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Abstract: Hybrid simulation (HS) is an advanced simulation method that couples experimental
testing and analytical modeling to better understand structural systems and individual components’
behavior under extreme events such as earthquakes. Conducting HS and real-time HS (RTHS) can be
challenging with complex analytical substructures due to the nature of direct integration algorithms
when the finite element method is employed. Thus, alternative methods such as machine learning
(ML) models could help tackle these difficulties. This study aims to investigate the quality of the
RTHS tests when a deep learning algorithm is used as a metamodel to represent the dynamic behavior
of a nonlinear analytical substructure. The compact HS laboratory at the University of Nevada, Reno
was utilized to conduct exclusive RTHS tests. Simulating a braced frame structure, the RTHS tests
combined, for the first time, linear brace model specimens (physical substructure) along with nonlinear
ML models for the frame (analytical substructure). Deep long short-term memory (Deep-LSTM)
networks were employed and trained to develop the metamodels of the analytical substructure
using the Python environment. The training dataset was obtained from pure analytical finite element
simulations for the complete structure under earthquake excitation. The RTHS evaluations were first
conducted for virtual RTHS tests, where substructuring was sought between the LSTM metamodel
and virtual experimental substructure. To validate the proposed RTHS testing methodology and full
system, several actual RTHS tests were conducted. The results from ML-based RTHS were evaluated
for different ML models and compared against results from conventional RTHS with finite element
models. The paper demonstrates the potential of conducting successful experimental RTHS using
Deep-LSTM models, which could open the door for unparalleled new opportunities in structural
systems design and assessment.

Keywords: real-time hybrid simulation (RTHS); machine learning; deep learning; deep long short-term
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1. Introduction

Hybrid simulation (HS) is a well-established structural testing method that combines experimental
components and analytical models simultaneously to evaluate structural elements and overall system
behavior under realistic dynamic loading conditions usually from extreme events such as earthquake,
wind, etc. Takanashi et al. [1] introduced the first HS in the early 1970s as “on-line testing”, where the
non-linear dynamic differential equation of motion was solved with updating the stiffness component
of a spring-mass model from the structural experiment at each time step. Since then, there have
been numerous studies to expand the range of applications and the applicability of this technique to
earthquake loading, then recently, other hazards as well. In general, in HS one or more numerically
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simulated structural components are replaced by experimental components. In such case, no information
on the stiffness of the experimental substructure is needed and a resisting force is fed directly to
the hybrid model at each time step to solve the equation and obtain a new input for next time step.
This further explains the “online” nature of HS where the input signal to the tested physical specimens
in the laboratory are driven by online hybrid model. It is noted that HS is the common term used
among the structural and earthquake engineering communities. However, HS can be compared to
similar concepts in other disciplines such as the general cyber-physical systems, hardware-in-the-loop
systems, etc.

In each time step of the dynamic analysis in HS or real-time HS (RTHS), the differential equation
is usually solved with direct integration methods for a coupled experimental/computational model,
where the finite element (FE) method has been traditionally used for the computational system.
Therefore, one of the main focuses of HS/RTHS studies has been developing numerical integration
algorithms specialized on solving the equation of motion for substructured models for efficient and
reliable experiment results (e.g., [2–5]). However, conducting real-time applications could quickly
become challenging when the simulated structure has complex computational substructure such as
large degrees of freedoms in addition to numerical and/or experimental nonlinearities. It was previously
demonstrated by Del Carpio et al. [6] that a careful sensitivity analysis is needed first for large and
complex structures to provide accurate and stable simulations. More recently, Bas and Moustafa [7]
evaluated currently available direct integration algorithms for RTHS when computational models
involve complex nonlinear behaviors. The study concluded that the current integration algorithms
might have limitations on conducting RTHS tests when some types of nonlinear behaviors are involved,
and experiments become even more sensitive to hardware capabilities. Another important focus
of RTHS research studies has been on accurate actuator control. Several efforts have focused on
experimental actuator delay compensation and errors amplitude quantification—i.e., results quality and
response assessment—due to the nature of combined experimental substructure and the servo-hydraulic
actuator [8–11].

In order to tackle the current challenges and improve RTHS testing advancements, potential
alternatives for simulation and control have been explored across various disciplines [12–14]. One of
those potential alternatives is using machine learning (ML) for computational substructures, which has
been introduced by the authors [15] and is further extended through actual testing in this study.
ML has recently become a very popular tool to consider in earthquake engineering due to offering
advantages such as providing computational efficiency, handling complex datasets, decision-making
processes, and treating uncertainties [16]. ML has been widely used in several different earthquake
and structural engineering applications, including system identification and damage detection [17–19],
seismic hazard assessment [20,21], and nonlinear structural response metamodeling [22–26].

