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Abstract: Follicular lymphoma (FL) is the second most common lymphoma in Western countries. FL is
characterized by being incurable, usually having an indolent clinical course with frequent relapses,
and an eventual patient’s death or transformation to Diffuse Large B-cell Lymphoma. The immune
response and the tumoral immune microenvironment, including FOXP3+Tregs, PD-1+TFH cells,
TNFRSF14 (HVEM), and BTLA play a role in the pathogenesis. We aimed to analyze the gene
expression of FL by Artificial Intelligence (machine learning, deep learning), to identify genes
associated with the prognosis of the patients and with the microenvironment in terms of overall
survival (OS). A series of 184 cases of the GSE16131 dataset was analyzed by multilayer perceptron
(MLP) and radial basis function (RBF) neural networks. In the analysis, MLP and RBF had a synergistic
effect. From an initial set of 22,215 genes probes, a final set of 43 genes was highlighted. These 43 genes
predicted the OS and correlated with the immune microenvironment: in a multivariate Cox analysis,
18 genes were associated with a poor prognosis (namely, MED8, KRT19, CDC40, SLC24A2, PRB1,
KIAA0100, EVA1B, KLK10, TMEM70, BTN2A3P, TRPM4, MED6, FRYL, CBFA2T2, RANBP9, BNIP2,
PTP4A2 and ALDH1L1) and 25 genes were associated with a good prognosis of the patients. Gene set
enrichment analysis (GSEA) confirmed these findings and showed a typical sinusoidal-like shape.
Some of the most relevant genes for poor OS were EVA1B, KRT19, BTN2A3P, KLK10, TRPM4, TMEM70,
and SLC24A2 (hazard risk = from 1.7 to 4.3, p < 0.005) and for good OS, these were TDRD12 and
ZNF230 (HR = 0.34 and 0.28, p < 0.001). EVA1B, KRT19, BTN2AP3, KLK10, and TRPM4 also associated
with M2-like macrophage markers including CD163, MRC1 (CD206), and IL10 in the core enrichment
for dead OS outcome by GSEA and to poor OS by Kaplan–Meier with Log rank test. The scientific
literature showed that some of these genes also play a role in other types of cancer. In conclusion,
by Artificial Intelligence, we have identified new biomarkers with prognostic relevance in FL.
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1. Introduction

Predictive neural networks are usually the chosen tool for many data-mining applications because
they can handle complex processes, such as the analysis of gene expression data of human pathological
conditions. The multilayer perceptron (MLP) and radial basis function (RBF) networks are supervised
methods and their architecture is feedforward [1,2]. The choice between MLP or RBF depends on the
data and the level of complexity that you seek to uncover. In general, the MLP procedure can find
more complex relationships, while the RBF is generally faster [3–5].

Lymphomas are a type of hematologic neoplasia of the immune system. The 2016 revision of
the World Health Organization classification of lymphoid neoplasms classifies the entity of follicular
lymphoma into the Mature B-cell neoplasms (as a part of the non-Hodgkin lymphomas), which includes
other relevant subtypes such as the chronic lymphocytic leukemia/small lymphocytic lymphoma,
splenic marginal zone lymphoma, plasma cell myeloma, extranodal marginal zone lymphoma
of mucosa-associated lymphoid tissue (MALT lymphoma), mantle cell lymphoma, and diffuse
large b-cell lymphoma, among others [6]. All these tumors are originated from B-lymphocytes in
a defined stage of B-cell maturation and differentiation. Lymphocytes are one of the five types
of the white blood cells. B-lymphocytes are produced in the bone marrow; they have a B-cell
receptor specific for a specific antigen, differentiate into plasma cells, and secrete antibodies or
become memory cells. Mantle cell lymphoma and diffuse large b-cell lymphoma behave aggressively.
On the other hand, chronic lymphocytic leukemia and marginal zone lymphomas are relatively benign.
Follicular lymphoma (FL) is a heterogeneous clinicopathological entity derived from germinal center
B-lymphocytes, and it is one of most common non-Hodgkin lymphomas in Western countries. Therefore,
it is clinically relevant [6,7].

Follicular lymphoma is characterized by the translocation (14;18) that results in BCL2
overexpression due to the IGH/BCL2 fusion gene. BCL2 is an oncogene with anti-apoptosis function.
Molecular genetics using next-generation sequencing (NGS) has shown recurrent mutations of several
genes including KMT2D, EZH2, ARID1A, EP300, MEF2B, and FOXO1. The prognosis of follicular
lymphoma is variable, and to date, not many biological markers have been identified to predict the
prognosis of the patients [7]. The Follicular Lymphoma International Prognostic Index (FLIPI) analyzes
five adverse prognostic factors to identify risk groups with significantly different overall survival.
The FLIPI includes the following variables: (1) Age >60 years; (2) Stage III or IV; (3) Hemoglobin level
<12.0 g/dL; (4) Number of involved nodal areas >4; and (5) Serum lactate dehydrogenase level greater
than the upper limit of normal. In addition to the FLIPI, gene expression analysis highlighted the role
of the tumoral immune microenvironment. An immune response type 1, rich in T cells, was associated
to good prognosis. In the context of the immune response type 1, FOXP3+regulatory T lymphocytes
(Tregs) and PD-1+follicular T helper cells (TFH cells) are also included. Conversely, an immune
response type 2, rich in macrophages, correlated to a poor prognosis; in this context, high TNFRSF14
and low BTLA are also included [8–13].

The purpose of this work was to re-analyze the gene expression data of a robust series of
184 cases of follicular lymphoma using an Artificial Intelligence approach in order to prove that our
methodological approach was feasible and to identify new genes that were associated to the prognosis
of the patients. We searched for genes that correlated with the survival outcome (dead/alive) as well as
other clinicopathological variables included in the FLIPI and the immune microenvironment (immune
response 2 versus 1). This work is significant because to our knowledge, the use of Artificial Intelligence
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is a novel approach. We found a new set of 43 genes associated with the prognosis of the follicular
lymphoma patients.

2. Materials and Methods

2.1. Statistical Analysis

All the statistical analysis was performed using both R programming language with R version 3.6.3
(2020-02-29) and RStudio (version 1.3.959), and IBM SPSS (version 25; IBM, Armonk, NY, USA).
The analysis was performed following the manufacturers’ instructions that can be found at the
following webpages: (1) https://www.r-project.org/, (2) https://rstudio.com/, and (3) https://www.ibm.
com/support/pages/node/618179 [3].

