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Simple Summary: This paper introduces simple, faster and more efficient versions of the known
targeted and untargeted Jacobian-based Saliency Map Attacks (JSMA). Despite creating adversarial
examples with a higher average L0 distance than the state-of-the-art Carlini-Wagner attack, the new
versions of JSMA have a significant speed advantage over this attack, making them very convenient
for L0 real-time robustness testing of neural network classifiers.

Abstract: Neural network classifiers (NNCs) are known to be vulnerable to malicious adversarial
perturbations of inputs including those modifying a small fraction of the input features named sparse
or L0 attacks. Effective and fast L0 attacks, such as the widely used Jacobian-based Saliency Map
Attack (JSMA) are practical to fool NNCs but also to improve their robustness. In this paper, we show
that penalising saliency maps of JSMA by the output probabilities and the input features of the NNC
leads to more powerful attack algorithms that better take into account each input’s characteristics.
This leads us to introduce improved versions of JSMA, named Weighted JSMA (WJSMA) and Taylor
JSMA (TJSMA), and demonstrate through a variety of white-box and black-box experiments on three
different datasets (MNIST, CIFAR-10 and GTSRB), that they are both significantly faster and more
efficient than the original targeted and non-targeted versions of JSMA. Experiments also demonstrate,
in some cases, very competitive results of our attacks in comparison with the Carlini-Wagner (CW) L0

attack, while remaining, like JSMA, significantly faster (WJSMA and TJSMA are more than 50 times
faster than CW L0 on CIFAR-10). Therefore, our new attacks provide good trade-offs between JSMA
and CW for L0 real-time adversarial testing on datasets such as the ones previously cited.

Keywords: Jacobian-based Saliency Map; adversarial attacks; deep neural network classifiers; MNIST;
CIFAR-10; GTSRB

1. Introduction

Deep learning classifiers are used in a wide variety of situations, such as vision, speech recognition,
financial fraud detection, malware detection, autonomous driving, defense, and more.

The ubiquity of deep learning algorithms in many applications, especially those that are critical
such as autonomous driving [1,2] or that pertain to security and privacy [3,4] makes their attack
particularly useful. Indeed, this allows firstly to identify possible flaws in the intelligent model and
secondly to set up a defense strategy to improve its reliability.

In this context, adversarial machine learning has appeared as a new branch that aims to thwart
intelligent algorithms. Many techniques called adversarial attacks succeeded in fooling well-known
architectures of neural networks, sometimes very astonishingly. Examples of these methods include
for instance: Fast Gradient Sign Method [5], Basic Iterative Method [6], Projected Gradient Descent [7],
JSMA [8], DeepFool [9], Universal Adversarial Perturbations [10] and CW attacks [11].
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More formally, a neural network classifier (NNC) is an algorithm whose goal is to predict through
a neural network which class an item x belongs to, among a family of K possible classes. It outputs
a vector of probabilities F(x) = (F1(x), · · · , FK(x)) where the label of x is deduced by the rule
label(x) = argmaxkFk(x).

An adversarial example constructed on the item x, is an item x∗ specially crafted to be as close
as possible to x (with respect to some distance function), and such that it is classified by the NNC as
label(x∗) 6= label(x) (Non-Targeted (NT) attack), or even such that label(x∗) = L, with L chosen by
the attacker and such that L 6= label(x) (Targeted attack).

In this paper, we focus on the following class of attacks:
L0 (or sparse) adversarial attacks. They aim at generating adversarial samples while minimising

the number of modified components. Sparse perturbations can be found in many real-life situations.
As motivated in [12], sparse perturbations could correspond to some raindrops that reflect the sun on a“STOP"
sign, but that are sufficient to fool an autonomous vehicle; or a crop-field with some sparse colorful flowers
that force a UAV to spray pesticide on non affected areas. This reveals very disturbing and astonishing
properties of neural networks as it is possible to fool them by modifying few pixels [12,13]. Their study
is therefore fundamental to mitigate their effects and take a step forward towards robustness of
neural networks. The first proposed example of L0 attacks is JSMA, a targeted attack [8]. In a
computer vision application, JSMA achieved 97% adversarial success rate by modifying on average
4.02% input features per sample. [8] relates this result to the human capacity of visually detecting
changes. An important quality of JSMA is that it is easy to understand, set up and it is relatively fast.
For instance, relying on its cleverhans implementation [14], JSMA is able to generate 9 adversarial
samples on the MNIST handwritten digits dataset [15] in only 2 s on a laptop with 2 CPU cores.
Speed and also the ability to run adversarial attacks with limited resources are important criteria
for real-life deployment of neural networks [16–18]. JSMA obeys these constraints making its use
widespread beyond computer vision applications such as in cybersecurity, anomaly detection and
intrusion detection [19–21]. Later on, [11] proposes the second example of targeted L0 attacks known
as CW L0. The same paper shows that unlike JSMA, CW L0 scales well to large datasets by considering
the IMAGENET dataset [22]. CW L0 is now the state-of-the-art L0 targeted attack with the lower
average L0 distance. However, it is computationally-expensive, much slower than JSMA on small
datasets (a factor of 20 times slower is reported in [11]) and therefore, despite efficiency, it is less
convenient for real-time applications.

Let us now briefly explain how the afore-mentioned attacks concretely work:
JSMA. To fool NNCs, this attack relies on the Jacobian matrix of outputs with respect to

inputs. By analysing this matrix, one can deduce how the output probabilities behave given a slight
modification of an input feature. Consider a NNC N as before and call Z(x) = (Z1(x), · · · , ZK(x))
the outputs of the second-to-last layer of N (no longer probabilities, but related to the final output
by a softmax layer). To generate an adversarial example from x, JSMA first computes the gradient
∇Z(x). The next step is to build a saliency map and find the most salient component i that will then
be changed:

S[x, t][i] =


0 if

∂Zt(x)
∂xi

< 0 or ∑
k 6=t

∂Zk(x)
∂xi

> 0

∂Zt(x)
∂xi

·
∣∣∣∣∣∑k 6=t

∂Zk(x)
∂xi

∣∣∣∣∣ otherwise.

