describe the structural similarity.
We discussed these methods under three different titles due to their strategy for addressing link
prediction problems; namely, similarity-based, relational, and probabilistic methods. Among these
methods, similarity-based techniques are the simplest and relatively less computationally intensive.
These methods aim to explore missing links by assigning similarity scores between node pairs while
using the structural properties of the graphs. According to the required topological information from
a network, these methods are further divided into three subcategories. Global approaches require
the complete topological information of the graph; therefore, they provide relatively more accurate
results. However, the whole network may not be observable, or the large size of the network may
require less time-consuming methods. In such cases, local approaches, in which a maximum second
or third-degree neighborhood relationship is taken into consideration, rather than a whole network,
are suggested to be applied instead. This trade-off triggered the emergence of the so-called quasi-local
approaches. These methods are generally more favored and applied among similarity-based methods,
since they are as efficient as global approaches due to the use of additional topological information,
but less time-consuming. Other feature extraction techniques used in link prediction problems covered
in this study are relational and probabilistic methods. Using maximum likelihood calculations in
probabilistic methods makes them relatively time-consuming and expensive to deploy. Another major
drawback of these models is the lack of the concept of an object, which is addressed in relational
models. Thus, these models are able to use the logical structure of underlying data that is helpful for
more complex problems. Accordingly, employing relational methods in a link prediction problem
requires a massive computation of marginal probability distributions for each node in the network.
Although these methods are considered to be powerful, the nonexistence of the compact closed form
of these distributions due to mutual dependencies in the correlated networks makes their utilization
challenging [24]. Secondly, feature learning-based techniques consist of methods that allow for a
system to automatically learn the necessary set of features before building the required resources
to further address the link prediction problems. These high-performance approaches enable the
integration of extra information that is related to the network that might be effective in predicting the
existence of links, such as community structure [153], users’ behavior [154], common interests [99],
etc. Additionally, machine learning models are useful in picking the right combination of features by
optimizing an objective function, which renders these methods more preferable when compared to the
previously discussed approaches in many cases.

Getoor and Diehl [155] categorized link prediction problems under four main sections: (i) the
link existence, in which the likelihood of forming a connection between two nodes in the future is
questioned, (ii) the link load, in which the weight of the associated links are analyzed, (iii) the link
cardinality, in which the question of whether more than one link between a node pair exists or not
is inspected, and (iv) the link type, in which the role of the link between node pairs are evaluated.
Although the methods that are discussed in this survey mainly address the link prediction problem in
networks, they can be easily prolonged to the problems of link load and link cardinality, since they both
require a similar computational approach [156]. Some learning-based methods and probabilistic models
are being deployed for link prediction in temporal and dynamic networks. Whereas, the problem
of link type differ since the prediction methods foTr multi-object type links may require special
attention and the deployment of different methods. To obtain more detailed information regarding the
commonly used approaches for link prediction problem in weighted, bipartite, temporal, dynamic,
signed, and heterogeneous networks, please visit [72,157–161], respectively.
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Although the link prediction problem is an established field of research, several problems are yet
to be explored in this domain. In general, the available methods in the literature produce new methods
or compare the extant ones by assuming that the network is noise-free; however, some links might be
missing, substituted, or fake, which is called noisy networks. While, Zhang et al. [162] compared a few
numbers of similarity-based methods, but there is no detailed study that compare the robustness of
different approaches. Besides, each network has its own characteristics, i.e., domain/network problem,
and this makes transferring knowledge or generalizing the superiority of the link prediction algorithms
challenging. Still, there are a few works that consider the effects of varying topological properties on
the performance of different link prediction approaches. Furthermore, most of the real-world networks
are shown to be sparse. The resulting unbalanced dataset obstructs the handling of link prediction
problems, especially with the utilization of supervised techniques. Lastly, limited studies address the
link prediction problem in multiplex/multilayer methods, and these studies are generally constrained
with two layers. Further studies may consider this problem on multiplex networks with more than
two layers.
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