Comparisons between groups were performed with crosstabulations and Chi-square tests that
included the Pearson Chi-square, Likelihood ratio, and the Fisher’s exact test when required;
non-parametric tests included the two-independent-samples test (the Mann–Whitney U test).
Survival analysis was performed with the Kaplan–Meier with Log rank, Breslow, and Tarone–Ware
tests; and the Cox regression in the univariate analysis (enter method) as well as in the multivariate
analysis (backward conditional method). A p value of less than 0.05 was considered as statistically
significant. The definition of overall survival was the standard.

2.2. Follicular Lymphoma Gene Expression Dataset

The gene expression omnibus (GEO) series GSE16131 of follicular lymphoma [14]
was downloaded from the National Center for Biotechnology Information (NCBI) website
(https://www.ncbi.nlm.nih.gov/geo/). The samples corresponded to follicular lymphoma cases from
lymph nodes; fresh-frozen tumor-biopsy specimens were from 184 untreated patients. The series was
last updated in 10 August 2018.

The RNA had been extracted from the biopsy specimens (Fast track 2.0 mRNA isolation kit,
extraction method: oligo dt cellulose; Invitrogen, Carlsbad, CA, USA). Biotinylated cRNA had been
prepared according to the standard Affymetrix protocol from 1 microg mRNA (Expression analysis
technical manual, 2001, Affymetrix). The RNA had been examined for gene expression with the use
of Affymetrix U133A and U133B microarrays. Following fragmentation, 20 micrograms of cRNA
had been hybridized for 16 hours at 45C on U133A/B GeneChips. GeneChips had been washed
and stained in the Affymetrix Fluidics Station 400. Scanning had been performed by the Affymetrix
3000 Scanner. Calculation method: The data had been analyzed with Microarray suite version 5.0
(MAS 5.0) using Affymetrix default analysis settings and global scaling as the normalization method.
The trimmed mean target intensity of each array was arbitrarily set to 500. The data were normalized
and log2 transformed.

Definition of the immune response type 1 and 2 signatures in follicular lymphoma as originally
described by Dave SS et al. published in N Engl J Med 2004 [12]. From the total number of genes of
the chip, a set of 3299 genes were identified as being associated with survival. The genes that were
associated with good prognosis (1568 genes) and poor prognosis (1731 genes) were hierarchically
clustered separately. Five gene signatures were found among the genes predicting good prognosis,
and five signatures were found among the genes predicting poor prognosis. Within each signature,
the expression levels of the component genes were averaged, resulting in 10 signature averages
associated with each sample. By multivariate survival analysis, it was noted that a combination of two
signatures provided the better prediction. These two signatures were later named immune-response
1 and immune-response 2 based on the known function of the constituent genes. The coefficients
in the final model were derived from the Cox model applied to the training set. For each sample,
the final model generated a survival-predictor score according to the formula: survival-predictor score
= (2.71 × immune-response 2 signature average) − (2.36 × immune-response 1 signature average) [12].

https://www.r-project.org/
https://rstudio.com/
https://www.ibm.com/support/pages/node/618179
https://www.ibm.com/support/pages/node/618179
https://www.ncbi.nlm.nih.gov/geo/
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The genes of the immune-response 1 signature were ACTN1, ATP8B2, BIN2, C1RL, C6orf37,
C9orf52, CD7, CD8B1, DDEF2, DKFZP566G1424, DKFZP761D1624, FLJ32274, FLNA, FLT3LG, GALNT12,
GNAQ, HCST, HOXB2, IL7R, IMAGE:5289004, INPP1, ITK, JAM, KIAA1128, KIAA1450, LEF1, LGALS2,
LOC340061, NFIC, PTRF, RAB27A, RALGDS, SEMA4C, SEPW1, STAT4, TBC1D4, TEAD1, TMEPAI,
TNFRSF1B, TNFRSF25, TNFSF12, and TNFSF13B [12].

The genes of the immune-response 2 signature were BLVRA, C17orf31, C1QA, C1QB, C3AR1, C4A,
C6orf145, CEB1, DHRS3, DUSP3, F8, FCGR1A, GPRC5B, HOXD8, LGMN, ME1, MITF, MRVI1, NDN,
OASL, PELO, SCARB2, SEPT10, and TLR5 [12].

The signatures in the survival model were named based on the biologic function of certain genes
within each signature. The immune-response 1 signature includes genes encoding T-cell markers
(e.g., CD7, CD8B1, ITK, LEF1, and STAT4) and genes that are highly expressed in macrophages
(e.g., ACTN1 and TNFSF13B). Notably, the immune-response 1 signature is not merely a surrogate
for the number of T cells in the tumor-biopsy specimen, since many other standard T-cell genes
(e.g., CD2, CD4, LAT, TRIM, and SH2D1A) were not associated with survival. The immune-response 2
signature includes genes known to be preferentially expressed in macrophages, dendritic cells, or both
(e.g., TLR5, FCGR1A, SEPT10, LGMN, and C3AR1). It is noteworthy that the RNA of each sample is a
mixture of the RNA of different cell populations, including the tumoral B-lymphocytes, T-lymphocytes,
macrophages, and dendritic cells, among others [12].

It is noteworthy that in this research, we have used a variation to define the immune response
variable. Knowing that the high immune response 2 signature would associate to poor prognosis
due to the high macrophage component, we created a ratio between the gene expression values of
the immune response 2 and 1 as present in the series matrix file, and the best cut-off for the overall
survival was searched (which corresponded to 0.97 value).