In general, ML algorithms can be grouped based on the tasks that are designed to solve, which are
namely: classification, regression, and clustering. In this study, the envisioned ML application is
regression since the analytical substructure’s dynamic response is aimed to be represented by an ML
model. Linear regression (LR) is one of the regression models in ML, which is capable of predicting
basic behaviors. In introducing the concept of ML for RTHS, Bas et al. [15] used LR as the metamodel
of the computational substructure in the RTHS system for the first time as a simplified model to prove
the concept. However, to capture and predict the nonlinear behavior of static and dynamic response of
structures, artificial neural networks (ANN) have been widely used during the past decade (e.g., [27]).
Mucha [28] used ANNs to represent the analytical substructure in HS to replace the FE models of a
bicycle frame and analyzed it under time-varying force. ANNs have been used in several classification
and regression problems in the past decade. Yet, ANNs have a simple architecture and one-way output
flow (feedforward neural network), which limits their capacity to be used in complicated applications.
Therefore, deep learning, which is one of the subgroups of ML, gained increasing popularity for various
ML applications.
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Deep learning uses stacked layers of neural networks to obtain higher level of features from
the input. More advanced deep learning algorithms are recently developed, such as convolutional
neural network (CNN) and recurrent neural networks (RNN), which are more suitable for long-range
time-varying nonlinear response predictions. Zhang et al. [23] used deep long short-term memory
(Deep-LSTM) networks to predict the nonlinear seismic response of structures. To extend the introduced
concept of using ML for RTHS and leverage enhanced ML algorithms, the authors conducted some
foundational and preliminary work [29] to develop, validate, and verify the communication between
Python-based deep-LSTM metamodels, used for RTHS computational substructures, and typical
hardware and other RTHS system components. The study successfully integrated Python-based models
in RTHS loops and established and validated the communication for RTHS tests with advanced deep
learning ML models. However, no actual physical specimens were considered in that foundational
study by the authors and there is a need to extend this development further when actual specimens are
used. In RTHS, the model is expected to make a prediction based on the online feedback received from
the laboratory physical substructure. Thus, there is an obvious need to assess the ML training and
resulting models predication under realistic input in RTHS setting.

The overall goal of this study presented herein is to fill the above knowledge gap and build
on our previous work [15,29] to conduct actual ML-driven RTHS tests with physical specimens.
Thus, our specific objective is to assess the quality of ML training and models for RTHS testing as
well as the obtained test results through comparisons with FE-driven RTHS tests. The paper first
provides a discussion of the motivation behind this study and how it differentiates and complements
previous work by the authors. Then, the paper briefly introduces the HS/RTHS setup and the system
configuration where Python is used as computational environment. A one-bay one-story concentrically
braced frame (CBF) is used as the case study structure in this paper. The CBF is used to train and
evaluate the metamodels under earthquake excitation. For RTHS in this study, the two columns and
the beam of the CBF with heavily nonlinear material behavior were considered to be the computational
substructure. Meanwhile, the experimental substructure was a physical small-scale steel brace that was
kept linear elastic throughout this study to enable accurate validation and assessment comparisons.
For the ML modeling, Deep-LSTM networks were used to generate the advanced metamodels that
represent the analytical substructures for RTHS. Several online RTHS experiments were conducted
without test specimens and then with physical brace test specimens. Moreover, the need and implication
of using delay compensator was also investigated for ML-based RTHS tests with and without specimens.
For the latter, the adaptive time series compensator (ATS), which was developed by Chae et al. [8],
was used for delay compensation. The test results are compared in this paper with virtual RTHS
predictions, where metamodel was coupled with analytical experimental substructure, and pure
analytical FE solutions to access the quality of the RTHS tests when advanced metamodels are used as
computational substructures.

2. Motivation

Currently, the use of ML has been rapidly emerging in structural engineering application and is
considered a promising alternative approach to obtain surrogate models that can predict structural
responses based on available input/output data. Using an ML algorithm representing the FE model for
dynamic response prediction gives computationally more efficient results with substantial accuracy.
As mentioned earlier, during RTHS, the dynamic differential equation of motion is solved for a coupled
numerical-experimental model. Figure 1a illustrates traditional HS where the analytical substructure
is modeled using the FE method and coupled with experimental substructure (a brace in the example
shown in Figure 1). When experimental substructures are velocity or rate-dependent, HS is conducted
in real-time, i.e., RTHS as defined earlier. In order to satisfy real-time requirements at each time step,
the equation of motion has to be solved, i.e., numerically integrated, in a limited amount of time that is
commonly 10 milliseconds or less. Therefore, once the analytical substructure involves larger degrees
of freedoms as well as numerical and/or experimental nonlinear behaviors, conducting real-time testing
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may not be possible [7]. Thus, using ML metamodel to represent the analytical substructure’s dynamic
response in lieu of FE models in RTHS loop could expand RTHS testing capabilities. Such a concept
has been proposed by the authors [15,29] and is illustrated in Figure 1b to show how ML models can
replace FE models.
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Our previous work focused only on communication development for RTHS with Python-based
deep learning ML metamodels. Such previous work successfully showed that using metamodels to
drive the actuator in RTHS setting is possible and validation was considered using free actuators.
In other words, hypothetical linear elastic specimens were used in that study, where an obtained
actuator displacement command was multiplied with the constant stiffness value to represent a
hypothetical force feedback value at a given time step. Thus, the motivation for this study and how it
differentiates from our previous work has three components: (1) consider actual realistic experimental
substructures so that the quality of the RTHS test results can be investigated; (2) train two new and
different LSTM models for two CBF cases to generalize the results when the dynamic and seismic
response vary; (3) conduct and compare results from virtual and actual RTHS tests to assess the deep
learning models training quality and prediction performance under ‘idealized’ and actual input from
the experimental substructure; and (4) investigate whether using ML-driven RTHS can eliminate
the need for using actuator delay compensators (e.g., ATS) that are heavily needed in traditional
RTHS tests. Accordingly, the RTHS test results section in this paper provides several scenarios with
and without actual experimental specimens and virtual RTHS that are all compared against pure
analytical solutions.

