
machine learning &

knowledge extraction

Article

Concept Discovery for The Interpretation
of Landscape Scenicness

Pim Arendsen 1, Diego Marcos 1,* and Devis Tuia 1,2

1 Laboratory of Geo-information Science and Remote Sensing, Wageningen University,
6708 PB Wageningen, The Netherlands; pim.arendsen@wur.nl (P.A.); devis.tuia@epfl.ch (D.T.)

2 Environmental Computational Science and Earth Observation Laboratory,
Ecole Polytechnique Fédérale de Lausanne, 1950 Sion, Switzerland

* Correspondence: diego.marcos@wur.nl

Received: 11 August 2020; Accepted: 26 September 2020; Published: 3 October 2020
����������
�������

Abstract: In this paper, we study how to extract visual concepts to understand landscape scenicness.
Using visual feature representations from a Convolutional Neural Network (CNN), we learn
a number of Concept Activation Vectors (CAV) aligned with semantic concepts from ancillary
datasets. These concepts represent objects, attributes or scene categories that describe outdoor
images. We then use these CAVs to study their impact on the (crowdsourced) perception of beauty
of landscapes in the United Kingdom. Finally, we deploy a technique to explore new concepts
beyond those initially available in the ancillary dataset: Using a semi-supervised manifold alignment
technique, we align the CNN image representation to a large set of word embeddings, therefore giving
access to entire dictionaries of concepts. This allows us to obtain a list of new concept candidates to
improve our understanding of the elements that contribute the most to the perception of scenicness.
We do this without the need for any additional data by leveraging the commonalities in the visual and
word vector spaces. Our results suggest that new and potentially useful concepts can be discovered
by leveraging neighbourhood structures in the word vector spaces.
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1. Introduction

The combination of advances in deep learning methods, in particular in the form of deep
Convolutional Neural Networks (CNN), and the abundance of User Generated Content (UGC) opens
up the possibility of studying how users perceive their surroundings at an unprecedented level of
detail and at scale. One example is the estimation of scenicness (i.e., landscape beauty) based on
outdoor images. Understanding what is perceived as beautiful in a landscape is important for the
tourism industry and could be employed in recommender systems. The crowdsourcing experiment
ScenicOrNot [1], where volunteers scored landscape images of the United Kingdom (Figure 1), has been
used to distill the image-based perception of landscape beauty by training a deep CNN to predict
scenicness [2,3]. However, CNN models are complex and hard to interpret, which prevents the
understanding of which cues are being used to solve the problem: in other words, we can predict if
a scene is pretty, but we still do not know why, unless we speculate a posteriori. This is exacerbated by
the fact that perception-related tasks are subjective in nature, making it harder to validate the results.

While beauty is often seen as a subjective matter, recent research has shown that the scenicness
associated to an image is often coupled with specific themes or concepts like mountains or coast [2,3].
Previous work has shown that it is even possible to reduce scenicness estimation to an objective,
more interpretable task by using a semantic bottleneck consisting of detected concepts in the images [4].
This type of approach has the advantage of improving our control over which elements of the image
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are allowed to influence the scenicness estimation. For instance, if we are interested in estimating
the scenic value of a place, we would like this estimation to be independent of confunding factors
such as photographer biases or specific lightning conditions. However, such an approach relies on a
manually chosen set of concepts that are expected to relate to scenicness and an auxiliary dataset of
images where the presence of these concepts is annotated. While providing interpretability on a set
of pre-defined concepts, this approach is very rigid and does not allow for exploration of unknown
concepts that may arise from the data.

Scenicness score

1 5 10

Tower? Hill? Mountain?

Snow?Water?Fence?

Figure 1. Images from the ScenicOrNot dataset, ranked from low scenicness (left) to high scenicness (right).
In this work, we extract semantic concepts (water, snow, etc.) related to landscape beauty.

In this paper, we explore the potential of discovering new semantic concepts related to landscape
beauty present in the data. We achieve that by expanding the set of concepts available in a visual
dataset of concepts (e.g., materials, textures, objects) with a series of new concepts found by comparing
visual vectors (from the CNN feature space) and word embedding vectors. This is in contrast to
existing methods for concept discovery, where either new concepts are not assigned a semantic
label [5], or a human-in-the-loop systems [6] or per image annotations [7] are used in order to learn the
new concepts. We use manifold alignment [8] to map together the heterogeneous (different structure
and different dimensionality) data manifolds of visual and word concepts, which allows to obtain
hints about new concepts related to scenicness that are not captured by the initial dataset, without the
need for any additional supervision.