2.3. Patients and Clinicopathological Characteristic

The series was comprised of 184 cases of follicular lymphoma with diagnostic biopsies
(pre-treatment). Regarding the grade, the series included 152 grades 1/2 and 32 grade 3A. In 4 cases,
the follow-up was missing. The follow-up time ranged from 0.01 to 19.3 years, with a mean of 7.0 years
(±4.5 STD) and a median of 6.5 years. The 1, 3, 5, and 10-year overall survival was 92% (95% CI, 88–96%),
83% (77–88%), 71% (64–78%), and 50% (42–58%), respectively. At the end of the follow-up time, 92 of 180
(51.1%) had died. The immune response scores were available for all 184 cases. The immune response
score 1 (representative of T-lymphocytes) ranged from 7.3 to 10.2, with a mean of 9.3 (±0.4 STD) and a
median of 9.3. The immune response score 2 (representative of macrophages) ranged from 8.1 to 9.9,
with a mean of 8.7 (±0.3) and median of 8.7. An immune response ratio 2:1 high (>0.97) was found in
26.1% of the cases. This cut-off of 0.97 had been found using a receiver operating characteristic (ROC)
curve and the outcome (dead/alive) of the patients. The rest of the clinicopathological characteristics
of the series is shown in Table 1. In summary, the clinicopathological variables that associated with
a poor prognosis of the patients were age >60-years old (Hazard risk = 2.7), number of extranodal
sites >1 (HR = 1.8), increased lactate dehydrogenase levels in serum (LDH; HR = 2.0), international
prognostic index (IPI; HR = 3.1), and immune response ratio 2:1 high (HR = 3.3) (Table 2). In Figures 1–4,
the distribution of the data of the different variables is shown, including the histograms as well as
the overall survival plots. Follicular lymphoma is characterized by an indolent clinical course and
frequent relapses, eventually leading to death or transformation to another lymphoma subtype with
more aggressivity (Diffuse large b-cell lymphoma). We performed gene set enrichment analysis (GSEA)
to identify biological pathways that could explain the pathological mechanism of survival outcome
(dead/alive). First, the pan cancer immune oncology pathway was tested, and the result showed
enrichment toward the dead phenotype, with the presence of markers related to macrophages. Of note,
macrophages are associated to an immune response type 2 signature. Later, several individual pathways
were tested, including ATM, BCR, CASPASE, CD8, E2F, HDAC, MAPK TRK, MYC, NFKB canonical
and atypical, NOTCH, RAS, RB, RET, TP53, VEGF, and WTN canonical pathways. The most relevant,
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which were found to be associated to a favorable outcome, were the BCR (B-cell receptor), the MAPK
TRK and atypical NFKB pathways. The relevant pathways and genes will be of interest in the neural
network analysis in association to the clinical variables. In summary, follicular lymphoma is an indolent
hematological neoplasia with favorable prognosis. Nevertheless, some patients have a more aggressive
clinical course. To date, the most important prognostic variables are the IPI and the immune response
signature. Nevertheless, the pathological mechanism is still not completely understood. Therefore,
there is a need to find prognostic biomarkers that can be correlated with these parameters.

2.4. Multilayer Perceptron and Radial Basis Function Neural Network Analysis

Multilayer perceptron and radial basis function neural networks were performed as previously
described [4,5]. In summary, the analysis aimed to predict a single variable or various dependent
variables based on several factors (categorial variable) or covariates (continuous variable).

In the multilayer perceptron analysis setup, the rescaling of covariates was standardized. The cases
were randomly assigned based on the relative numbers of cases with a training partition of 70%,
test partition of 30%, and holdout partition of 0%. The architecture was comprised of hidden layers
and an output layer. The hidden layers included the setup of the number of hidden layers (one or
two), the activation function (hyberbolic tangent, sigmoid), and the number of units (automatically
computed or custom). The output layer was defined by the activation function (identify, softmax,
hyperbolic tangent and sigmoid) and by the rescaling of scale-dependent variables (standardized,
normalized, adjusted normalized, or none). Of note, the activation function chosen for the output
layer determined which rescaling methods were available. The type of training could be batch, online,
and mini-batch, and the optimization algorithm could use the scaled conjugate gradient or the gradient
descent. The network structure included the description, the diagram, and the synaptic weights.
The network performance included the model summary, the classification results, the ROC curve,
cumulative gains chart, lift chart, predicted by observed chart, and residual by predicted chart.
The output also included a case processing summary and the analysis of the independent variable
importance. The predicted value or category and the predicted pseudo-probability for each dependent
variable were saved. The synaptic weight estimates were also exported to an xml file. As stopping
rules, the maximum training epochs were computed automatically, the minimum relative changes in
the training error was 0.0001, and the training error ratio was 0.001.

Table 1. Clinicopathological characteristics of the follicular lymphoma series.

Variable Frequency Percentage

Age > 60 years 61 (182) 22.5
Number of extranodal sites > 1 24 (184) 13

LDH levels ratio > 1 46 (160) 28.7
Stage > 2 129 (180) 71.7

IPI score 2–3 74 (160) 46.3
Immune Response ratio 2:1 high (≥0.97) 48 (184) 26.1

With translocation (14;18) positive 147 (164) 89.6
Survival outcome dead 92 (180) 51.1

Survival dead before 5 years 35 (84) 41.7
Survival alive from 10 years 49 (84) 58.3

In the radial basis function setup, the parameters are similar to the multilayer perceptron but the
activation function for the hidden layer can be a normalized radial basis function or an ordinary radial
basis function, and the overlap among hidden units can be automatically computed or specified.
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Figure 1. Clinicopathological characteristics of the series. The histograms show the distribution of the
data for each of the clinical variables including the immune response gene signature 2:1 ratio and the
presence of translocation (14;18) involving the IGH/BCL2 genes.