3. RTHS Setup

3.1. HS System Components

The recently developed compact HS setup at the Large-Scale Structures Laboratory (LSSL)
at the University of Nevada, Reno (UNR) was used for this study [30]. This setup is feasible for
many studies including investigating computational challenges in HS/RTHS [7], developing new
substructuring concepts [30], developing innovative approaches for computational substructures [29],
and for educational demonstrations among other uses.
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The FE-based computational substructure of the HS/RTHS can be either modelled in Simulink or
OpenSees (an open-source FE simulation software [31]). With the recent developments at UNR [29],
Python can be also used as a computational environment to conduct RTHS with ML analytical
substructures. The setup is capable of running both slow (pseudo-dynamic) and real-time HS tests.
OpenFresco [32] is used as a middleware for the HS tests when analytical substructures are modeled
in: (1) specialized FE platforms, e.g., OpenSees that can be run on the Host PC; and (2) Python-based
ML models that can also run on the Host PC or even on a high performance computing cluster [29].
Meanwhile, Simulink-based models can be easily compiled and run through a real-time machine such
as xPC target. Moreover, OpenFresco has a predictor-corrector algorithm to control different time
step ranges between the simulation, integration, and controller. Therefore, the test rate, i.e., constant
velocity, pseudo-dynamic, or RTHS, can be controlled through OpenFresco.

The system components at UNR are shown in Figure 2 and more details about such components
are explained as follows:

1. A small-scale load frame: This is the experimental substructure of the setup. This load frame
has a dynamic actuator with 31.14 kN (7 kips) maximum load capacity, ±25.4 mm (± 1 in) stroke,
and its peak velocity at no load is 338.84 mm/s (13.34 in/s). The actuator runs with an isolated
hydraulic pump with a pumping capacity of 8.71 lt/min (2.3 gpm), and the reservoir capacity of
oil volume is 56.78 lt (15 gallons).

2. SCRAMNetGT ring: Provides shared memory locations for real-time communication between
the various hardware and software hosting components.

3. MTS STS controller: Controls the motion of the actuator with 2048 Hz clock speed. It has four
channels that allows the system to control up to four actuators simultaneously when needed;
however, in the current setup, only one actuator is controlled.

4. Real-time high-performance Simulink machine (Speedgoat xPC Target): Provides a high-performance
host-target prototyping environment that enables connection of the Simulink and Stateflow models
to physical systems. Simulink based analytical models are ran through xPC.

5. Host PC (Windows machine): Host PC is where the analytical models (MATLAB, OpenSees,
or Python) and the HS middleware OpenFresco are located. The xPC target machine and the
Host PC have a TCP/IP connection to set up and initialize the SCRAMNetGT memory locations.
Moreover, the Host PC is also assembled with SCRAMNetGT card for real-time applications
along with OpenFresco middleware.
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3.2. RTHS Configuration

A proper data communication between analytical and experimental substructures is crucial for
HS/RTHS experiments. OpenFresco was developed at the University of California, Berkeley to act



Mach. Learn. Knowl. Extr. 2020, 2 474

as an interface software between FE models and the controllers and data acquisition systems in the
laboratories to facilitate HS testing [32]. Moreover, it also allows to connect different computational
drivers to the HS/RTHS loop. In a recent study by the authors [29], a novel communication scheme was
developed to connect the Python environment to the HS/RTHS loop using OpenFresco. This section
briefly explains the recent developments when Python-based ML models are used as computational
substructures. It should be noted that there are two possible Python environment locations to use
within the RTHS loop: Local PC, i.e., Host PC, or cluster such as high-performance computers,
supercomputers, etc. In this section, only communication with the Local PC is explained. However,
interested readers are referred to Bas and Moustafa [29] for more detailed information about the
communication with clusters.

Figure 3 schematically shows the communication loop and details when Python-based metamodel
substructures are located in Local PC (Host PC) for RTHS. As mentioned earlier, the Host PC is where
the xPC connections are made to set up SCRAMNetGT memory locations and initialize the simulations.
The architecture of OpenFresco communication is called the “client&middle-tier server”. In this
architecture, OpenFresco is the middle-tier server, where Python is the client. OpenFresco and Python
communication is established through UDP/TCP channel. Since the OpenFresco side is the server of
the UDP/TCP connection, the channel is opened at the OpenFresco side, and the simulation application
site is set. On the Python side, the ‘socket’ module is used for connection set up with either TCP or
UDP protocols. Therefore, the client, i.e., Python, connects the open connection provided by the server.
The UDP protocol is used in this study for the Python and OpenFresco connection. On the other hand,
the OpenFresco also connects to the experimental site. In this study, the local experimental site was
used. Furthermore, the interface with the laboratory hardware was defined with the experimental
control, where the xPC target transfers data that is obtained from the Host PC to/from the controller.
In this HS setup, the xPC target and the Host PC connection can be either provided with TCP/IP
or SCRAMNetGT connection. The SCRAMNetGT secures more stable and faster data transfer over
TCP/IP connection. Therefore, the SCRAMNetGT connection was used as the experimental control for
this study.
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modeled in Local PC.