(1)
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∂Zt(x)
∂xi

and ∑k 6=t
∂Zk(x)

∂xi
in these maps quantify how much Zt(x) will increase and ∑

k 6=t
Zk(x) will

decrease, given a modification of the input feature xi. Counting on the Zk’s instead of the Fk’s has
been justified in [8] by the extreme variations induced by the softmax layer. Then the algorithm selects
the component: imax = argmaxiS[x, t][i] and increases ximax by a default value θ before clipping to the
valid domain. The same process is iterated until the class of x is changed or a maximum allowed
number of iterations is reached. This version of JSMA will be called one-component JSMA. A second,
more effective, variant of JSMA recalled later relies on doubly indexed saliency maps.

CW L0 attack. This method is obtained as a solution to the optimisation problem (assuming the
domain of inputs is [0, 1]n):

Minimise ||r||0 + c f (x + r), x + r ∈ [0, 1]n

where ||r||0 is the L0 distance of the perturbation r added to x. The recommended choice of f
is: f (x) = (maxi 6=tZi(x) − Zt(x))+. Since the L0 distance is not convenient for gradient descent,
the authors of [11] solve this problem by making use of their L2 attack and an algorithm that iteratively
eliminates the components without much effect on the output classification. They finally obtain an
effective L0 attack that has a net advantage over JSMA. However, the main drawback of this attack is
its high computational cost.

We summarise our main contributions as follows:

– For targeted misclassification, we introduce two variants of JSMA called Weighted JSMA (WJSMA)
and Taylor JSMA (TJSMA). WJSMA applies a simple weighting to saliency maps by the output
probabilities, and TJSMA does the same, while additionally penalising extremal input features.
Both attacks are more efficient than JSMA according to several metrics (such as speed and mean
L0 distance). We present qualitative and quantitative results on MNIST and CIFAR-10 [23]
supporting our claims. Moreover, although they are less efficient than CW L0, our attacks have a
major speed advantage over CW L0 highlighted by measuring the execution time for each attack.

– For non-targeted (NT) misclassification, we improve the known NT variants of JSMA called
NT-JSMA and Maximal-JSMA (M-JSMA) [24]. We do this by introducing NT and M versions of
WJSMA and TJSMA. Our attacks yield better results than NT-JSMA and M-JSMA. Also, they are
as competitive but significantly much faster than NT CW L0. These claims are illustrated through
applications to attack a deep NNC on the GTSRB dataset [25] in the white/black-box modes.

– We provide a deep comparison between WJSMA and TJSMA which is of independent interest.
Our study concludes that in the targeted case, TJSMA is better than WJSMA. However, in the NT
case, WJSMA is preferred over TJSMA, mainly due to the simplicity of its implementation.

– We provide fast and optimised implementations of the new attacks using TensorFlow and the
cleverhans library [14] that might help users working in adversarial machine learning (In all
our experiments, we use the original implementation of JSMA available in the cleverhans

library and the original code of CW publicly available. As for the NT versions of JSMA [24],
whose implementations are not available, we re-implement these attacks using TensorFlow and
cleverhans. A link to the codes is provided at the end of Section 5.2)

The rest of the paper is organised as follows. In Section 2, we discuss our main motivations and
then introduce WJSMA and TJSMA as targeted attacks. Section 3 is focused on NT and Maximal
versions of WJSMA and TJSMA. Section 4 is dedicated to several comparisons between our attacks,
JSMA and CW L0. We discuss attacking, defending with targeted/non-targeted attacks in both the
white/black-box setups. Section 5 offers a conclusion and a summary of the main results of the paper.
Finally, Appendices A and B are appendices dedicated to supplementary results and materials.
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2. Targeted Attacks

The first attacks, presented in this section, are targeted and called Weighted JSMA (WJSMA)
and Taylor JSMA (TJSMA). We give a detailed exposition of WJSMA and motivate the main idea
leading to its derivation through a simple example. Then, we deduce TJSMA by applying once more
and in a slightly different manner the same argument. In addition to the theoretical presentation,
a few preliminary figures are given to illustrate a faster convergence of the new attacks in comparison
with JSMA.

2.1. Weighted Jacobian-Based Saliency Map Attack (WJSMA)

The main idea here is to penalise gradients associated with small probabilities so as to mitigate
their influences in saliency maps. The goal is to obtain more balanced saliency maps than those
proposed by JSMA. We first give a concrete example illustrating a concrete limitation of JSMA which
motivated this work.

Motivating example. Assume a number of classes K ≥ 4 and for some input x: F1(x) = 0.5,
F2(x) = 0.49, F3(x) = 0.01 and Fk(x) = 0 for all 4 ≤ k ≤ K. Consider the problem of generating an
adversarial sample to x with label t = 2. In order to decrease ∑

k 6=2
Zk(x), the first iteration of JSMA

relies on the gradients ∇Zk(x), k 6= 2. Our main observation is that since the probabilities Fk(x) = 0
for 4 ≤ k ≤ K are already in their minimal values, taking into account ∇Zk(x) for these values of k in
the search of imax is unnecessary. In other words, by only acting on gradients, JSMA does not consider
the crucial constraints on probabilities: Fk(x) ≥ 0. Moreover, instead of relying equally on∇Z1(x) and
∇Z3(x), for this example one would “bet” on ∇Z1(x) than ∇Z3(x) as the possible decrease for F1(x)
is high (up to 0.5) and F3(x) is relatively small, thus hard to decrease further.

Weighted JSMA (WJSMA). Our first solution to the previous issue is WJSMA. Its principle is to

penalise each gradient
∂Zk(x)

∂xi
, where k 6= t, by the probability Fk(x). Besides the intuition of this idea,

we will provide a justification of it by a classical log softmax argument. First, we compute:

∂

∂xi
log Ft(x) = (1− Ft(x))

∂Zt

∂xi
(x)−∑

k 6=t
Fk(x)

∂Zk
∂xi

(x)

One way to maximise this derivative with respect to i, is to maximise A =
∂Zt

∂xi
(x) and minimise

B = ∑k 6=t Fk(x)
∂Zk
∂xi

(x) under the constraints A > 0 and B < 0. These constraints ensure, in particular,

that
∂Ft

∂xi
(x) remains positive, a fact which is not necessarily guaranteed under JSMA constraints.