The analysis follows a series of steps. (1) The multilayer perceptron and radial basis function
neural networks analysis were performed using the gene expression data of 184 patients with follicular
lymphoma. The input data were the 22,215 gene probes (the predictors, covariates) and the predicted
variables (the dependent variables) were the survival output (dead/alive) as well as the other relevant
clinicopathological variables. The genes were ranked according to their normalized importance for
prediction. The genes with more than 70% of normalized importance were selected and pooled.
The genes above 1% of averaged normalized importance were also selected and pooled. (2) The
final list of genes was subjected to a univariate Cox regression analysis for the prediction of survival
outcome (dead/alive, enter method). Each gene was used in the univariate Cox as a quantitative
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variable (predictor). Subsequently, a multivariate Cox regression analysis was performed only with the
significant genes of the univariate analysis. In this multivariate analysis, the method was the backward
conditional. (3) The final list of significant genes from the multivariate analysis was subjected to a
second round of multilayer perceptron analysis to confirm their association with the most relevant
variables, the survival outcome, the international prognostic index, and the immune microenvironment
immune response.Mach. Learn. Knowl. Extr. 2020, 2 FOR PEER REVIEW  6 
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Figure 2. Clinicopathological characteristics of the series. The histograms show the distribution of the
data for the immune response variables (1, 2 and the 2:1 ratio). The immune response variables are
based on the gene expression of markers that are characteristic of the tumoral immune microenvironment
and host immune response (T cells, macrophages, etc.), as originally described by Dave SS et al.
and published in N Engl J Med 2004 [12]. In this project, we created an immune response 2:1 ratio
and the cut-off value of 0.97 was use in the overall survival analysis. The overall survival time of the
series is also shown. The distribution and correlation of the different variables is also shown in the
hierarchical clustering with dendrogram and heatmap.
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Figure 3. Clinicopathological characteristics of the series. Correlation between the clinicopathological
characteristics and the overall survival of the patients. The clinical evolution of FL is usually indolent
but heterogeneous. Some clinical variables such as the IPI (FLIPI) and the immune response allows
stratifying the patients according to their risk.
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Figure 4. Clinicopathological characteristics of the series: Gene set enrichment analysis (GSEA).
GSEA was performed to identify pathways related to the overall survival outcome (dead/alive). A pan
cancer immune oncology pathway was used to identify which markers were potentially responsible for
a poor outcome (dead phenotype). This pathway included genes involved in the complex interplay
between the tumoral B-lymphocytes, the tumor immune microenvironment, and the host immune
response. The plot showed an enrichment toward the dead phenotype with the presence of genes
related to macrophages. Other pathways that were highlighted were the B-cell receptor (BCR) signaling,
mitogen-activated protein kinase (MAPK)—tyrosine receptor kinase (TRK), and the atypical nuclear
factor-kappa B (NFKB) pathways, which were associated to a favorable outcome.

2.5. Gene Set Enrichment Analysis

The gene set enrichment analysis (GSEA) was performed using the GSEA software from the UC
San Diego, Broad Institute (version 4.1.0) following the manufacturer’s instructions. In summary,
three types of files were created: (1) the gene cluster text file (*.gct) that contains the gene expression
data of the GSE16131 GPL96 follicular lymphoma series (n = 180); (2) the phenotype data as a
categorical class (dead/alive) file format (*.cls); and (3) the gene set database as a gene matrix file format
(*.gmx). When running the GSEA, the following parameters were used: number of permutations
(1000), collapse to gene symbols, permutation type (phenotype), chip platform (Affymetrix HG U133),
enrichment statistic (weighted), metric for ranking genes (signal2noise), gene list sorting mode (real),
gene list ordering mode (descending), max size (500), and min size (15). The Java web start option
(1 GB for 64-bit) was launched using Java 8 (version 261, build 1.8.O_261-b12, Oracle Corporation,
500 Oracle Parkway, Redwood Shores CA, 94065, USA).
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Table 2. Overall survival analysis of the clinicopathological variables.

Variable Log Rank p Value Cox p Value Hazard Risk
95% CI for HR

Lower Upper

Age > 60 years 2 × 10−6 5 × 10−6 2.7 1.8 4.2
Number of extranodal sites > 1 0.022 0.025 1.8 1.1 3.1

LDH levels ratio > 1 0.002 0.002 2.0 1.3 3.2
Stage > 2 1 0.086 0.088 1.5 0.9 2.5

IPI score 2–3 4 × 10−7 2 × 10−6 3.1 2.0 5.0
With translocation (14;18) positive 0.249 0.253 1.6 0.7 3.7
Immune Response ratio 2:1 high

(≥0.97) 9 × 10−9 5.3 × 10−8 3.3 2.1 5.0

Survival: Dead up to 5-y vs. Alive
from 10-years 5 × 10−21 1.7 × 10−5 209.2 18.3 2393.0

1 In the Kaplan–Meier survival analysis of the variable stage, the p = 0.027 in the Breslow test and p = 0.04 in the
Tarone–Ware test.

3. Results

3.1. Multilayer Perceptron and Radial Basis Function Neural Network Analysis

In Tables 3 and 4, all the data of the results of the MLP and RBF analyses are shown. The results include
the case processing summary, the network information, the hidden layer, the output layer, the model
summary, the model summary testing, the classification, and the area under the curve. The results are
individualized for each of the dependent variables, as shown in the Figure 5, including survival outcome,
age, extranodal sites, lactate dehydrogenase (LDH), clinical stage, international prognostic index (IPI),
immune response ratio (2:1), the status of the presence of t(14;18), and the combined variable. The MLP
analysis used the hyperbolic tangent activation function in the hidden layer, and the output layer used
the softmax activation function and cross-entropy error function. Conversely, the RBF used the softmax
activation function in the hidden layer and the identity activation function and sum of squares error
function in the output layer. In both the training model and in the testing model, the error of the MLP
was higher than in the RBF (p < 0.05). Conversely, the training time was higher in the RBF analysis:
MLP vs. RBF, training time in seconds, 11.9 ± 20.9 vs. 384.3 ± 168.0% (p = 4.871 × 10−4), respectively.
Importantly, the area under the curve of the ROC curve was higher in the MLP than in the RBF: 0.76 vs.
0.62 (p = 4.871 × 10−4). Therefore, the results indicate that the MLP is slightly more efficient than the
RBF neural network. From an initial set of 22,215 gene probes, after several neural network analyses,
the threshold for the 70% normalized importance and 1% averaged normalized importance, the pooling
and deletion of duplicates, we finished with a set of 1005 genes. This approximately accounts for a
20-times reduction (Figure 5).

3.2. Univariate and Multivariate Cox Survival Analysis

A univariate overall survival analysis with the Cox regression analysis was performed in each of
the 1005 genes. In each regression analysis, the gene expression values were analyzed as a continuous
variable. As a result, the list was reduced to 89 genes. In order to highlight the most important,
a survival analysis with a multivariate Cox regression analysis (backward conditional method) was
performed, and in the last step, the list of the most relevant genes was reduced to 43 genes: 18 were
associated to a poor prognosis (Table 5) and 25 were associated to a good prognosis of the patients
(Table 6). In the tables, the genes are ranked according to their hazard ratio for risk of survival
(dead/alive).