Briefly, the data transfer concept of the RTHS setting is explained as follows. The analytical
substructure (metamodel) runs from Python, and the input displacements are calculated at each
time step to be sent to the experimental substructure as displacement command. The force from the
experimental substructure is measured from the specimen and fed back into the metamodel. The time
step synchronization between the controller, integration, and simulation is satisfied through the
predictor–corrector algorithm that is defined in OpenFresco. For the computational substructures with
metamodels, the integration time step becomes the prediction time step since there is no integration
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processed with metamodels. In this study, the prediction time step and the simulation time step were
set to be 0.02 s, which was also the same used for the ML training time step as explained later.

4. Modeling Assumptions

Deep LSTM networks were considered in this study to develop the metamodels that are in turn
used to represent nonlinear analytical or computational substructures for RTHS. The training dataset
was obtained from pure analytical responses of the overall structure. This section first introduces the
FE model that was used to generate the training dataset. The section also explains the methodology for
the deep learning algorithm and hyperparameter calibrations of the metamodels.

4.1. Model Parameters and Training Dataset

The features of the structure used in this study, and in turn, the parameters for the FE model
used in this study is introduced here. This model is what was used in the training of the LSTM
metamodel and identifying the training dataset as explained in this section. As mentioned before,
a one-bay one-story CBF was selected to be the case study structure, and was trained under earthquake
excitation to be used in the RTHS experiments. CBFs are suitable for substructuring where typically
braces experience complex behavior that is hard to model numerically, such as buckling, and is more
suitable to be experimentally tested. However, for this study the experimental braces were tested
only in the linear elastic range for other purposes such as assessment and verification. Concurrently,
the columns and beams of CBFs are easier to model with high accuracy and in turn, are suitable for
analytical substructuring in HS setting. In the HS setup presented in Section 3.1, a small-scale brace—i.e.,
the experimental substructure—was combined with an analytical substructure for a prototype steel
frame at the full scale. In the present study, the analytical substructure was modeled with material
nonlinearity and was represented accordingly in the sought LSTM models. Two RTHS cases were
utilized: without specimen and with the specimen. For the cases without a specimen, no physical brace
was used so the actuator was free to move. However, the actuator’s displacement was multiplied by a
constant stiffness to generate a hypothetical force feedback that represent a linear elastic test specimen.
For the cases with the actual physical specimen, the specimen was tested only within in the linear
elastic range. That is to establish a case that could be compared against full pure analytical models,
which is desired for proper assessment of the performance of RTHS with deep learning models.

The pure analytical model of the CBF was modeled in OpenSees [31]. The columns (W14 × 311)
and beam (W36 × 150) elements were modeled with fiber sections along with the distributed
plasticity as illustrated in Figure 4. The nonlinear steel material model was defined using uniaxial
Giuffré–Menegotto–Pinto material with isotropic strain hardening [33], which is known as Steel 02
in OpenSees and illustrated in Figure 4 as well. The yield stress of the material was selected to be
250 MPa, and the elastic modulus 200 GPa. As mentioned earlier, the experimental substructure is
considered to remain linear elastic for the purpose of this study. In order to get the brace characteristics,
two specimens were tested under increasing scale cyclic loading (Figure 5). The axial stiffness of
the brace in the linear elastic phase was obtained as 46.76 kN/mm. The geometric or length scale
(SL) was 25 for the small-scale brace, which represents a prototype brace with 1169 kN/mm axial
stiffness in prototype scale. Again, the experimental substructure was selected to remain linear
elastic for both types of RTHS, i.e., with and without specimen cases, to make a valid comparison for
quality assessment.

In this study, to guarantee that the brace remained in linear elastic range, two different analytical
models were considered with different mass assignment: 1.40 kN-s2/mm (i.e., m1) and 1.75 kN-s2/mm
(i.e., m2). The frame with lighter mass, designated as Model 1, had a natural vibration period of 0.22 s,
while the other frame, i.e., Model 2, had a 0.25 s period. The inherent damping of the structure was
modeled using 2% mass proportional damping.
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The nonlinear time history analysis of the pure analytical CBFs was conducted under the popular
ground motion from 1940 El Centro earthquake. The implicit Newmark method (average acceleration)
was selected as the integration algorithm with 0.001 s time steps. The duration of the earthquake record
is 31.2 s, but the analysis was carried out for 32 s. For the purpose of training of the metamodels,
the dataset was resampled at 0.02 s time step, which led to 1600 data points for each response. The brace
displacement time histories for Model 1 and Model 2 are given in Figures 6 and 7, respectively,
where the yield displacement is marked with red dashed lines. It can be seen that for Model 1, the brace
behavior remains linear elastic, i.e., does not exceed yield displacement, when response is obtained
from the pure analytical model. Moreover, the global frame force–displacement relationship was also
obtained for both models and also shown in Figures 6 and 7. From the global frame response, it can be
seen that Model 2 experienced slightly larger hysteretic loops—i.e., higher nonlinearities—and the
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Figure 6. (a) Small-scale brace displacement response history along with equivalent brace yield
displacement band (red dashed line), and (b) global frame force–displacement response for Model #1.
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The training dataset inputs for the deep LSTM network were selected to be the earthquake ground
motion acceleration and the brace force time history, while the output (prediction) of the metamodel
was the displacement of the brace, i.e., input for the experimental substructure. During RTHS testing,
the force of the brace is dependent on the brace displacement due to the nature of the closed-loop
system. This dependency generates a high-level uncertainty in the metamodel, which can lead to
unstable predictions. Moreover, the load frame itself has its own uncertainty and other sources of
errors due to the nature of the servo hydraulic system. Thus, the training surface was expanded by
introducing a systematic bias to the brace force time history as explained in next section. The training
dataset was expended with six more cases using offsets of ±5%, ±10%, and ±15% on the brace force.
Accordingly, the input had 11,200 data points that covered seven cases of the force input and bias.
However, it is noted that the same ground motion data was repeated seven times for the seven cases
of force and bias. This is because the bias is not meant to represent a different test or ground motion
intensity, but rather an embedded systematic error for the given intended ground motion input.