The results on the ScenicOrNot dataset show that the proposed method can be used to explore
which concepts are related to the task of scenicness estimation among those encoded by a dictionary of
word embeddings.
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2. Methodology

The proposed methodology is summarized in Figure 2. Below, we present it in three parts:
the definition of the CAVs, the attribution of the CAVs to new images and the exploration of new
concepts by aligning word embeddings (Code available at https://github.com/Pimmmm/Concepts_
Landscape_Scenicness).
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Figure 2. Overview of the proposed methodology. Concept Activation Vectors (CAVs) obtained using
a visual dataset of concepts (top, left) are aligned with the corresponding word embeddings (top, right)
using manifold alignment.

2.1. Concept Activation Vectors

To extract prototypical representations of semantic concepts, we use the Concept Activation
Vectors (CAVs), recently introduced by [9], as a method to interpret deep CNNs without having to
retrain them. CAVs use the internal high-dimensional representation of a model (typically the activation
vector on a fully connected layer) to translate the model’s features into human understandable concepts,
ranging from simple concepts such as colours, to complex concepts like gender.

A CAV is thus a vector representing the concept as it is captured by the layer l of the model.
To derive a CAV, one uses an ancillary dataset containing both images representing the concept itself
and counter images, i.e., images where the concept is absent. The activation vectors at layer l for these
images, al , are extracted and a binary linear classifier is trained to discriminate the concept images
from the counter images. The CAV is the vector orthogonal to the decision boundary, i.e., the vector
pointing in the direction of the concept activations (see Figure 3). In the experiments, we use a
ResNet50 convolutional neural network [10], pretrained on ImageNet, in combination with a large
image/concept database (Broden, see Section 3). ResNet models are the standard choice when it
comes to semantic feature extraction from images, for which available pre-trained models are highly
optimized. We extract the image activations from the 2048-dimensional feature space of the last fully
connected layer and learn CAVs for the available concepts. Next, these CAVs are linked to scenicness,
as detailed in the following section.

https://github.com/Pimmmm/Concepts_Landscape_Scenicness
https://github.com/Pimmmm/Concepts_Landscape_Scenicness
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CNN

(a) (b)

Figure 3. Concept Activation Vectors (CAV): Given a set of positive and negative images for a concept,
in this case, beach (a), the activation vectors at layer l are computed for each of them and a linear
classifier is used to discriminate between the two sets (b). The CAV for concept beach is the vector
orthogonal to the decision hyperplane (dashed line).

2.2. Linking CAVs to Scenicness

The activation vectors from all images in the dataset on scenicness (SoN, see Section 3) are
extracted from layer l. The images from this dataset are referred to as SoN images. For each SoN image,
the alignment with each CAV is calculated, which is referred to as the concept score. The concept score
for image i and CAV j, sij, is calculated as follows:

sij = cj · ail + bj (1)

where cj is the CAV of concept j, ail is the vector of activations for image i at the fully connected layer l
and bj is the bias term of the CAV classifier for concept j. The concept score provides an indication of
which concepts are present in each image from SoN. The concept score is then linked to the scenicness
score of the SoN images using Kendall’s τ [11] correlation as in [3,4].

2.3. Exploring New Concepts with Manifold Alignment

To explore new concepts related to landscape beauty using CAVs would require building a large
image dataset based on a prohibitively large amount of manually chosen concepts. This is unpractical,
since such database would be problem-dependent and costly to build. Instead, we propose to map
vectors from word embeddings into the space of CAVs. The intuition is that word embeddings are
defined with large dictionaries and span a wider set of concepts than any image-based dataset,
but might still have a local structure comparable to the CAVs. Since word embeddings are of different
nature and dimensionality than image-based representations, we need to align the two representations
to each other in a new latent vector space. To do so, we use the semi-supervised manifold alignment
method [12] (Code available at https://github.com/dtuia/KEMA [13]).