Each clinicopathological-dependent variable had a contribution of gene probes in the final set
of 1005 genes, which was variable in case of MLP or RBF neural network as well as for Normalized
Importance (NI) >70% or Averaged Normalized Importance. In the case of only gene probes with a
normalized importance >70% and MLP analysis, the contribution was as follows: OS, 8 gene probes; Age,
47 gene probes; Extranodal, 3 gene probes; LDH, 32 gene probes; Stage, 41; IPI, 4; Immune Response,
8; OS 5-10y, 84; combined variables, 451. In case of RBF analysis, the contribution (also only gene
probes with a normalized importance >70%) was as follows: OS, 56 gene probes; Age, 50 gene probes;
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Extranodal, 52 gene probes; LDH, 184 gene probes; Stage, 24; IPI, 66; Immune Response, 64; OS 5-10y,
85; combined variables, 451. In summary, MLP contributed in 678 gene probes into the pooling,
and RBF contributed in 1032 gene probes.Mach. Learn. Knowl. Extr. 2020, 2 FOR PEER REVIEW  1 
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Table 3. Multilayer perceptron analysis (MLP).

Multilayer
Perceptron Dependent Variable Survival

Outcome Age 60 Extranodal
Sites LDH Stage IPI IR 2:1

Ratio Translocation Combined 5 vs.
10-y Mean STD Median

Case processing
summary

Training 129 116 137 108 130 109 132 109 44 59 107.1 33.3 116
Training Percentage 71.7 63.7 74.5 67.5 72.2 68.1 71.7 66.5 71 69.4 70.0 3.2 71

Testing 51 66 47 52 50 51 52 55 18 26 45.9 14.7 51
Testing Percentage 28.3 36.3 25.5 32.5 27.8 31.9 28.3 33.5 29 30.6 30.0 3.2 29

Valid 180 182 184 160 180 160 184 164 62 85 153 46.4 180
Excluded 4 2 0 24 4 24 0 20 122 99 31 46.4 4

Total 184 184 184 184 184 184 184 184 184 184 184 0 184

Network
information

Num of Units 22,215 22,215 22,215 22,215 22,215 22,215 22,215 22,215 22,215 22,215 - - -
Rescaling Method for covariates Standarized - - -

Hidden layer
Num Hidden Layers 1 1 1 1 1 1 1 1 1 1 1 0 1

Num Units in Hidden Layer 9 8 5 15 10 8 11 6 8 8 9.1 2.8 8
Activation Function Hyperbolic tangent - - -

Output layer

Dep Variable 1 1 1 1 1 1 1 1 9 1 - - -
Num of Units 2 2 2 2 2 2 2 2 18 2 3.8 5.3 2

Activation Function Softmax - - -
Error Function Cross-entropy - - -

Model summary
training

Cross Entropy Error 87.8 70.7 50.9 51.4 70.8 70.5 59.3 30.2 173.5 30.0 73.9 40.8 70.5
Percent of Incorrect Predictions 40.3 35.3 14.6 22.2 23.8 33.0 16.7 11.0 19.9 22.0 25.3 8.8 22.2

Stopping Rule Used * 1 1 1 1 1 1 1 1 1 1 - - -
Time in Seconds 84.8 83.5 101.2 71.7 99.2 79.1 97.9 76.4 41.9 44.3 78.2 22.2 83.5

Model sum.
testing

Cross Entropy Error 28.1 32.7 11.3 27.8 24.0 30.2 23.9 9.2 84.2 13.9 30.7 21.3 27.8
Percent Incorrect Predictions 23.5 22.7 8.5 23.1 18.0 33.0 23.1 7.3 25.9 26.9 22.7 6.7 23.1

Classification
Training Overall Percent 59.7 64.7 85.4 77.8 76.2 67.0 83.3 89.0 80.1 78.0 74.7 8.8 77.8
Testing Overall Percent 76.5 77.3 91.5 76.9 82.0 66.7 76.9 92.7 74.1 73.1 77.2 6.8 76.9

Area under the
curve

Alive 0.7 0.7 0.8 0.8 0.7 0.7 0.8 0.9 0.8 0.8 0.8 0.0 0.8
Dead 0.7 0.7 0.8 0.8 0.7 0.7 0.8 0.9 0.8 0.8 0.8 0.0 0.8

LDH, lactate dehydrogenase; IPI, international prognostic index; IR, immune response (type 2 and type 1); STD, standard deviation. * Consecutive with no decrease in error.
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Table 4. Radial basis function analysis (RBF).

Radial Basis
Function Dependent Variable Survival

Outcome Age 60 Extranodal
Sites LDH Stage IPI IR 2:1

Ratio Translocation Combined 5 vs.
10-y Mean STD Median

Case processing
summary

Training 127 123 125 116 127 109 134 119 47 66 108.2 30.5 123
Training Percentage 70.6 67.6 67.9 72.5 70.6 68.1 72.8 72.6 75.8 77.6 71.5 3.5 70.6

Testing 53 59 59 44 53 51 50 45 15 19 44.8 16.4 51
Testing Percentage 29.4 32.4 32.1 27.5 29.4 31.9 27.2 27.4 24.2 22.4 28.5 3.5 29.4

Valid 180 182 184 160 180 160 184 164 62 85 153 46.4 180
Excluded 4 2 0 24 4 24 0 20 122 99 31 46.4 4

Total 184 184 184 184 184 184 184 184 184 184 184 0 184

Network
information

Num of Units 22,215 22,215 22,215 22,215 22,215 22,215 22,215 22,215 22,215 22,215 - - -
Rescaling Method for Covariates Standarized - - -

Hidden layer
Num Hidden Layers 1 1 1 1 1 1 1 1 1 1 1 0 1

Num Units in Hidden Layer 2 2 3 7 6 2 10 2 3 2 4.1 2.9 3
Activation Function Softmax - - -

Output layer

Dep Variable 1 1 1 1 1 1 1 1 9 1 - - -
Num of Units 2 2 2 2 2 2 2 2 18 2 3.8 5.3 2

Activation Function Identity - - -
Error Function Sum of Squares - - -

Model summary
training

Sum of Squares Error 31.7 26.7 12.1 25.5 27.6 27.2 20.1 9.7 72.2 14.7 28.7 17.5 26.7
Percent of Incorrect Predictions 47.2 32.5 11.2 36.2 33.1 47.7 21.6 9.2 26.5 36.4 32.5 11.6 33.1

Stopping Rule Used - - - - - - - - - - - - -
Time in Seconds 487.5 481.9 451.5 436.2 477.2 336.7 587.6 406.0 84.4 94.4 381.9 178.0 451.5