4.2. Model Parameters and Training Dataset

As previously mentioned, deep LSTM networks were selected and used here in this study to
model the analytical substructure of the RTHS system. It is noted that other models were checked such
as recurrent neural network (RNN), which is one of the most popular ML algorithms for predicting
time series. The advantage of RNN over other ML algorithms is that it has a backward connection
point, and thus, the layers can get an additional input that is the model output from the previous time
step. However, RNN models have two main drawbacks: (i) having a limited short-term memory,
and (ii) having unstable gradients [34]. Thus, models like RNN were not found to be promising for the
application in hand, and the LSTM model was selected and used instead, LSTM cells are developed to
converge faster and detect the long-term dependencies of the datasets as discussed next.

An LSTM network and a cell architecture are represented in Figure 8. In every time step, the LSTM
cell receives two additional inputs other than (x(t)), which are to represent short-term states (h(t-1))
and long-term states (c(t-1)). The previous time step output vector (h(t-1)) and current time step inputs
(x(t)) are fed into four different fully connected layers. In a regular RNN cell, there is only g(t) layer,
which is the weighted sum of the inputs with an activation function of tanh. The other three gate
controllers are the ones that help to control memory information for longer sequences and use the
logistic function as an activation function (0 or 1). The long-term state’s unnecessary parts are deleted
at the forget gate (output of f(t)). The input gate controls which parts of g(t) should be added in the
long-term state. Moreover, the parts of the long-term state should be the output to both h(t), and the
output gate (o(t)) manages y(t). The equations for the LSTM cell computations are briefly given in
Equations (1)–(6). In the equations, Wxi, Wxf, Wxo, Wxg, are the weighted matrices for the input vector
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and Whi, Whf, Who, Whg are the weighted matrices of the previous short-term state vector h(t-1) for
each layer. Moreover, every layer has the bias term which are bi, bf, bo, and bg.

i(t) = σ
(
Wxi

Tx(t) + Whi
Th(t−1) + bi

)
(1)

f(t) = σ
(
Wx f

Tx(t) + Wh f
Th(t−1) + b f

)
(2)

o(t) = σ
(
Wxo

Tx(t) + Who
Th(t−1) + bo

)
(3)

g(t) = tanh
(
Wxg

Tx(t) + Whg
Th(t−1) + bg

)
(4)

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t) (5)

y(t) = h(t) = o(t) ⊗ tanh
(
c(t)
)

(6)
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The training of the deep LSTM model was done in Python environment using Tensorflow 2.0 [35].
The LSTM model input sequences require three-dimension (3D) arrays, which are batch size (number
of samples of the dataset), lookback (previous time steps), and size of the input dimension (number of
the features) [34]. The hyperparameters of the LSTM network were tuned by feeding the inputs and
the output datasets to the model. The optimizer of the training was selected to be an Adam (Adaptive
Moment Estimator) optimizer with a learning rate of 0.001 [36]. The number of epochs was set to be
103. Moreover, the model was trained to minimize the cost function of mean squared error (MSE).
Based on a previous study by the authors [29], two deep learning models were trained to be used with
10 and 15 lookbacks. Each model had an input layer, four LSTM layers with 30 units/layer, and one
dense layer, which is a fully connection layer that outputs the prediction.

5. Online RTHS Tests

In this section, the deep LSTM network models which were trained for the two CBF models, i.e.,
Model #1 and Model #2, with lookbacks 15 and 20, were used and evaluated for RTHS tests. Hereafter,
the models with 15 lookbacks are referred to as Model 1a and Model 2a, and the ones with 20 lookbacks
are referred to as Model 1b and Model 2b, respectively. In order to investigate the quality of the ML
models within the HS loop, two sets of RTHS tests were considered. In the first set, the tests were
conducted without a real specimen, but a hypothetical specimen was represented by multiplying the
actual actuator displacement by a constant stiffness value to obtain the force feedback. The second set
used actual specimens but as mentioned before, the selected ground motion and frame characteristics
were supposed to keep the brace within the linear elastic range. The use of a delay compensator was
also evaluated during the tests. Thus, all sets of RTHS tests were conducted twice with and without
using the ATS compensator and designated in figures as wATS or woATS, respectively. One last variable
that was considered in this assessment was related to the force input through the lookback dimension
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where either the first or last dimension was updated with the actuator force feedback. Therefore, a total
of 32 different RTHS tests were conducted and selected test results are presented and discussed here.
The experimental substructure response as obtained from the RTHS tests is represented with both
force–displacement relationship as well as force and displacement time histories. The error calculations
for all 32 tests are also discussed. Moreover, to make a careful evaluation of the deep learning models
within the experimental setup, error calculations for virtual RTHS tests are also presented. The virtual
RTHS tests are meant to reveal how the LSTM models predictions can vary when using RTHS feedback
from an ‘idealized’ analytical FE model versus experimental setup, i.e., analytically and experimentally
simulated linear elastic brace behavior. The variation is such cases would be attributed to how the
experimental feedback can be contaminated due to laboratory, hardware, and experimental errors,
which makes the equivalent feedback from an FE analytical simulation ‘idealized’.