Aligning the two datasets to a common representation F boils down to constructing two mapping
functions to F by means of two projection matrices, fCAV and fdict, both of dimension (dm × d),
where dm is the number of features of each dataset. The common latent space F is of dimension
d = dCAV + ddict. Mapping to F requires that samples belonging to the same concept become closer,
while those of different concepts are pushed far apart. Moreover, the mapping should preserve the
geometry of each data manifold. Since we have terms to be minimized and others to be maximized,
the problem can be solved by the following generalized eigen-decomposition:

X((1− µ)Lg + µLs)X>ϕ = λXLdX>ϕ. (2)

https://github.com/dtuia/KEMA
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where Lg, Ls and Ld are graph Laplacians, weighted by µ ∈ [0, 1] and λ ≥ 0, X is a block-diagonal
matrix containing the data to be projected and ϕ are the projection vectors aligning the data
spaces. More specifically, Lg enforces that the geometry is preserved within every data source
(i.e., neighbors in the original spaces should remain neighbors after the alignment), Ls promotes
that vectors corresponding to the same concept across domains are mapped close together and Ld is
a term enforcing that different concepts are mapped far away from each other. For specific matrix
construction details, see [14].

The Laplacians in Equation (2) are built using CAV concepts from the visual domain and word
embeddings from the text domain. Some concepts match across domains, i.e., for a CAV concept,
the corresponding word embedding is present. However, to increase robustness of the latent space,
both datasets include un-matched concepts, i.e., concepts for which no correspondence from the other
domain is present. These concepts are used in a semi-supervised way to construct the Laplacian
preserving manifold geometry, Lg. To choose the un-matched word embeddings, we use the ten
nearest neighbors to the matching concepts, while in the visual domain we use activations from single
images from the final task dataset.

The eigen-problem (2) leads to the optimal projection matrix F, which has a block structure
containing the projection vectors for each domain:

F =
[√

λCAVϕCAV ,
√

λdictϕdict

]
=

[
fCAV

1 . . . fCAV
d

fdict
1 . . . fdict

d

]
(3)

Once the projection matrices fCAV and fdict are obtained, we can project new data Xm
∗—word

embeddings or new images, respectively—in the joint space by simple matrix multiplication,

P f (X
m
∗ ) = fm>Xm

∗ .

and look for concept/words distances therein (see Figure 2).

3. Datasets

In the experiments, we study the problem of finding semantic concepts that are relevant to the
task of landscape scenicness estimation. To achieve that, we used three sources of data:

3.1. Landscape Scenicness

ScenicOrNot (SoN) [1] is a user generated outdoor image dataset of Great Britain, with every
image rated on its scenicness-score (aesthetic value). These outdoor images are obtained directly from
the Geograph project [15], where users are encouraged to provide images covering the whole surface
of the British isles. A subset of this collection was then selected and shown to volunteers online to
obtain the scenicness ratings.The score ranges from 1 (not scenic) to 10 (very scenic), examples are
shown in Figure 1. The SoN dataset contains 212,000 images, which have been rated by at least three
volunteers. For all images the longitude, latitude, number of votes, and voted scores are available.
Refer to [3] for more details on this dataset.

3.2. Semantic Concepts

The Broadly and Densely Labeled Dataset (Broden) [16] is a combination of several image datasets:
ADE [17], Open Surfaces [18], Pascal-Context [19], Pascal-Part [20] and Describable Textures Dataset [21].
The original data contains 63,000 images covering 1197 concepts. Some images are labeled at the pixel level
and can be labeled with multiple concepts. Some examples are shown in Figure 4.
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(a) (b) (c)

Figure 4. Example images from Broden, concepts: (a) Tree, (b) highway and (c) linoleum.

3.3. Word Embeddings

The Global Vectors (GloVe) dataset [22] contains a large dictionary of words and their
corresponding word embedding. The GloVe feature space has linear substructures that capture the
semantic relationships between words. The representations are learned by a unsupervised learning
algorithm trained on word-to-word co-occurence statistics in a large text corpus. We used a version of
the GloVe dataset containing 400,000 words, represented in a 300 dimensional space.