Model sum.
testing

Sum of Squares Error 13.3 12.8 8.5 6.9 8.8 12.8 6.6 5.2 29.8 4.6 11.6 7.5 8.8
Percent Incorrect Predictions 56.6 35.6 16.9 11.4 17.0 56.9 18.0 13.3 35.6 36.8 31.6 17.1 35.6

Classification
Training Overall Percent 52.8 67.5 88.8 63.8 66.9 52.3 78.4 90.8 73.5 63.6 67.5 11.6 66.9
Testing Overall Percent 43.4 64.4 83.1 88.6 83.0 43.1 82.0 86.7 64.4 63.2 68.4 17.1 64.4

Area under the
curve

Alive 0.5 0.6 0.6 0.6 0.6 0.5 0.8 0.6 0.7 0.7 0.6 0.1 0.6
Dead 0.5 0.6 0.6 0.6 0.6 0.5 0.8 0.6 0.7 0.7 0.6 0.1 0.6

LDH, lactate dehydrogenase; IPI, international prognostic index; IR, immune response (type 2 and type 1); STD, standard deviation.
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Table 5. Genes associated to poor prognosis in the multivariate Cox survival analysis.

Gene B p Value HR HR Lower HR Higher Cytoband

FRYL 1.84 0.00963 6.27 1.56 25.16 4p11
KIAA0100 1.82 0.00005 6.16 2.55 14.90 17q11.2
CDC40 1.64 0.00004 5.13 2.34 11.24 6q21
MED8 1.57 1.6 × 10−8 4.79 2.78 8.25 1p34.2

PTP4A2 1.51 0.05252 4.55 0.98 21.00 1p35
BNIP2 1.48 0.04624 4.38 1.02 18.73 15q22.2

TMEM70 1.46 0.00308 4.30 1.64 11.31 8q21.11
MED6 1.41 0.00627 4.08 1.49 11.20 14q24.2

SLC24A2 1.39 0.00005 4.03 2.06 7.89 9p22.1
KLK10 1.34 0.00265 3.81 1.59 9.13 19q13

RANBP9 1.29 0.01825 3.63 1.24 10.60 6p23
PRB1 1.08 0.00005 2.94 1.74 4.95 12p13.2

EVA1B 1.00 0.00041 2.71 1.56 4.72 1p34.3
CBFA2T2 0.99 0.01269 2.69 1.24 5.86 20q11
ALDH1L1 0.74 0.08266 2.09 0.91 4.80 3q21.3

KRT19 0.71 0.00002 2.04 1.47 2.81 17q21.2
BTN2A3P 0.71 0.00320 2.03 1.27 3.25 6p22.1
TRPM4 0.56 0.00449 1.76 1.19 2.60 19q13.33

This contribution may be of interest if we want to know which markers are associated to each of
the dependent variables as well as to know which variables are the most relevant for predicting the
overall survival of the patients in terms of gene-probes contribution.

For example, if we focus on the last step of multivariate Cox survival analysis in which a
final set of 43 genes was identified, the MLP and RBF contributions are variable depending on
the type of neural network and the variable tested. In general, RBF neural network contributed
more frequently to the identification of the final set of genes than the MLP (35 vs. 28, respectively).
Nevertheless, in the averaged normalized importance variable, the MLP identified more genes than
the RBF (17 vs. 14, respectively). In summary, the combination of both MLP and RBF produces a
synergic effect, the combined variable is the most efficient of the individual variables, and the averaged
normalized importance is the most efficient of all. The contribution of each variable is shown in
Figure 6.

3.3. Gene Set Enrichment Analysis (GSEA)

GSEA is a computational method that determines whether an a priori defined set of genes shows
statistically significant, concordant differences between two biological states (e.g., phenotypes). In our
case, the two biological states were the outcome status of dead vs. alive. GSEA was performed on the
set of 43 genes, and the result was a sinusoid-like plot, with some genes associated to good and other
to poor prognosis. This is the same result as in the multivariate Cox regression analysis for overall
survival. The GSEA association was also confirmed for the set of 18 genes (good prognosis) and the set
of 25 (good). In addition, we included in the GSEA immune genes, oncogenes, and tumor-suppressor
genes known to play a role in the pathogenesis of follicular lymphoma. All the results, including the
genes of the core enrichment, are shown in Figure 7.

3.4. Univariate Survival Analysis with Kaplan–Meier and Log Rank Test

Based on the results of the GSEA analysis, a small group of genes was selected, and a cut-off

of gene expression was searched (Figure 8). We confirmed that a high expression of EVA1B, KRT19,
BTN2A3P, KLL10, and TRPM4 was associated to a poor OS of the patients, while high TDRD12 and
ZNF230 was associated to a favorable OS (p < 0.05).
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Table 6. Genes associated to good prognosis in the multivariate Cox survival analysis.

Gene B p Value HR HR Lower HR Higher Cytoband

HSF2 −0.48 0.04873 0.62 0.38 1.00 6q22.31
ATPAF2 −0.48 0.04152 0.62 0.39 0.98 17p11.2
SLC7A11 −0.51 0.00208 0.60 0.43 0.83 4q28.3
PTAFR −0.64 0.00060 0.53 0.37 0.76 1p35-p34.3
TTLL3 −0.74 0.01720 0.48 0.26 0.88 3p25.3

TCP10L −0.75 0.03536 0.47 0.24 0.95 21q22.11
DNAAF1 −0.8 0.00807 0.45 0.25 0.81 16q24.1

PRH1 −0.85 1 × 10−5 0.43 0.29 0.62 12p13.2
NSDHL −0.89 0.04102 0.41 0.17 0.96 Xq28
TAF12 −0.99 0.01139 0.37 0.17 0.80 1p35.3

TSPAN3 −1 0.00040 0.37 0.21 0.64 15q24.3
AKIRIN1 −1.03 0.00195 0.36 0.19 0.69 1p34.3

ITK −1.04 0.00102 0.35 0.19 0.66 5q31-q32
TDRD12 −1.09 0.00392 0.34 0.16 0.70 19q13.11