According to this, we introduce one-component weighted saliency maps as follows:

SW [x, t][i] =


0 if

∂Zt(x)
∂xi

< 0 or ∑
k 6=t

Fk(x)
∂Zk(x)

∂xi
> 0

∂Zt(x)
∂xi

·
∣∣∣∣∣∑k 6=t

Fk(x)
∂Zk(x)

∂xi

∣∣∣∣∣ otherwise.

Based on these maps, we present Algorithm 1, the first version of WJSMA, to generate targeted
adversarial samples.
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Algorithm 1 Generating adversarial samples by WJSMA: version 1.
Inputs: N: a NNC, Z: second-to-last output of N, x: input to N, t: target label (t 6= class(x)), maxIter:
maximum number of iterations, θmin, θmax lower and upper bounds for features values, θ: positive
default increase value.
Output: x∗: adversarial sample to x.

x∗ ← x
iter← 0
Γ← J1, |x|K \ {p ∈ J1, |x|K | x[p] = θmax}
while class(x∗) 6= t and iter < maxIter and Γ 6= ∅ do

pmax = argmaxp∈Γ SW [x∗, t](p)
Modify x∗ by x∗[pmax] = Clip[θmin,θmax](x∗[pmax] + θ) //Clip is the clipping function
Remove pmax from Γ
iter++

end while
return x∗

When the output x∗ of Algorithm 1 satisfies class(x∗) = t, the attack is considered as successful.
To relax a bit the search of salient components and motivated by a computer vision application,

ref. [8] introduces saliency maps indexed by pairs of components. The main argument is that the
conditions required in (1) may be too strict for some applications and very few components will verify
it. Our doubly indexed versions of these maps are introduced in the same way as follows:

SW [x, t][i, j] =



0 if ∑
a∈{i,j}

∂Zt(x)
∂xa

< 0 or ∑
k 6=t

Fk(x) ∑
a∈{i,j}

∂Zk(x)
∂xa

> 0

∑
a∈{i,j}

∂Zt(x)
∂xa

·

∣∣∣∣∣∣∑k 6=t
Fk(x) ∑

a∈{i,j}

∂Zk(x)
∂xa

∣∣∣∣∣∣ otherwise.

(2)

Algorithm 2 presented below relies on SW [x, t][i, j] to generate targeted adversarial samples and
is our second version of WJSMA.

Algorithm 2 Generating adversarial samples by WJSMA: version 2.
Same inputs and output as Algorithm 1.

x∗ ← x
iter← 0
Γ← {(p, q), p, q ∈ J1, |x|K, x[p] 6= θmax, x[q] 6= θmax}
while class(x∗) 6= t and iter < maxIter and Γ 6= ∅ do

(pmax, qmax) = argmaxp,q∈ΓSW [x∗, t](p, q)
Modify x∗ by x∗[a] = Clip[θmin,θmax](x∗[a] + θ), a = pmax, qmax

Remove (pmax, qmax) from Γ
iter++

end while
return x∗

In practice and despite the fact that each iteration of Algorithm 2 is more
computationally-expensive than each iteration of Algorithm 1, we find that it gives better
results. This agrees with the recommendations of [8] on the superiority of two-components versions
for JSMA. Finally, we notice that while in the two previous algorithms, the selected components
are always augmented by positive default values, decreasing versions can be given following a
similar logic.
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2.2. Taylor Jacobian-based Saliency Map Attack (TJSMA)

The principle of our second attack, TJSMA, is to additionally penalise the choice of feature
components that are close to the maximum value θmax. Assume i and j have the same WJSMA score
SW [x, t][i] = SW [x, t][j] and that xi is very close to θmax, while xj is far enough from θmax. In this
case, looking for more impact, TJSMA prefers xj over xi. Concretely, we simultaneously maximise

S1 = θmax− xi and S2 =
∂

∂xi
log pt(x) by maximising the product S = S1S2. Accordingly, we introduce

new saliency maps for one and two-components selection as follows:

ST [x, t][i] =

 0 if αi < 0 or βi > 0

αi|βi| otherwise.
(3)

where

αi = (θmax − xi)
∂Zt(x)

∂xi
, βi = (θmax − xi) ∑

k 6=t
Fk(x)

∂Zk(x)
∂xi

and

ST [x, t][i, j] =

 0 if αi,j < 0 or βi,j > 0

αi,j|βi,j| otherwise.
(4)

where

αi,j = ∑
a∈{i,j}

(θmax − xa)
∂Zt(x)

∂xa
, βi,j = ∑

k 6=t
∑

a∈{i,j}
Fk(x)(θmax − xa)

∂Zk(x)
∂xa

Due to the presence of the Taylor terms (θmax − xa)
∂Zk(x)

∂xa
, we call these maps Taylor saliency

maps. We introduce one and two-components TJSMA following exactly Algorithms 1 and 2 and only
replacing SW with ST .

(a) Origin class (b) Target class
Figure 1. Evolution of the (a) origin class and (b) target class probabilities until the target class is
reached for JSMA, WJSMA and TJSMA changing the image of a one into a five.

Figure 1a,b offer a concrete illustration of the convergence of JSMA, WJSMA and TJSMA.
In particular, we observe that WJSMA and TJSMA decrease/increase the predicted/targeted probability
of the original/targeted class much sooner than JSMA. Also, we note that TJSMA behaves like WJSMA
until it is able to find a more vulnerable component that makes it converge much faster.
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3. Non-Targeted Attacks

NT variants of JSMA have been studied in [24]. In particular, the paper introduces NT-JSMA-F,
NT-JSMA-Z based on NT saliency maps whose role is to select the most salient pairs of components to
decrease as much as possible the probability of the current class. The notations -F and -Z indicate if the
saliency maps either use the Fk’s or the Zk’s. Second, [24] proposes maximal JSMA (M-JSMA) as a more
flexible attack allowing both increasing/decreasing features and also combining targeted/non-targeted
strategies at the same time.

In what follows, we again leverage the idea of penalising saliency maps to give our proper NT
JSMA attacks. For a unified presentation, we use the letter X to denote either W (Weighted) or T (Taylor)
and the letter Y to denote either Z (logits) or F (probabilities). We notice that while the first version
of JSMA uses the logits, variants that rely on the Fk’s also demonstrated good performances [11,24].
Thus for a more complete study, we give versions with both Z and F.