4. Results and Discussion

In this section, we present the results obtained in the ScenicOrNot dataset. We follow the same
three-steps structure of the Methodology section above.

4.1. Deriving CAVs from Broden

In the first step, we derive CAV representations from the Broden dataset. We first applied a filter
by removing labels covering less than 3% of the image to improve the image labelling, which left us
with 1′091 concepts in Broden. The data was randomly split in 70% training and 30% validation sets.

The first set of experiments was aimed at understanding the minimal amounts of concept images
a and counter images (in which the concept is absent) b required to define the CAV appropriately.
Both concept and counter images are randomly sampled from the training images in Broden. First,
a was determined by fixing b = 500 and varying a in the range a ∈ (1− 100). If a concept did not have
a hundred concept images, the maximum available number of concept images was used for defining
the upper limit. For each (a, 500) pair, the accuracy of the derived CAV was calculated on the 30%
held out set. The procedure was repeated ten times for robustness. The top row of Figure 5 shows the
accuracy of concepts highway, mountain snowy and coast with a varying number of concept images.
The best a is chosen to be 40, which is when the accuracy tends to plateau for the majority of concepts.

The determined a = 40 was used to find a preferred b using the same procedure, where b is
incrementally sampled from b ∈ (1− 500). The accuracy of the same two concepts with a varying
number of counter images is shown in Figure 5. The general trend in different concepts showed a stable
accuracy around 200 counter images. Using the preferred a = 40 and b = 200, CAVs were derived
for each concept in Broden. All CAVs with an accuracy lower than 75% were removed, as it was
assumed that these CAVs were inaccurate representations of a concept, leaving us a total of 628 CAVs
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for further analysis. Figure 6 shows the eight closest aligned test images with the CAVs for mountain,
ship and horse.

Highway Mountain snowy Coast

Figure 5. CAV average accuracy of concepts highway, mountain snowy and coast with a varying
number of concept images (top row) and counter images (bottom row). The shadowed band indicates
the standard deviation over the ten runs.

Figure 6. Eight nearest neighboring images in the test data to the determined Broden CAVs for concepts
mountain, ship and horse.

4.2. Linking CAV Concepts to Scenicness

After extracting the CAVs from Broden, we calculated the concept scores sij for each image i in
the SoN dataset with respect to each concept j.

The concept score was linked with the scenicness score of the SoN images, using Kendall’s τ

correlation coefficient. The coefficient indicates how each concept is correlated with the scenicness
score, i.e., it provides an indication of concepts related to higher or lower scenicness. Table 1 presents
the ten concepts showing the highest positive correlation with scenicness; these concepts relate to
nature and outdoors concepts, in line with the observations of [2–4]. Similarly, Table 1 presents the
ten concepts with strongest negative correlation, and indicates that man-made structures are mostly
associated with unscenic landscapes.
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Table 1. Top 10 Broden concepts positively (left) and negatively (right) correlated to scenicness.

Rank Concept Correlation Rank Concept Correlation
1 Canyon 0.47 1 Building −0.39
2 Cliff 0.43 2 Street −0.37
3 Island 0.41 3 Sidewalk −0.37
4 Valley (scene) 0.41 4 Crosswalk −0.36
5 Ocean 0.40 5 Parking lot −0.35
6 Wave 0.40 6 Windows −0.33
7 Mountain 0.40 7 Parking garage indoor −0.32
8 Valley 0.40 8 Bleachers outdoor −0.31
9 Smeared 0.39 9 Platform −0.30
10 Waterfall-block 0.39 10 Road −0.30

We used the location of the SoN images to validate the concept scores obtained with clearly
identifiable physical features. We selected the concept mountain and mapped the score geographically
in Great Britain, as depicted in Figure 7. The area highlighted in Figure 7a gives a clear indication in
which region of the UK the SoN images contain mountains. This corresponds with the elevation map
of the same region, shown in Figure 7b.

(a) (b)

Figure 7. (a) Mountain concept score; (b) Elevation map of the northern UK.

4.3. Discovering New Concepts with Word Embeddings

To discover new concepts related to scenicness without requiring an image dataset, we aligned
the manifolds of the CAV domain with the GloVe domain in a latent space. This allowed us to explore
a large range of new concepts.