LPP −1.12 0.00097 0.33 0.17 0.63 3q28
BTD −1.13 9.5 × 10−6 0.32 0.20 0.53 3p25

SIRT5 −1.22 0.04956 0.30 0.09 1.00 6p23
ZNF230 −1.29 0.00002 0.27 0.15 0.50 19q13.31
ABHD6 −1.38 7.2 × 10−5 0.25 0.13 0.50 3p14.3
TOP2B −1.49 0.01673 0.23 0.07 0.76 3p24
ARPC2 −1.7 0.00804 0.18 0.05 0.64 2q36.1
ASAP2 −1.96 0.00003 0.14 0.06 0.36 2p25|2p24
IDH3A −2.03 0.00009 0.13 0.05 0.36 15q25.1-q25.2
PSMF1 −2.44 0.00415 0.09 0.02 0.46 20p13

ARFGEF1 −2.69 0.00000 0.07 0.02 0.20 8q13

3.5. Final MLP and RBF Neural Network Analysis

Based only on the set of 43 genes and the 184 patients, a final MLP and RBF neural network
analysis was formed. The aim was to confirm the quality control parameters of our model using the
ROC curve, the cumulative gains chart, and the lift chart. In addition, the 43 were ranked according
to their normalized importance to predict the OS of the patients, the immune response, and the IPI.
The results are shown in Figures 9–11.

3.6. Correlation between the 7 Highlighted Genes and the Clinicopathological Characteristics of the Patients

In this project, we identified seven genes that were associated with the overall survival of the
patients. In five genes (EVA1B, KRT19, BTN2A3P, KLK10, and TRPM4), high expression correlated
to a poor overall survival; and in two genes (TDRD12 and ZNF230), high expression correlated to a
favorable overall survival. In order to understand the reason for this association, we correlated using
simple crosstabulations with the clinicopathological characteristics of the patients. The associations
can be seen in Table 7.

Table 7. Clinicopathological correlations with the final set of seven prognostic genes.

Crosstabulations OS Prognosis Outcome
Dead/Alive Age EN LDH Stage IPI IR

EVA1B Bad 0.0005 0.7840 0.7045 0.1580 0.1046 0.0668 0.1657
KRT19 Bad 0.0148 0.0017 0.0384 0.1236 0.1815 0.4020 0.9878

BTN2A3P Bad 0.0094 0.0820 0.7045 0.5451 0.5724 0.0440 0.0751
KLK10 Bad 0.4673 0.0481 0.0184 0.6009 0.8798 0.0258 0.6764
TRPM4 Bad 0.1646 0.3882 0.1212 0.1698 0.1710 0.9865 0.0974

TDRD12 Good 0.0094 0.5468 0.8321 0.1934 0.1616 0.4593 0.8869
ZNF230 Good 0.0698 0.0310 0.9695 0.6875 0.2887 0.5414 0.0009

OS, overall survival; EN, extranodal; IPI, international prognostic index, IR, immune response. p values < 0.05 are
underlined. p values < 0.01 are double underlined.



Mach. Learn. Knowl. Extr. 2020, 2 662

Mach. Learn. Knowl. Extr. 2020, 2 FOR PEER REVIEW  1 

 

 

Figure 6. Contribution of each dependent variable and neural network method in the final set of 43 predictive genes. Both multilayer perceptron (MLP) and radial 
basis function (RBF) contribute to the final set with a synergic effect. In general, the most efficient variables are the combined and the averaged normalized 
importance.  

Figure 6. Contribution of each dependent variable and neural network method in the final set of 43 predictive genes. Both multilayer perceptron (MLP) and radial
basis function (RBF) contribute to the final set with a synergic effect. In general, the most efficient variables are the combined and the averaged normalized importance.



Mach. Learn. Knowl. Extr. 2020, 2 663

 

2 

 

 

Figure 7 

 Figure 7. Gene set enrichment analysis (GSEA) was performed to confirm the results of the multivariate
Cox regression for the overall survival analysis. The set of 43 were used in addition to genes of the
immune response as well as oncogenes and tumor suppressor genes related to the pathogenesis of
follicular lymphoma. The genes of the core enrichment are shown as well as a functional network
association analysis.
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Figure 8. Overall survival with Kaplan–Meier analysis. Based on the GSEA results, a group of genes
was selected. After finding the more adequate cut-off, a group of patients with high and low expression
was found with correlation to the overall survival. Bad OS genes were EVA1B, KRT19, BTN2A3P, KLL10,
and TRPM4. Good OS genes were TDRD12 and ZNF230.
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Figure 9. Multilayer perceptron analysis based on the set of 43 genes. This MLP analysis includes only
the final set of 43 genes as input variables and predicts the survival of the patients based on the survival
outcome (dead/alive). The quality of the neural network analysis can be confirmed with the receiver
operating characteristic (ROC) curve, and the rank of the genes is shown according to their normalized
importance for prediction.
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Figure 10. Multilayer perceptron analysis based on the set of 43 genes. This MLP analysis includes
only the final set of 43 genes as input variables and predicts the immune response of the patients based
on the immune response 2:1 ratio. The quality of the neural network analysis can be confirmed with the
ROC curve, and the rank of the genes is shown according to their normalized importance for prediction.



Mach. Learn. Knowl. Extr. 2020, 2 667
Mach. Learn. Knowl. Extr. 2020, 2 FOR PEER REVIEW  5 

 

 
Figure 11. Multilayer perceptron analysis based on the set of 43 genes. This MLP analysis includes 
only the final set of 43 genes as input variables and predicts the international prognostic index (IPI) 
of the patients. The quality of the neural network analysis can be confirmed with the ROC curve, and 
the rank of the genes is shown according to their normalized importance for prediction. 

  

Figure 11. Multilayer perceptron analysis based on the set of 43 genes. This MLP analysis includes
only the final set of 43 genes as input variables and predicts the international prognostic index (IPI) of
the patients. The quality of the neural network analysis can be confirmed with the ROC curve, and the
rank of the genes is shown according to their normalized importance for prediction.
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4. Discussion

Follicular lymphoma (FL) is one of the most frequent subtypes of non-Hodgkin lymphomas, and it
is the second most common subtype in Western countries. According to the World Health Organization
(WHO) classification of tumors of the hematopoietic and lymphoid tissues, FL is characterized by a
proliferation of B lymphocytes of the germinal center of lymphoid follicles, and it almost always shows
a histological follicular growth pattern under the microscope [6,7].