By a NT reasoning, similar to the previous section, we define Weighted and Taylor NT saliency
maps as follows:

SX,Y[x, t][i, j] =


0 if αX,Y

i,j > 0 or βX,Y
i,j < 0

|αX,Y
i,j |β

X,Y
i,j otherwise.

(5)

where, for X = W,

αW,Y
i,j = ∑

a∈{i,j}

∂Yt(x)
∂xa

, βW,Y
i,j = ∑

k 6=t
∑

a∈{i,j}
Fk(x)

∂Yk(x)
∂xa

and, for X = T,

αT,Y
i,j = ∑

a∈{i,j}
(θmax − xa)

∂Yt(x)
∂xa

, βT,Y
i,j = ∑

k 6=t
∑

a∈{i,j}
Fk(x)(θmax − xa)

∂Yk(x)
∂xa

These maps can be motivated, like in the previous section, by considering the simple
one-component case: i = j. For example, the role of the penalisation by Fk(x) in SW,Z is to reduce the

impact of high gradients
∂Zk(x)

∂xi
when the probability Fk(x) is very small (in this case we penalise

choosing k as a new target for x).
Relying on saliency maps, Algorithm 3 below presents our improvements of NT-JSMA-Z and

NT-JSMA-F. For the sake of simplification, we have employed a unified notation NT-XJSMA-Y.
For example, when we use SW,Z, the obtained attack is NT-WJSMA-Z. Again, we only write the
increasing version.

Algorithm 3 NT-WJSMA and NT-TJSMA attacks.
Inputs: x: input to N with label t, maxIter: maximum number of iterations, X ∈ {W, T}, Y ∈ {Z, F}
Output: x∗: adversarial sample to x.

x∗ ← x
iter← 0
Γ← {(p, q), p, q ∈ Jθmax, |x|K, x[p] 6= θmax, x[q] 6= θmax}
while class(x∗) 6= t and iter < maxIter and |Γ| ≥ 2 do
(pmax, qmax) = argmaxp,q∈ΓSX,Y[x∗, t](p, q)
Modify x∗ by x∗[pmax], x∗[qmax] = θmax
Remove (pmax, qmax) from Γ
iter++

end while
return x∗
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We now turn to extensions of M-JSMA [24]. This attack modifies the pairs of components achieving
the best score among NT-JSMA and all possible targeted (including increasing and decreasing)
JSMA. It has a greater capacity to craft adversarial samples but is relatively slower than NT-JSMA.
Our extensions of M-JSMA, which we call M-WJSMA and M-TJSMA, are described in Algorithm 4.

Algorithm 4 M-WJSMA and M-TJSMA attack.
Inputs: x: input to N with label t, maxIter: maximum number of iterations, X ∈ {W, T}, Y ∈ {Z, F}
Output: x∗: adversarial sample to x.

x∗ ← x
iter← 0
Γ← {(p, q), p, q ∈ J1, |x|K, x[p], x[q] 6= θmin, θmax}
while class(x∗) 6= t and iter < maxIter and |Γ| ≥ 2 do

- Compute all targeted increasing/decreasing saliency maps scores SX,Y[x, s](p, q), s 6= t (Section
2) and all NT increasing/decreasing saliency maps scores SX,Y[x, t](p, q) (5).
- Choose (pmax, qmax) achieving the best score and saturate x∗[pmax], x∗[qmax] to θmin or θmax
according to the chosen saliency map.
- Remove (pmax, qmax) from Γ
- iter++

end while
return x∗

Note that saliency maps SW,Y for targeted or non-targeted, features-increasing or
features-decreasing attacks are exactly the same (one only needs to decide between an argmax or
argmin). This is not the case for M-TJSMA since for example (θmax − xa) has to be changed to
xa − θmin when decreasing features. As a consequence of this fact, M-WJSMA is less cumbersome
to implement than M-TJSMA. Trying to keep the paper and code as simple as possible, we choose
M-WJSMA over M-TJSMA and do not include M-TJSMA in our experiments. M-WJSMA already gives
us satisfactory results.

4. Experiments

This section is dedicated to a variety of experiments on the proposed attacks and several
comparisons with the state-of-the-art methods. The first part focuses on targeted attacks and provides
intensive comparisons between JSMA, WJSMA and TJSMA on deep NNCs on MNIST and CIFAR-10
as well as comparisons with CW L0. In the second part, we show that our approach is still relevant for
non-targeted L0 misclassification in both the white-box and black-box modes. A particular emphasis
will be put on the speed of our attacks in comparison with CW L0.

4.1. Experiments on Targeted Attacks

In the following, we give attack and defense applications illustrating the interest of WJSMA
and TJSMA over JSMA. In doing so, we also compare WJSMA and TJSMA and report overall better
results for TJSMA despite the fact that for a large part of samples WJSMA outperforms TJSMA. Finally,
we provide a comparison with CW L0 attack and comment on all the obtained results.

The datasets used in this section are:
MNIST [15]. This dataset contains 70,000 28× 28 greyscale images in 10 classes, divided into

60,000 training images and 10,000 test images. The possible classes are digits from 0 to 9.
CIFAR-10 [23]. This dataset contains 60,000 32× 32× 3 RGB images. There are 50,000 training

images and 10,000 test images. These images are divided into 10 different classes (airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, truck), with 6000 images per class.

Figures 2 and 3 display one sample per class, from MNIST and CIFAR-10 respectively.
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Figure 2. Examples of images from MNIST.

Figure 3. Examples of images from CIFAR-10.

On each dataset, a deep NNC is trained and then confronted to attacks.
NNC on MNIST. Similarly to [8], we consider LeNet-5 model on this dataset [26]. Its full

architecture is described in Appendix A. We implement and train this model using a cleverhans

model that optimises crafting adversarial examples. The number of epochs is fixed to 20, the batch-size
to 128, the learning rate to 0.001 and the Adam optimizer is used. Training results in 99.98% accuracy
on the training dataset and 99.49% accuracy on the test dataset.

NNC on CIFAR-10. We consider a more complex NNC, trained to reach a good performance on
this dataset. Its architecture is inspired by the All Convolutional model proposed in cleverhans and is
fully described in Appendix A. Likewise, this model is implemented and trained using cleverhans for
10 epochs, with a batch size of 128, a learning rate of 0.001 and the Adam optimizer. Training results in
a 99.96% accuracy on the training dataset and 83.81% accuracy on the test dataset.