To build the graph Laplacians required in Equation (2), we used the concepts which have a
corresponding representation in both the CAV and GloVe domain: from the initial 628 CAVs, only 302
had matching representation in both domains. However, to increase robustness of the latent space,
additional non-corresponding concepts were added:

• In the CAV domain, both the non-corresponding CAVs and a random sample of SoN image vector
representations were used, resulting in 5052 unmatched samples.

• In the GloVe domain, the ten nearest neighbours for each of the corresponding concepts
were added, resulting in a total of 2548 samples.

The dimensionality of the CAV domain, 2048, was reduced to 100 by means of PCA. For the
manifold alignment, the generalized eigen-decomposition method described in [13] requires the setting
of two hyperparameters: µ ∈ [0, 1], which trades off the alignment of corresponding concepts versus
the preservation of the original manifolds’ topology, and λ ≥ 0, that sets the weight of the dissimilarity
term. We set those parameters experimentally to µ = 0.9 and λ = 0.5.

After the transformation to the latent space, the SoN images with an average scenicness score
lower than 2 (unscenic) and higher than 7 (scenic) were mapped to the latent space. To explore new
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concepts related to scenicness, we again used Kendall’s τ to get an understanding of the relation
between scenicness score and the transformed non-corresponding GloVe concepts, i.e., concepts that
do not appear in the Broden dataset. Table 2 shows the 10 new concepts with the largest positive
and negative correlation. In which the ‘training neighbor’ column indicates the most similar concept
from Broden.

To get insights on the semantics captured by the alignment in the latent space, several concepts are
visualised in Figures 8 and 9. The figures show SoN and Broden images for the concept of interest with
the highest concept score computed in the latent space. While the interpretation of the images is subject
to interpretation bias, the visual examples in Figure 8 suggest that the new concept representations
in the latent space capture the right semantics. For example, the concept outcrop mainly shows rock
formations near coastal areas, thatched shows buildings with thatched roofs and arctic shows snowy
environments including water (its training concept was ocean) but the captured semantics differ from
those shown by snow. These results suggest that the new concepts, for which no visual ground truth
is available, are able to capture the correct visual cues by leveraging their connection to other concepts.

In order to investigate some cases more in detail, we have chosen four Broden concepts and show
the images in Broden and SoN that are the most aligned with them and with their GloVe neighbours.
In particular, we display the four GloVe neighbours, among the total of 10 used, that obtain the highest
average concept score for the top 5% highest scoring images. The first row is composed by images
aligned with the training concept in the latent space and the following rows by images aligned with
neighboring concepts from GloVe.

Table 2. Top 10 new concepts from GloVe positively (left) and negatively (right) correlated with
scenicness in the latent space.

Rank Concept Training Correlation Rank Concept Training Correlation
Neighbor

1 outcrop islet 0.54 1 refrigerated refrigerator −0.52
2 archipelago island 0.54 2 expressway highway −0.51
3 uninhabited islet 0.53 3 supported bush −0.51
4 wilderness forest 0.52 4 brakes wheel −0.50
5 rocky mountain 0.52 5 concourse mezzanine −0.50
6 foothills mountain 0.52 6 closed shed −0.49
7 arctic ocean 0.51 7 profits net −0.48
8 bass guitar 0.50 8 undies bedclothes −0.48
9 rugged mountain 0.50 9 console dashboard −0.48
10 unpopulated islet 0.50 10 plastered poster −0.48

For several concepts the subtle semantics seem to be captured in the latent space which can
provide hints to possible new concepts relevant to scenicness. For example, Figure 10 illustrates
visual examples of SoN and Broden images related to the newly discovered concepts that are close
to the training concept cottage. The new concepts thatched and ranch show an increased scenicness
correlation and their corresponding SoN and Broden images seem to capture the right semantics.
Figure 11 provides similar illustrations for ocean. The new concept coastline seems represented
by matching images and even for coral, a concept which is not present in SoN, the most aligned
images portray beach and rocky reef scenes reminiscent of environments where coral reefs do occur.
In Figure 12 it is noteworthy that foothills and mountains show similar Broden images, while the SoN
images tend to show gentler hills for foothills and both new concepts have a relatively high positive
correlation in the latent space. The concept driveway, shown in Figure 13, has a negative correlation
with scenicness in the latent space. Interestingly, its neighboring concept gravel seems to be positive
related to scenicness.
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ScenicOrNot images ↓ Broden images ↓