The molecular pathogenesis of FL is complex, and it is characterized by a multistep process in which
a germinal center B-lymphocyte must acquire several genetic and epigenetic changes that eventually
will lead to the malignant transformation. Most of the FL cases are characterized by the t(14;18)
that conveys the overexpression of the BCL2 anti-apoptosis oncogene. Nevertheless, although the
overexpression of BCL2 is necessary and seen is most of the cases even in FL “in situ”, by itself, it is not
capable of malignant transformation. FL is morphologically heterogenous, comprised in morphologic
terms as centrocytes (small and large cleaved cells) and centroblasts (small and large non-cleaved cells),
and being in different stages of proliferation, maturation, and/or apoptosis. In addition, the tumoral
immune microenvironment is rich in T-lymphocytes (including cytotoxic T-cells, follicular T helper
cells, macrophages, and dendritic cells) [9,11].

Artificial Intelligence (AI) techniques make use of algorithms that can be defined as a series
of instructions that a computer can execute. Many of the AI algorithms can learn from data and
enhance themselves. Artificial neural networks are computer systems that try to mimic the biological
neural networks. The artificial units or nodes are called neurons. The connections between neurons
are called edges. Neurons and edges have a weight that adjusts in time along with the learning
process. In this project, we were interested in performing AI analysis of gene expression data of FL
because to the best of our knowledge, this had not been attempted before. We used two methods,
two types of neural network analyses, the multilayer perceptron (MLP) and radial basis function
(RBF), to analyze the gene expression of FL, and we correlated with the prognosis of the patients.
In addition, due to the importance of the tumoral immune microenvironment in FL, we also queried
the AI system for correlation with the two known immune responses type 1 and 2 that are associated
with the prognosis of the patients [12]. Finally, the AI analysis was completed with more conventional
statistical analyses including the gene set enrichment analysis (GSEA), univariate and multivariate Cox
regression analyses, and the Kaplan–Meier with log rank test for overall survival analysis. Our method
was successful, as we managed to simplify from 22,215 gene probes to a final list of 43 genes. Of note,
we integrated both the MLP and RBF in the analysis, but we also could compare both types of neural
networks, and we found that MLP was more efficient than RBF, as seen by its faster computational
time and better areas under the curve of the ROC analysis. Therefore, out data show that MLP fits
better the type of data of gene expression in lymphoid neoplasia.

In this project, we have highlighted several genes with prognostic relevance in FL. Some of them
were associated to a poor prognosis of the patients, while others were associated to a good prognosis.
Among the bad prognosis group, we found that the high gene expression of EVA1B, KRT19, BTN2A3P,
KLK10, and TRPM4 was associated to an unfavorable overall survival of the FL patients. EVA1B (Protein
eva-1 homolog B) is an integral component of the membrane [14]. Very little information about this
marker is found in the literature (including Pubmed), but this gene was found to be highly significantly
changed by altered DNA methylation [14]. According to the Human Protein Atlas [15], a high expression
of EVA1B is associated to a poor prognosis of renal, breast, and liver cancers. KRT19 (Keratin, type I
cytoskeletal 19) is involved in the organization of myofibers, as it is a structural constituent of the
cytoskeleton. It is also associated to the Notch signaling pathway [16]. In cancer, it has been related
to the pathogenesis of breast and colon cancers [15]. According to the Human Protein Atlas [15],
high expression is associated to poor prognosis in renal and pancreatic cancer. BTN2A3P (Putative
butyrophilin subfamily 2 member A3) regulates the cytokine production; therefore, it regulates immune
responses and the T-cell receptor pathway. By genome-wide association and transcriptome studies,
this gene was identified as a target gene and risk loci for breast cancer [17]. KLK10 (Kallikrein-10) is a
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serine-type endopeptidase involved in the cell cycle. KLK10 has a tumor-suppressor role for NES1 in
breast and prostate cancer. High expression of this gene is associated to an unfavorable prognosis of
the patients in pancreatic and breast cancer [15]. KLK10 is also involved in other several types of cancer.
For example, the NES1/KLK10 gene represses proliferation, enhances apoptosis, and down-regulates
the glucose metabolism of PC3 prostate cancer cells [15]. TRPM4 (Transient receptor potential cation
channel subfamily M member 4) functions as a calcium-activated non-selective (CAN) cation channel
that mediates membrane depolarization [15]. It has been involved in the adaptive immune response and
in many types of cancer. For example, TRPM4 is highly expressed in human colorectal tumor buds and
contributes to the proliferation, cell cycle, and invasion of colorectal cancer cells [18]. Among the good
prognosis group, we found that the high gene expression of TDRD12 and ZNF230 were associated to a
favorable overall survival of the FL patients. TDRD12 (Putative ATP-dependent RNA helicase TDRD12)
has RNA helicase activity (nuclei acid binding) and is involved in cell differentiation. Not much
information of this gene is found in the literature, but it has been related to salivary gland adenoid
cystic carcinoma [19]. ZNF230 (Zinc finger protein 230) may be involved in transcriptional regulation,
with DNA and metal ion binding properties. The RNA levels are detected as low levels in many
cancers, and the protein level in cancer tissue has not been completed yet [15]. Therefore, using AI,
we not only managed to highlight several genes with prognostic relevance in FL, but also, we identified
some genes that have a role in other types of cancer. In addition, these genes were not only rated to the
prognostic outcome (dead/alive) but also related to the tumoral immune microenvironment, which is a
field of importance due to the development of personalized immunotherapies.

The future research directions of this research include the validation of these markers using an
independent series of FL from another institution.

5. Conclusions

Using Artificial Intelligence, we have analyzed the gene expression of follicular lymphoma
and managed to identify a set of 43 genes that correlated with the overall survival of the patients.
Therefore, AI including the multilayer perceptron and radial basis function neural networks are useful
bioinformatics tools for the identification of biomarkers in follicular lymphoma.

In this research, we used the overall survival endpoint. Nevertheless, overall survival is not the
best endpoint for follicular lymphoma analysis due to the protracted and variable nature of the disease;
rather, response to therapy, prediction of progression (often to large B-cell lymphoma), and quality of
life are additional considerations. This aspect will be assessed in a continuation research.

Among the 43 genes, we highlighted seven genes, five associated to poor and two associated
to overall survival. Those five genes also associated to M2-like macrophage markers. There is little
scientific evidence about the role of these seven genes in lymphoid neoplasia, but there is some evidence
of their association in other types of cancer. Therefore, these genes open a path of potential application
in development of clinical trials and targeted therapies.
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