5.1. Experimental Substructure Response: Force–Displacement Relationship

Firstly, the experimental substructure responses for each model and each RTHS test type, i.e.,
with specimen and without specimen, are presented. Only selected test cases are presented here for
the discussion, which are the tests that used the first term of the force input through the lookback
dimension for the update. As explained in the training dataset, a systematic bias was introduced to
the force input to increase the training domain in an attempt to represent and capture potential force
feedback uncertainties because of force–displacement dependencies and initial load frame feedback.

Figure 9 shows the equivalent brace axial force–displacement relationship at the prototype CBF
full-scale from the two RTHS tests for Model 1 with and without specimen. It is noted that the applied
actuator displacement commands and retrieved force feedback from the experimental specimen are
scaled down by SL = 25 and up by SL

2 = 625, respectively, to adjust for the varying geometric scale
between physical substructure (brace) and analytical substructure (CBF). It can be seen from the
figure that the actual observed actuator response in the case of no specimen—i.e., hypothetical brace
case—falls within the training domain as desired. The test results when the real specimen was used
(Figure 9b) also confirms that the actual brace remained linear elastic through the RTHS tests as
desired. Moreover, the brace force–displacement relationship also falls within the training domain,
which confirms that reliable test results can be obtained when deep learning models are considered
for computational substructures. The figures also suggest that expanding the training domain in the
way proposed and adopted by the authors, i.e., introduced systematic bias, worked well. No stability
problems occurred, and both tests with and without actual specimens were successfully conducted.
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Figure 9. Equivalent brace axial force–displacement response (at prototype full scale) as obtained from
RTHS tests with Model #1: (a) without specimen; and (b) with the physical specimen.

The RTHS test results for Model 2a and Model 2b, which were expected to slightly get into
the nonlinear range when compared to Model 1 counterparts, are presented. The equivalent brace
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axial force–displacement relationship at the prototype full-scale is shown in Figure 10. The values in
Figure 10 present up-scaled forces and displacements by similitude scale of 625 and 25, respectively,
with respect to actual tested physical specimen scale. For the models where no actual specimen was
used, the tests performed well (see Figure 10a). As shown above in the training phase, it was observed
that the brace displacement in Model 2 slightly exceeded the yield displacement. The implications of
that showed itself in case of RTHS tests with the specimen. It can be seen from Figure 10b that the
actual specimen showed some minor hysteretic loops, which is not considered severe nonlinearity.
Moreover, the specimen was used repeatedly in other tests without showing any plastic behavior,
which confirms that the specimen in general remained linear elastic. The most important observation
from Figure 10 is that the devised training domain contained all the minor hysteretic loops, and in turn,
ensured a stable test through the end. Again, this is another confirmation that expanding the training
domain worked well and led to successful execution of RTHS tests with no stability issues. It is also
noted that both Figures 9 and 10 compare cases with and without using the ATS. It is observed from
the figures that using the ATS delay compensator did not have any significant effect on test results for
both models and each ML-driven RTHS test type.
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Figure 10. Equivalent brace axial force–displacement response (at prototype full scale) as obtained
from RTHS tests with Model #2: (a) without specimen; and (b) with the physical specimen.

5.2. Experimental Substructure Response: Force and Displacement Time Histories

In this part, the displacement and force time histories for the experimental substructure responses
are shown and compared with the training force input and output displacement datasets. For this
evaluation, selected test results from what we consider ‘good’ and ‘bad’ tests are shown and discussed.
In Section 5.1, it is shown that ML-driven RTHS with specimens can be successfully executed without
stability issues. However, no every successfully completed test is a valid test as there could be large
errors in the interpreted response. In this section, we try to take a deeper look at the quality of the test
results. This is possible through comparisons with virtual RTHS scenarios where the deep learning
models are expected to provide better predications with no experimental errors involved. Moreover,
comparisons are also provided against pure FE analytical solutions that represent exact solutions in
the case of the linear elastic brace considered for this study.

5.2.1. Selected Results from ‘Good’ RTHS Tests

In this section, RTHS test results from good tests are presented. Model 1b RTHS test results are
selected when delay compensator was used. For the force input, the first lookback dimension was
updated with the force feedback from the experimental substructure is shown. The RTHS test results
are compared with the exact solution, which is the pure analytical model response.
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First, the virtual HS results are shown, where at each time step, linear elastic force feedback
was calculated and fed back to the deep learning model (i.e., analytical substructure). This case can
be considered as a coupled LSTM-FE model. Figure 11 shows the brace displacement time history
comparison for LSTM prediction and the exact displacement. It can be seen that the model predictions
are accurate enough for a stable and accurate virtual HS analysis. Moreover, Figure 12 shows force
time histories from the same analysis. Since virtual HS relies on pure calculation, the force time history
for the virtual HS has the same behavior as the displacement prediction time histories.
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Figure 12. Brace force calculated from Model 1b virtual HS compared to the exact analytical solution.