Outcrop
(Islet)

Archipe-
lago
(Island)

Ravine
(Embank-
ment)

Thatched
(Cottage)

Arctic
(Ocean)

Canyon

Highway

Snow

Aqueduct

Ocean

Figure 8. Examples of concepts for which the alignment resulted in clear image representations.
For each concept, the left images show the 4 SoN images with the highest concept score in the latent
space and the images of the right show the 4 Broden images with the highest corresponding concept
score in the latent space. The first five concepts are from GloVe and their training neighbor is shown
between parenthesis, the bottom five concepts are training neighbors.
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ScenicOrNot images ↓ Broden images ↓

Boulevard
(Plaza)

Novel
(Book)

Brakes
(Wheel)

Console
(Dash-
board)

Profits
(Net)

Guitar

Roundabout

Village

Staircase

Campsite

Figure 9. Examples of concepts for which the alignment resulted in inaccurate image representations.
For each concept, the left images show the 4 SoN images with the highest concept score in the latent
space and the images of the right show the 4 Broden images with the highest corresponding concept
score in the latent space. Each concept’s training neighbor is shown between parenthesis.
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ScenicOrNot images ↓ Broden images ↓

Cottage
(Broden)
(0.081)

Bungalow
(-0.341)

Thatched
(0.202)

Farmhouse
(0.061)

Ranch
(0.283)

Figure 10. Closest images for cottage, a concept that has been trained with visual examples from
Broden (top row) and its corresponding neighboring concepts from GloVe. Each concept shows its
correlation with scenicness in the latent space.

ScenicOrNot images ↓ Broden images ↓

Ocean
(Broden)
(0.479)

Coastline
(0.455)

Coral
(0.494)

Islands
(0.470)

Arctic
(0.507)

Figure 11. Closest images for ocean, a concept that has been trained with visual examples from Broden
(top row) and its corresponding neighboring concepts from GloVe. Each concept shows its correlation
with scenicness in the latent space.
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ScenicOrNot images ↓ Broden images ↓

Canyon
(Broden)
(0.479)

Foothills
(0.515)

Mountains
(0.504)

Wilderness
(0.516)

Springs
(0.432)

Figure 12. Closest images for canyon, a concept that has been trained with visual examples from
Broden (top row) and its corresponding neighboring concepts from GloVe. Each concept shows its
correlation with scenicness in the latent space.

ScenicOrNot images ↓ Broden images ↓

Driveway
(Broden)
(-0.248)

Sidewalks
(-0.411)

Gravel
(0.210)

Porch
(-0.329)

Walkway
(-0.393)

Figure 13. Closest images for driveway, a concept that has been trained with visual examples from
Broden (top row) and its corresponding neighboring concepts from GloVe. Each concept shows its
correlation with scenicness in the latent space.

4.4. Main Limitations of the Approach

Figure 9 suggests that new concepts need to be carefully inspected before being added to the
visual dataset. We found that some of the new concepts do not capture the expected visual patterns.
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Most of the inaccurate image representations can be explained by two limitations: (1) the absence of
the visual concept in the SoN images or (2) a mismatch between the meaning of the visual Broden
concepts and the corresponding GloVe embeddings, for instance due to polysemia.

The first limitation becomes evident when evaluating indoor-related concepts. The SoN dataset
contains exclusively outdoor scenes, while Broden contains both indoor and outdoor images. As such,
SoN does not have images containing most indoor concepts. For example, console in Figure 9 seems to
capture reasonable semantics, as suggested by the most active images in Broden. However, due to
the lack of indoor images in SoN, it is mostly activated by shopfronts, arguably the most visually
similar elements to consoles in the SoN dataset, resulting in the concept being negatively correlated
with scenicness. This also shows for staircase, the Broden images show staircases while SoN images
seem mostly building-related. Brakes is a good example of a specific concept for which both Broden
and SoN do not have clear image representations, but the images do suggest that the semantics are
related to streets and cars. Thus, the concept is not necessarily inaccurate, the image datasets only do
not contain images to clearly visualise the concept.