Our first objective is to compare the performances between JSMA, WJSMA and TJSMA on the
previous two NNCs. To run JSMA, we use its original implementation, available in cleverhans.
We have also adapted the code to WJSMA and TJSMA thus obtaining fast implementations of these
two attacks.

For testing, we consider all images in MNIST, the first 10,000 training and 10,000 test images of
CIFAR-10. Moreover, we only test on the images which are correctly predicted by the neural networks
as this makes more sense. In this way, the attacks are applied to the whole training set and the 9949
well-predicted images of the MNIST test images. Similarly, CIFAR-10 adversarial examples are crafted
from the well-predicted 9995 images of the first training 10,000 images and the 8381 well-predicted
test images.

To compare the three attacks, we rely on the notion of maximum distortion of adversarial samples
defined as the ratio of altered components to the total number of components. Following [8], we choose
a maximum distortion of γ = 14.5% on the adversarial samples from MNIST, corresponding to
maxIter = b 784∗γ

2∗100 c. On CIFAR-10, we fix γ = 3.7% in order to have the same maximum number of
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iterations for both experiments. This allows a comparison between the attacks in two different settings.
Furthermore, for both experiments, we set θ = 1 (note that θmin = 0, θmax = 1).

We report the metrics:

1. Success rate: This is the percentage of successful adversarial examples, i.e crafted before reaching
the maximal number of iterations maxIter,

2. Mean L0 distance: This is the average number of altered components of the successful
adversarial examples,

3. Strict dominance of an attack: Percentage of adversarial examples for which this attack does
strictly fewer iterations than the two other ones (As additional results, we give in the Appendix B
more statistics on the dominance between any two attacks),

4. Run-time of an attack on a set of samples targeting every possible class.

Results on the metrics 1 and 2 are shown in Table 1 for MNIST and Table 2 for CIFAR-10.

Table 1. Comparison between JSMA, WJSMA and TJSMA on MNIST.

Metric JSMA WJSMA TJSMA

Targeted (Training dataset: Nb of well predicted images = 60,000)

Success rate 87.68% 97.14% 98.66%
Mean L0 distance on successful samples 44.34 37.86 35.22

Targeted (Test dataset: Nb of well predicted images = 9949))

Success rate 87.34% 96.98% 98.68%
Mean L0 distance on successful samples 44.63 38.10 35.50

Table 2. Comparison between JSMA, WJSMA and TJSMA on CIFAR-10.

Metric JSMA WJSMA TJSMA

Targeted (Training dataset: Nb of well predicted images = 9995)

Success rate 86.17 95.91% 97.40%
Mean L0 distance on successful samples 47 38.54 36.86

Targeted (Test dataset: Nb of well predicted images = 8381))

Success rate 84.91 94.99% 96.96%
Mean L0 distance on successful samples 46.13 38.82 37.45

First, we observe that overall, WJSMA and TJSMA significantly outperform JSMA according to
metrics 1 and 2. Here are more comments:

On MNIST. Results in terms of success rate are quite remarkable for WJSMA and TJSMA
respectively outperforming JSMA with near 9.46, 10.98 percentage points (pp) on the training set
and 9.46, 11.34 pp on the test set. The gain in the average number of altered components exceeds
6 components for WJSMA and 9 components for TJSMA in both experiments.

On CIFAR-10. WJSMA and TJSMA outperform JSMA in success rate by near 9.74, 11.23 pp on
the training set and more than 10, 12 pp on the test set. For both training and test sets, we report
better mean L0 distances exceeding 7 features in all cases and up to 10.14 features for TJSMA on the
training set.

Dominance of the attacks. Figure 4 illustrates the (strict) dominance of the attacks for the two
experiments. In these statistics, we do not count the samples for which TJSMA and WJSMA have the
same number of iterations and strictly less than JSMA.
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(a) MNIST (b) CIFAR-10
Figure 4. Distribution of the (strict) dominance of JSMA, WJSMA and TJSMA over the MNIST (a) and
CIFAR10 (b) datasets (training and test sets included).

For both experiments, TJSMA has a notable advantage over WJSMA and JSMA. The benefit of
WJSMA over JSMA is also considerable. This shows that, in most cases, WJSMA and TJSMA craft
better adversarial examples than JSMA, while being faster. Our results are indeed better when directly
comparing WJSMA or TJSMA with JSMA. As additional results, we give in the appendix the statistics
for the pairwise dominance between the attacks. As it might be expected, both WJSMA and TJSMA
dominate JSMA, moreover TJSMA dominate WJSMA.

4.1.1. Avoid Confusion

It is important to stress that our results do not contradict [8] obtaining 97% success rate on LeNet-5.
Indeed, we use a more efficient LeNet-5 model (the one in [8] has 98.93% and 99.41% accuracies on the
training and test sets). For completeness, we also generated a second model (with 99.34% and 98.94%
accuracies on the training and test sets) and evaluated the three attacks on the first 1000 test MNIST
images. We obtain 96.7% success rate for JSMA (very similar to [8]) and more than 99.5% for WJSMA
and TJSMA. We preferred to work with the more effective model as this makes the paper shorter and
moreover, it values more our approach (giving us more advantage with respect to JSMA).

4.1.2. Run-Time Comparison

In order to have a meaningful speed comparison between the three attacks, we computed the
time needed for each attack to successfully craft the first 1000 test MNIST images in the targeted mode.
Results are shown in Table 3 and reveal that TJSMA/WJSMA are 1.41/1.28 times faster than JSMA.
These performances were measured on a machine equipped with an Intel Xeon 6126 processor and a
Nvidia Tesla P100 graphics processor. Note that for WJSMA/TJSMA, the additional computations of
one iteration compared to JSMA are negligible (simple multiplications). Thus the difference in speed
between the attacks is mainly due to the number of iterations for each attack.

Table 3. Time comparison between JSMA, WJSMA and TJSMA.