Figure 13 shows the brace displacement time history for the aforementioned model, where no
actual specimen is used. However, this time the LSTM model was integrated into the RTHS loop,
where the actuator was free to move, and the displacement feedback was multiplied with the stiffness
constant to represent linear-elastic brace response. It can be seen from the figure that the LSTM model
has accurate predictions as well. Moreover, Figure 14 shows the comparison of force feedback from the
experimental setup and the exact force values, which is the training input. It can be seen that the error
in the obtained forces is more than the displacement prediction error. This is due to the experimental
errors related to the RTHS setup, which is expected but was never quantified yet for ML-driven RTHS
tests. Such errors are again the main motivation of extending the training domain when generating the
Deep-LSTM models. Overall, both the training domain and the accurate predictions reflected well to
the force–time histories, and the test was completed successfully with adequate accuracy.
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based on actual feedback as compared to the exact analytical solution.
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Figure 14. Brace obtained force feedback from Model 1b RTHS test without specimen as compared to
the exact analytical solution.

Next, the RTHS test results for the same model with the actual specimen are shown. The LSTM
predicted displacement time histories are compared with the exact solution in Figure 15. It can be seen
that the model predictions are the same as the previous case without specimen (average error is about
1%). Moreover, Figure 16 shows the force feedback time history response from the actual specimen.
It can be seen that, with the actual specimen present, the model successfully completed the RTHS tests
with relatively small error (~4.5%) similar to the case of free actuator without specimen showed above
in Figure 14.
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5.2.2. Selected Results from ‘Bad’ RTHS Tests

This section aims at presenting a case of successfully completed ML-driven test but with relatively
large errors, which we call it a ‘bad’ test. The sample test results are from Model 1a RTHS tests when no
delay compensator was used, but for using actual force feedback to update the last lookback dimension
as opposed to the first dimension in the ‘good’ test in Section 5.2.1. These RTHS test results are again
compared with the exact solution, which was possible to obtain from pure analytical models because
of the linear elastic brace behavior. The goal here is to show that due care is needed when handling the
Deep-LSTM model attributes to avoid getting large errors.

As before, the virtual HS results from coupled LSTM-FE model are shown first, where at each
time step, linear elastic force feedback was calculated and fed back to the deep learning model (i.e.,
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analytical substructure). Figure 17 shows the brace displacement time history comparison for LSTM
prediction and the exact displacement. Moreover, Figure 18 shows force time histories from the same
analysis. Since virtual HS relies on pure calculation, the force time history for the virtual HS has
the same behavior as the displacement prediction time histories, and both showed relatively large
errors of about 11.8%. Thus, the virtual HS trials could be very beneficial to consider before actual
future ML-based RTHS testing to get an early sense of what model attributes will likely lead to more
accurate results.
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Figure 18. Brace force calculated from Model 1b virtual HS compared to the exact analytical solution.

Figure 19 shows the brace displacement time history for Model 1a where no actual specimen was
used. As seen from the LSTM displacement predictions, a large prediction error starts early on during
the testing. These errors just kept accumulating and were further propagated because of the nature of
the hardware setup which eventually led to incorrect experimental results. The force feedback obtained
from the experimental setup is compared with the training force input in Figure 20. The error from the
displacement prediction, which is also the actuator input command, is reflected in the force feedback
as expected. When the RTHS setting did not have any delay compensator, and the force feedback
was fed into the force input’s last dimension, the model predictions were not appropriate to conduct
an accurate test, even though the test was still successfully executed, i.e., stable and displacements
remained within the training output range.
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based on actual feedback as compared to the exact analytical solution.
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respectively. In these tables, the brace displacement predictions are compared with the training 
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Figure 20. Brace obtained force feedback from Model 1a RTHS test without specimen as compared to
the exact analytical solution.

The RTHS test results for the same case above are evaluated but now from the tests that used
an actual specimen. Figure 21 shows the brace displacement prediction time histories. It can be seen
that when an actual specimen is used in the HS setup, it helped stabilize and suppress the error in the
early stages of the test, and in turn, no large errors accumulated and more reliable test results were
obtained. Although the predictions were not still very accurate (average error dropped to about 7.7%
down from 28% when no specimen was used), it provided satisfactory enough predictions that were
not as noisy or contaminated with artificial high frequencies as the case with no specimen. Figure 22
shows the brace force feedback obtained in return to the predicted brace displacement. As it is seen
from the force time history, the force feedback was appropriate and relevant to the displacement input.
Therefore, it can be observed that including an actual specimen within the system helps improve the
performance of the RTHS testing with ML/LSTM computational substructures.
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Figure 22. Brace obtained force feedback from Model 1a RTHS test with specimen as compared to the
exact analytical solution.

5.3. Error Evaluation

The normalized root mean square errors (NRMSE) was calculated for all conducted RTHS cases
(see sample values on Figures 11–22 above). A summary of the NRMSE values from the tests that used
first and last force feedback lookback dimension update is provided in Tables 1 and 2, respectively.
In these tables, the brace displacement predictions are compared with the training displacement data.
Before conducting the tests, virtual HS tests were conducted, where at every time step, the displacement
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predicted by the deep learning model and the input force was calculated from a constant stiffness
multiplier. It can be seen from the results that in general, the models have more errors when the last
lookback dimension is updated during the RTHS tests as opposed to the first dimension even from the
virtual HS cases.

Table 1. NRMSE (%) for brace displacement predictions where ‘first’ force input dimension is updated
in RTHS tests.