The second limitation is a ‘translation error’ between the visual Broden concept and its
corresponding word embedding. This introduces unexpected concepts to be related to scenicness
and it also contaminates concept representations in the latent space. The translation error is caused by
concepts having multiple definitions, for example net (in Figure 9), which was related to, e.g., a volleyball
net in Broden, in GloVe was related to money and business thus introducing profits as a new concept.
Table 3 shows several concepts with polysemia in which the GloVe neighbours are related to a different
meaning than the one assumed in Broden. For instance, the visual concept rock is related to geology in
Broden, and still is after the alignment, as seen in Figure 14, while in GloVe rock is related the music genre,
introducing music related concepts. The images clearly show that the neighboring concepts are unrelated
to the initial semantics of the Broden concepts. The concept bush, although related to small trees in
Broden, is pulled away from this meaning after the alignment. The images most aligned with this concept
and several of their neighboring concepts are visualised in and Figure 15. Besides the mismatch in
meaning resulting in unexpected new concepts, this also reduces the quality of the alignment, resulting in
an invalid bush visual concept even if it is originally present in Broden.

Table 3. Concepts can show a mismatch in meaning between the visual concept in Broden and its
corresponding embedding in GloVe. The top row concept is from Broden, the other concepts are
neighbors from GloVe. Bush is related to vegetation in Broden while in GloVe it is related to the
American president, net is related to, e.g., a volleybal net while in GloVe it is related to money and
business, rock is related to geology in Broden while in GloVe it is related to music and coach is related
to transportation in Broden while in GloVe it is related to sports.

Bush Net Rock Coach

gore profit band coached
w. quarter punk coaches

administration profits pop coaching
republicans earnings bands team

aides income album football
democrats revenue rocks basketball

dole revenues music assistant
president drop singer manager

presidential billion albums players
republican pretax songs teammates
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ScenicOrNot images ↓ Broden images ↓

Rock
(Broden)
(0.292)

Bands
(0.279)

Pop
(0.243)

Punk
(-0.172)

Singer
(0.277)

Figure 14. Closest images for rock, a concept that has been trained with visual examples from Broden
(top row) and its corresponding neighboring concepts from GloVe. Each concept shows its correlation
with scenicness in the latent space.

ScenicOrNot images ↓ Broden images ↓

Bush
(Broden)
(-0.258)

Democrats
(-0.389)

Dole
(-0.269)

Gore
(-0.141)

Republicans
(-0.327)

Figure 15. Closest images for bush, a concept that has been trained with visual examples from Broden
(top row) and its corresponding neighboring concepts from GloVe. Each concept shows its correlation
with scenicness in the latent space.

5. Conclusions

We propose a methodology to explore a broad range of concepts that relate to landscape scenicness
by using Concept Activation Vectors (CAVs) computed from a visual dataset of generic concepts
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(the Broden image dataset). Furthermore, we explore the use of cross-domain manifold alignment to
enlarge the concepts space with a corpus made of word embeddings.

Our results show that, using relatively few images, it is possible to determine a CAV that
generalizes well and is able to detect the concept on new images. On average, using 40 images
representing the concept already results in the best attainable accuracy, which was 85–95% for the
majority of the tested concepts. Next, by linking the CAVs to the SoN scenicness we showed that,
in line with previous research, nature related concepts contribute to higher scenicness in landscapes,
while man-made related concepts tend to contribute to unscenic landscapes. Finally, we expanded the
set of CAVs by aligning the Broden visual CAVs to their corresponding word embeddings in the GloVe
domain via cross-domain manifold alignment method. Through this alignment, it became possible to
search the GloVe space to find new interesting concepts for scenicness.

Our results have shown the potential as well as the limitations of aligning a visual domain with a
text domain in a latent space. While not all concepts from the GloVe dataset can be linked to scenicness
through this alignment, our results do suggest that the alignment is able to capture semantics which can
provide new concepts without any training visual examples. At the same time, we have found that the
polysemous nature of the word embedding representations are one of the main hurdles to overcome
in order to ensure the usefulness of the proposed methodology. This leads us to believe that explicitly
accounting for polysemy in word embeddings would be an interesting direction for future research.
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