Attack JSMA WJSMA TJSMA

Time (second) 3964 3092 2797

We also notice that in this evaluation, the adversarial samples were crafted one by one. In practice,
it is possible to generate samples by batch. In this case, the algorithm stops when all samples are
finished. Most of the time, with a batch of large size, the three attacks approximately take the same
time to converge. For example, on the same machine as previously and with a batch size equal to 1000,
we were able to craft the same amount of samples in about 250 s, for all the attacks.
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Defense. The objective now is to train neural networks so that the attacks fail as much as possible.
One way of doing this is by adding adversarial samples crafted by JSMA, WJSMA and TJSMA to the
training set. This method of training may imply a decrease in the model accuracy but adversarial
examples will be more difficult to generate.

We experiment this idea on the MNIST model in every possible configuration. To this end,
2000 adversarial samples per class (20,000 more images in total), with distortion under 14.5%, are added
to the original MNIST training set, crafted by either JSMA, WJSMA or TJSMA. Then, three distinct
models are trained on these augmented datasets. The models roughly achieve an accuracy of 99.9%
on the training set and 99.3% on the test set, showing a slight loss compared to our previous MNIST
model. Nevertheless, the obtained neural networks are more robust to the attacks as shown in Table 4.
Note that each experiment is made over the well-predicted samples of the test images. For each model
and image, nine adversarial examples are generated by the three attacks.

Table 4. Metrics (1) and (2) on JSMA, WJSMA and TJSMA augmented sets.

Metric JSMA WJSMA TJSMA

Model trained over JSMA augmented set (9940 well predicted samples)

Success rate 77.94% 84.79% 85.08%
Mean L0 distance on successful samples 54.48 52.66 52.83

Model trained over WJSMA augmented set (9936 well predicted samples)

Success rate 77.61% 90.05% 92.01%
Mean L0 distance on successful samples 56.29 52.72 52.18

Model trained over TJSMA augmented set (9991 well predicted samples)

Success rate 76.42% 86.18% 87.36%
Mean L0 distance on successful samples 54.26 54.20 54.49

Overall, the attacks are less efficient on each of these models, compared to Table 1. The success
rates drop by about 8 pp, whereas the number of iterations is increased by approximately 26%. From the
defender’s point of view, networks trained against WJSMA and TJSMA give the best performance.
The JSMA trained model provides the lowest success rates while the TJSMA trained network is more
robust from the L0 distance point of view. From the attacker’s point of view, TJSMA remains the most
efficient attack regardless of the augmented used dataset.

4.1.3. Comparison with CW L0 Attack

Because of the complexity of this attack, comparison on a large number of images as before is
very costly. For this reason, we only provide results on the first 100 well-predicted images of CIFAR-10,
thus on 1000 adversarial images given in Table 5.

Table 5. Results for L0 CW on CIFAR-10.

Success rate Mean L0 distance Time

99.89% 24.97

On average more than one
hour and a half to generate 9
adversarial samples run one

by one on GPU

We report better results of CW in terms of success rate and L0 distance and a remarkable speed
advantage of our attacks. Indeed, generating 9 adversarial samples (one by one) from a CIFAR-10
image by CW took on average near one hour and a half on GPU. The same task took 100 s for our
attacks (without batching and 25 s when batching). This makes our attacks at least 54 times faster than
CW L0.
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4.2. Experiments on Non-Targeted Attacks

In this part, we test the new NT attacks in the white/black-box modes and compare their
performances with NT-JSMA and M-JSMA. In the white-box mode, we also compare with NT CW
L0. For experimentation, we chose the GTSRB dataset [25] widely used to challenge neural networks,
especially in autonomous driving environments [27]. We recall that GTSRB contains RGB 32× 32× 3
traffic signs images, 86,989 in the training set, and 12,630 in the test set classified into 43 different
possible categories. Figure 5 displays some images from this dataset.

Figure 5. Examples of images from GTSRB.

4.2.1. White-Box Experiments

We consider a simplified NNC, described in Appendix A, whose architecture is inspired by
Alexnet [28]. After training this model with cleverhans, it reaches 99.98% accuracy on the training
dataset and 95.83% accuracy on the test set.

We implemented our attacks and those of [24] again with TensorFlow using cleverhans.
During the first experiment, we run the attacks given in Table 6 on the first 1000 test images after
taking a maximum distortion γ = 3.7% similar to CIFAR-10. The obtained results are shown in the
same table.

Table 6. Comparison of the performances between the NT attacks over the 1000 first test images
of GTSRB.

Attack
(U = JSMA) Success Rate L0 Average Time (s)

NT-U 91.35% 20.66 3604
NT-WU (ours) 95.31% 17.63 760
NT-TU (ours) 96.87% 15.86 660

M-U 98.44% 18.99 7470
M-WU (ours) 99.37% 15.52 6302

CW L0 97.81% 13.56 260,751

To analyse these results, it makes more sense to separately compare the NT-versions (faster),
the M-versions (the most effective in success rate but slower) and discuss a global comparison with
CW L0. First, we notice a significant advantage of our NT versions over NT-JSMA according to the
three metrics. In particular, NT-TJSMA is up to 5.4× faster than NT-JSMA with nearly 4.8 less modified
pixels on average and more than 5 percentage points in success rate. We also notice that NT-TJSMA is
the most effective attack among the three NT versions. Its notable benefit over NT-WJSMA is due to the
fact that it converges in much less iterations than NT-WJSMA while both attacks need approximately
the same time for an iteration. As for the M-versions, our attack M-WJSMA outperforms M-JSMA
according to the three reported metrics. Both attacks are however slower than the NT versions. Finally,
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we notice that the gap between our attack M-WJSMA and CW L0 is reduced as we obtain a better
success rate, achieve less than two pixels in L0 average while being more than 40 times faster.

4.2.2. Black-Box Experiments

Here, we consider that black-box attack means the algorithm can use the targeted model as an
oracle: when feeding it an image, the oracle returns a single class label. Moreover, we want to make
only a limited amount of queries, which in a realistic setup would mean avoiding any suspicious
activity, or at least trying not to depend too much on the oracle. To overcome this restriction, we train a
substitute NNC using the Jacobian-based Dataset Augmentation (JBDA) [27] method. We then perform
white-box attacks on the substitute NNC. If it is good enough, the resulting adversarial images should
transfer to the oracle, i.e., effectively fool it even though they were designed to fool the substitute.
Details about the substitute NNC architecture can be found in Appendix A. The JBDA method allows
us to make queries to the oracle only during the training of the substitute network. Black-box attacks
are thus closer to real-life setups, as one only needs to access for a short period of time the targeted
model before being able to durably fool it. A dangerous application of such techniques is against
autonomous driving cars and their sign recognition systems. NT black-box attacks are exactly the kind
of threat that can be put in practice with relative ease and still disrupt considerably the car’s behaviour.
We will illustrate this insecurity through the GTSRB dataset.