Model 1 Model 2

Model 1a Model 1b Model 2a Model 2b

Virtual Hybrid Simulation 1.05 1.02 1.02 1.13

w/ATS
w/o Specimen 1.06 1.03 1.04 1.12

w/Specimen 1.03 1.03 1.06 1.10

w/o ATS
w/o Specimen 0.97 1.02 1.02 1.12

w/Specimen 0.93 1.02 1.02 1.11

Table 2. NRMSE (%) for brace displacement predictions where ‘last’ force input dimension is updated
in RTHS tests.

Model 1 Model 2

Model 1a Model 1b Model 2a Model 2b

Virtual Hybrid Simulation 11.82 5.46 10.48 13.02

w/ATS
w/o Specimen 29.78 20.85 26.32 27.16

w/Specimen 20.02 17.39 12.07 12.94

w/o ATS
w/o Specimen 28.37 2.04 27.65 28.42

w/Specimen 7.72 5.01 6.54 23.88

For Model 1, the error is reduced for the actual RTHS cases with physical specimen and no ATS
delay compensator used. On the other hand, the error is more pronounced for Model 2 with the
last dimension update. This error accumulated when the online RTHS tests were conducted as seen
from the values in the table. When tests include actual specimens, this slightly helped stabilizing and
reducing the error. Overall, the system performed well for all ‘first’ lookback dimension update test
cases when the feedback is used for the first force input’s lookback dimension, and all these cases did
not have any noise in the predictions. Another observation, which is more pronounced in Table 2,
is that the use of ATS does not reduce the error in the predictions, and in fact, it might increase the error
in some cases. Therefore, it can be concluded that the use of delay compensators—such as ATS—is not
recommended nor needed when ML models are used for RTHS computational substructuring.

Lastly, the absolute error (in mm) at the small brace scale for each time step of the displacement
prediction during the RTHS is reported for the selected models and cases presented above in Section 5.2.
Figures 23 and 24 show the difference between the exact displacement and displacement prediction
(input for the actuator) for the sample ‘good test’ case presented in Section 5.2.1. As implied from
the previously provided discussion and comparisons, the error is very small for both cases with and
without specimens, and such small errors did not lead to any issues during the RTHS tests. On the other
hand, Figures 25 and 26 show the same displacement difference calculation for the ‘bad test’ example
presented in Section 5.2.2. A systematic error can be observed from the case where no specimen is
used. Figure 26 shows the results for the tests with actual specimen used in the loop. Although the
error values are still relatively large when a specimen is included, yet it is better and much smaller
than the case without specimen. That figure confirms the observation that the tests with specimen did
not experience the same systematic or significant error accumulation as the ones with a free actuator.
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6. Concluding Remarks

This study focused on assessing the quality of RTHS results when ML models are used to represent
computational substructure behavior under dynamic excitation. Two FE models of one-bay one-story
CBF were developed and used to obtain training datasets for the ML models. Deep-LSTM networks
were used to develop the metamodels of the computational substructure’s response under earthquake
excitation. Two different models were developed for each CBF case with 15 and 20 lookbacks. Overall,
a total of 32 RTHS tests were conducted in this study. Both RTHS tests with and without an actual
specimen were considered for further assessment and better understanding of test results. However,
whenever an actual specimen was used in the online RTHS tests, the specimen remained linear elastic
for possible evaluation against an exact analytical solution. For each RTHS case, the force feedback
from the actuator was either updated in the first or the last lookback dimension of the force input.
While the study provides for the first time exclusive results for ML-driven RTHS tests with physical
specimens, the following major conclusions can be drawn:

• The experimental substructure response in terms of the brace force–displacement relationship was
found to adequately fit within the envisioned training domain proposed herein. This confirms
that it is recommended to expand the training domain to somehow account for the uncertainties
associated with RTHS force–displacement dependency and errors from hardware.
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• To inform and select ML model attributes for ML-driven RTHS testing, two practices are
recommended with the assumption of linear elastic specimens. Either free-actuator tests, i.e.,
with actual hardware but without specimen, or virtual HS tests, i.e., FE simulated specimen, can be
conducted. The examples from good and bad tests presented in this paper show that the virtual HS
tests can be more revealing. In either way, careful model tuning or parameter identification—e.g.,
LSTM lookback dimension update—should be considered since the ML prediction error can
quickly propagate and accumulate with the experimental errors.

• By inspecting force and displacement time histories from RTHS tests with LSTM models, it was
observed that RTHS with actual specimen, which is the more realistic case, showed less error
accumulations and better predictions. In other words, test specimens help stabilize and reduce
experimental errors in the tested cases. Thus, error predictions from virtual HS or free-actuator
testing will provide correct trends on model attributes and performance, but will likely get smaller
during actual tests with specimens.

• Based on results from 32 tests and utilized test setup, it can be demonstrated that using ML models
within the RTHS loop for analytical substructuring can eliminate the need for actuator delay
compensators. This is because the models can be trained with inherent delay beforehand. However,
more testing scenarios, different hardware and laboratory setups, etc. should be considered for
future studies before a solid reliable recommendation can be made in this regard.

• Overall, NL-driven RTHS tests performed well when deep learning metamodels were used to
represent the analytical substructure dynamic behavior, and no stability issues were observed.
The study also highlighted that the accuracy of test results could be affected by the nature of
the LSTM model update during the test. For example, the models where the first lookback
dimension is updated, as opposed to last one, performed better. Thus, more future research is
also recommended to study ML modeling features and parameters sensitivity as it pertains to
RTHS performance, and extend this concept to nonlinear physical specimens, where deep learning
models need to be trained based on complex unknown behavior.
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