Attacks in this paragraph are NT-JSMA and M-JSMA [24], along with our contributions
NT-WJSMA, NT-TJSMA and M-WJSMA. We experiment with different distortion rates. Contrary to
white-box attacks, in the context of black-box attacks, the distortion rate is not an upper bound on
the percentage of pixels that can be modified, but the exact percentage of pixels we want to perturb.
This slight difference accounts for the imperfection of the substitute network: even if it mimics quite
well the oracle, stopping as soon as the image switches according to the substitute will often not yield
good results, so it is necessary to force the algorithm to push a little bit further. As a consequence,
to evaluate the performance of the attacks, we will use two metrics: the success and transferability
rates, for each distortion value. The first one measures the percentage of attacks that have been
successful on the substitute NNC, while the second one measures the same percentage but for the
oracle. The obtained results are given in Table 7.

Table 7. Success and transferability rates (SR & TR) in % for the black-box NT attacks on the 1000 to
2000 test samples of GTSRB for a distortion γ varying from 1% to 5%.

γ Metric
NT-Attack-Z (X = JSMA) NT-Attack-F (X = JSMA)

X WX TX M-X M-WX X WX TX M-X M-WX

1% SR 65.9 75.4 78.6 37 40.7 75.3 77.1 80.1 77 77.4
TR 43 46.5 48.2 31.8 34.2 48.1 44.8 50.3 45.4 43.4

2% SR 81.2 89.4 93.1 55.4 56.8 88.6 91.3 94.5 94.9 95.3
TR 56.6 59.2 63.4 50.1 49.5 62.1 58 64.1 56.5 58.8

3% SR 88.5 95.5 97.7 68.9 67.4 94.4 95.8 98.6 99 99.2
TR 65.1 67.2 70.2 58.8 59.2 69.3 64.1 70.7 64.5 65.3

4% SR 92.9 97.1 99.2 77.7 74.7 97.4 98.3 99.5 100 100
TR 69.2 71 75.3 68.5 65.1 73.9 67.5 74.8 69.9 69.5

5% SR 96 98.7 99.9 83.5 79.5 98.5 99 100 100 100
TR 71.9 73.6 77.9 72.7 68.4 76.3 71.1 77.2 72.3 72.1

We can see in this table that in terms of success rate, the results are compatible with the
white-box attack results, meaning that M-WJSMA mostly outperforms NT-TJSMA, which is better than
NT-WJSMA which beats NT-JSMA, at least for the F variants. This is somewhat expected, because the
attacks as performed on the substitute are merely white-box. However, one can notice that the Z
variants of Maximal attacks do not perform well on this substitute network. More interestingly,
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concerning the transferability of the attacks, one can notice that for the Z attacks, the same hierarchy
NT-TJSMA > NT-WJSMA > NT-JSMA is respected, while for the F attacks, NT-WJSMA is overall
inferior to all the other attacks, and NT-TJSMA outperforms NT-JSMA, M-JSMA and M-WJSMA.

Overall, NT-TJSMA is the best attack for black-box non-targeted purposes, but the best variant
(F or Z) depends on the distortion rate: NT-TJSMA-Z only beats its counterpart NT-TJSMA-F for γ = 4
or 5%. Finally, if one variant were to be chosen, it would be NT-TJSMA-F due to its speed and overall
best transferability.

5. Comparisons with Non-L0 Attacks and Conclusion

5.1. Comparison with Non-L0 Attacks

Previously, we only compared with L0 attacks as it makes more sense to consider methods that
optimise the same metric. In this section, we compare our NT-TJSMA with a well-known non-targeted
L∞ attack which is the Fast Gradient Sign Method (FGSM) [5]. We recall that FGSM attempts to
minimise the L∞ norm. It is a very fast method; significantly faster than NT-TJSMA. To this end,
we run both attacks by dropping the assumption on the number of modified input features for our
attack and by experimenting with different values of the L∞ threshold ε for FGSM where the results of
the best threshold are kept. Then, we computed the mean L1 and L2 errors for each attack as alternative
comparison metrics. Table 8 shows the obtained results.

Table 8. Comparison between NT-TJSMA and FGSM.

Metric MNIST CIFAR10 GTSRB

Performances of NT-TJSMA

Success rate 100% 100% 100%
Mean L1 distance 13.58 13.33 15.01
Mean L2 distance 3.49 2.93 2.88

Performances of FGSM

Success rate 93.2% (ε = 0.75) 88.2% (ε = 0.05) 99.5% (ε = 0.9)
Mean L1 distance 227.21 150.85 1522.31
Mean L2 distance 12.80 2.74 32.54

As it can be seen, NT-TJSMA is always successful for each model, while FGSM is far from reaching
100% SR. Moreover, NT-TJSMA obtains better L1 and L2 scores. Thus our attack outperforms FGSM
for the SR and the L0, L1 and L2 metrics, while FGSM has only the L∞ and speed advantages. Note that
for FGSM we considered the best results for different thresholds, while our attack is run one time.

5.2. Conclusions

In this section, we summarise our main findings and also discuss the limitation of our work.
We have introduced WJSMA and TJSMA, new probabilistic adversarial variants of JSMA for

targeted and non-targeted misclassification of deep neural network classifiers.
Experiments in the targeted case have demonstrated, after analysing a large amount of images

(more than 790,000 images), that our targeted attacks are more efficient and also faster than JSMA.
It is important to recall the quite natural derivation of these attacks from a simple and classical log
softmax reasoning which has not been noticed before. Our attacks do not beat CW L0 but have
an important speed advantage highlighted in the paper (more than 50 times faster on CIFAR-10).
Therefore, for targeted L0 misclassification, they offer substantial tools to test neural networks in
real-time. This fact is supported by our fast implementation provided with the paper.

As a second contribution, we have introduced NT and M variants of WJSMA/TJSMA and have
shown that they outperform the previous NT and M versions of JSMA. Through experiments on
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GTSRB, we noticed that the gap between our attacks and CW in L0 average is reduced. Moreover,
we obtained better success rates, while remaining at least 40 times faster than CW L0.

In the NT part of the paper, we did not compare our attacks with the one pixel attack [13]. Indeed,
this approach has a high computational cost and we only claim an advantage in speed which is
quite evident for us (see also the time evaluation in [12]). Also, we did not provide a comparison
with SparseFool [12] an effective NT L0 attack because of the need to reimplement this attack with
TensorFlow. On CIFAR-10, [12] found that crafting an example by SparseFool takes on average
0.34 and 0.69 s on two different neural networks. Our speed performances are very competitive
with these values. Indeed, on GTSRB which has many more classes than CIFAR-10, our NT-TJSMA
was able to craft an example in near 0.68 s on average (counting only successful images). Thus,
regarding SparseFool, we first claim competitive results in speed. Second, our results obtained on
LeNet-5 (more than 99.5% on a model similar to [12], see Section 4.1.1) are very close to [12] although
we only run the attacks up to a limited maximum number of iterations contrary to [12].

Overall, our results suggest that for adversarial purposes, TJSMA, M-WJSMA and NT-TJSMA
should be preferred over the original variants of JSMA, respectively in the case of white-box targeted
attacks, white-box non-targeted attacks, and black-box non-targeted attacks. We recall that despite the
fact that TJSMA is a more elaborate version of WJSMA, it is hardly compatible with the “Maximal”
approach, which in turn proves to be very efficient for non-targeted purposes. For this reason, as we
have demonstrated, M-WJSMA is indeed the right choice for this type of attacks. On the other hand,
because the “Maximal” approach has not proved to be very efficient on black-box non-targeted attacks,
it is the non-targeted version of TJSMA (NT-TJSMA) that is the best in this case.

Finally, we should mention that despite improving JSMA in different ways, like JSMA,
our approach is still not scalable to large datasets. This is because of the high computational cost
of saliency maps when the dimension of inputs becomes large. Our approach is therefore intended
for “small” datasets such as those considered in the paper. Nevertheless, this kind of datasets is very
common in real-life applications. Codes are publicly available through the Supplementary Materials.

Supplementary Materials: All our codes are publicly available through the link https://github.com/probabilistic-
jsmas/probabilistic-jsmas.
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Appendix A. Architectures of the Deep NNCs

Table A1. Architecture of the used NNC on MNIST (LeNet-5 inspired)

Layer Parameters

Input Layer size: (28× 28)

Conv2D kernel size: (5× 5), 20 kernels, no stride

ReLu

MaxPooling2D kernel size: (2× 2), stride: (2× 2)

Conv2D kernel size: (5× 5), 50 kernels, no stride

ReLu

MaxPooling2D kernel size: (2× 2), stride: (2× 2)

Flatten

Dense size: 500

ReLu

Dense size: number of classes (10 for MNIST)

Softmax

Table A2. Architecture of the used NNC on CIFAR-10

Layer Parameters

Input Layer size: (32× 32)

Conv2D kernel size: (3× 3), 64 kernels,no stride

ReLu

Conv2D kernel size: (3× 3), 128 kernels, no stride

ReLu

MaxPooling2D kernel size: (2× 2), stride: (2× 2)

Conv2D kernel size: (3× 3), 128 kernels, no stride

ReLu

Conv2D kernel size: (3× 3), 256 kernels, no stride

ReLu

MaxPooling2D kernel size: (2× 2), stride: (2× 2)

Conv2D kernel size: (3× 3), 256 kernels, no stride

ReLu

Conv2D kernel size: (3× 3), 512 kernels, no stride

ReLu

MaxPooling2D kernel size: (2× 2), stride: (2× 2)

Conv2D kernel size: (3× 3), 10 kernels, no stride

GlobalAveragePooling kernel size: (2× 2), stride: (2× 2)

Softmax
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Table A3. Architecture of the used NNC on GTSRB (AlexNet inspired)

Layer Parameters

Input Layer size: (32× 32)

Conv2D kernel size: (5× 5), 64 kernels,no stride

ReLu

MaxPooling2D kernel size: (3× 3), stride: (2× 2)

Conv2D kernel size: (5× 5), 64 kernels,no stride

ReLu

MaxPooling2D kernel size: (3× 3), stride: (2× 2)

Flatten

Dense size: 384

ReLu

Dense size: 192

ReLu

Dense size: 43

Softmax

Table A4. Architecture of the used substitute NNC on GTSRB

Layer Parameters

Input Layer size: (32× 32× 3)

Conv2D kernel size: (3× 3), 16 kernels,no stride

ReLu

MaxPooling2D kernel size: (2× 2), stride: (2× 2)

Conv2D kernel size: (3× 3), 32 kernels,no stride

ReLu

MaxPooling2D kernel size: (2× 2), stride: (2× 2)

Conv2D kernel size: (3× 3), 64 kernels,no stride

ReLu

Flatten

Dense size: 43

Softmax
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Appendix B. Pairwise Dominance

(a) WJSMA vs JSMA (b) TJSMA vs JSMA

(c) TJSMA vs WJSMA

Figure A1. Pairwise dominance on MNIST comparing WJSMA with JSMA (a), TJSMA with JSMA (b)
and TJSMA with WJSMA (c). On these charts, “=” corresponds to samples with the same number of
iterations by the attacks including when both attacks fail.

Further analysis of the results obtained on MNIST reveals that, even for examples where JSMA is
better than WJSMA or TJSMA, on average, less than 10 more components are changed by WJSMA or
TJSMA, whereas JSMA changes more than 17 more components on average when it is dominated by
WJSMA or TJSMA. A similar gap can be noticed on CIFAR-10.
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(a) WJSMA vs JSMA (b) TJSMA vs JSMA

(c) TJSMA vs WJSMA
Figure A2. Pairwise dominance on CIFAR-10 comparing WJSMA with JSMA (a), TJSMA with JSMA
(b) and TJSMA with WJSMA (c). “=” has the same significance as before.
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