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Abstract: In the real world, structured data are increasingly represented by graphs. In general,
the applications concern the most varied fields, and the data need to be represented in terms of local
and spatial connections. In this scenario, the goal is to provide a structure for the representation of a
digital image, called the Attributed Relational SIFT-based Regions Graph (ARSRG), previously
introduced. ARSRG has not been described in detail, and for this purpose, it is important to
explore unknown aspects. In this regard, the goal is twofold: first, to provide a basic theory,
which presents formal definitions, not yet specified above, clarifying its structural configuration;
second, experimental, which provides key elements about adaptability and flexibility to different
applications. The combination of the theoretical and experimental vision highlights how the ARSRG
is adaptable to the representation of the images including various contents.

Keywords: graph-based image representation and analysis; image classification; kernel method;
graph matching; graph embedding; bag of graph words

1. Introduction

Among issues related to human vision, the processing of visually complex entities is one of the
most important. The processing of information is often based on local-to-global or global-to-local
connections [1]. The local-to-global concept concerns the transitions from local details of scene to
a global configuration, while global-to-local works in the reverse order, from global configuration
towards the details. For example, an algorithm for face recognition, which uses the local-to-global
approach, starts with eyes, nose, and ears recognition and, finally, brings face configuration. Differently,
a global-to-local algorithm first identifies the face, which leads to the identification of details (eyes, nose,
and ears). During the task of human recognition, the global configuration of a scene plays a key role,
especially when subjects see the images for a short duration of time. Furthermore, humans leverage
local information as an effective way to recognize scene categories. Higher level visual perception
theories distinguish individual elements at the local and global level, in which the information on
many local components is perceptually grouped [2]. Nodes and edges in a graph representation encode
information with the purpose to highlight relations among raw data. Many fields such as computer
vision and pattern recognition adopt data graph representations and related manipulation algorithms.
Specifically, in the image processing field, graphs are used to represent digital images in many ways.
The standard approach concerns partitioning of the image into dominant disjoint regions, where local
and spatial features are respectively nodes and edges. Local features describe the intrinsic properties
of regions (such as shape, colors, texture), while spatial features provide topological information about
the neighborhood. Image representation is one of the crucial steps for systems working in the image
retrieval field. Modern Content-Based Image Retrieval (CBIR) systems consider essentially the image’s
basic elements (colors, textures, shapes, and topological relationships) extracted from the entire image,
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in order to provide an effective representation. Through the analysis of these elements, compositional
structures are produced. Other systems, called Region-Based Image Retrieval [3] (RBIR), focus their
attention on specific image regions instead of the entire content to extract features. In this paper, a graph
structure for image representation, called Attributed Relational SIFT-based Regions Graph (ARSRG),
is described, analyzed, and discussed with reference to previous works [4–7]. There are two main parts:
examination of the structure, through the definition of its components, and the collection and analysis
of the previously obtained results. The main goal of ARSRG is to create a connection between local
and global features in the image through a hierarchical description. Global features are extracted using
a segmentation technique, while local features are based on a Local Invariant Feature Extraction (LIFE)
method. The structure provides different information arising from image regions, topological relations
among them, and local invariant features. In order to extract stable descriptors (robust to deformations),
SIFT features have been selected among all LIFE methods, as they extract salient points of an image in
the scale-space. Moreover, new definitions and properties arising from the detailed analysis of the
structure are introduced. This theoretical analysis, based on the introduction of different definitions,
has been helpful to go into the main and secondary components of ARSRG, with the purpose to better
understand the phases of construction and comparison. Finally, through a wide experimental phase,
how the structure is adaptable to different types of application contexts is shown. The latter involved
a collection and a depth analysis of results previously obtained in different fields both in terms of
image content and application. It was a crucial phase because the goal was to identify the common
aspects that mainly supported the theoretical basis. The paper is organized as follows: Section 2
includes a related research about graph-based image representation including Scale-Invariant Feature
Transform (SIFT) [8]. Sections 3–5 are dedicated to ARSRG’s description, definitions, and properties.
Experimental results and conclusions are respectively reported in Sections 6 and 7.

2. Related Work

The literature reports many approaches that combine local and spatial information arising from
SIFT features. Commonly, a graph structure encodes information about keypoints located in a certain
position of an image. Nodes represent SIFT descriptors, while edges describe spatial relationships
between different keypoints.

In [9], a graph G1 represents a set of SIFT keypoints from the image I1 and is defined as:

G1 = (V1, M1, Y1) (1)

where vα ∈ V1 is a node related to a SIFT keypoint with position (p(α)1 , p(α)2 ), yα ∈ Y1 is the SIFT
descriptor attached to node vα, and M1 is the adjacency matrix. If M1 αβ = 1, the nodes vα and vβ are
adjacent, M1 αβ = 0 otherwise.

In [10], the authors combined the local information of SIFT features with global geometrical
information in order to estimate a robust set of feature matches. This information is encoded using
a graph structure:

G0 = (V0, B, Y) (2)

where v ∈ V0 is a node associated with a SIFT keypoint, B is the adjacency matrix, Bv,v′ = 1 if the
nodes v and v′ are connected, Bv,v′ = 0 otherwise, while yv ∈ Y is the SIFT descriptor associated with
node v.

In [11], nodes were associated with N image regions related to an image grid, while edges
connect each node with its four neighbors. Basic elements are not pixels, but regions extended in the x
(horizontal) and y (vertical) directions. The nodes are identified using their coordinates on the grid.
The spatial information associated with nodes is indices dn = (xn, yn). Furthermore, a feature vector
Fn is associated with the corresponding image region and, then, with a node. The image is divided
into overlapping regions of 32 × 32 pixels. Four 128-dimensional SIFT descriptors, for each region,
are extracted and concatenated.
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In [12], the graph-based image representation included SIFT features, MSER [13],
and Harris-affine [14]. Given two graphs GP = (VP, EP, AP) and GP = (VQ, EQ, AQ), representing
images IP and IQ, V is the set of nodes, image features extracted, E the set of edges, features’
spatial relations, and A the set of attributes, information associated with features extracted.

In [15], SIFT features were combined in the form of a hyper-graph. A hyper-graph G = (V, E, A)

is composed of nodes v ∈ V, hyper-edges e ∈ E, and attributes a ∈ A related to hyper-edges.
A hyper-edge e encloses a subset of nodes with size δ(e) from V, where δ(e) represents the order of a
hyper-edge.

In [16], an approach to 3D object recognition was presented. The graph matching framework
is used in order to enable the utilization of SIFT features and to improve robustness. Different from
standard methods, test images are not converted into finite graphs through operations of discretization
or quantization. Then, the continuous graph space is explored in the test image at detection time.
To this end, local kernels are applied to indexing image features and to enable a fast detection.

In [17], an approach to the matching features problem with the application of scene recognition
and topological SLAM was proposed. For this purpose, the scene images are encoded using a
particular data structure. Image representation is built through two steps: image segmentation
using the JSEG [18] algorithm and invariant feature extraction with MSER and SIFT descriptors
in a combined way.

In [19], SIFT features based on visual saliency and selected to construct object models were
extracted. A Class Specific Hypergraph (CSHG) to model objects in a compact way was introduced.
The hypergraphs are built on different Delaunay graphs. Each one is created from a set of selected
SIFT features using a single prototype image of an object. Using this approach, the object models can
be represented through a minimum of object views.

The authors in [20] provided a solution to the object recognition problem representing images
through SIFT-based graph structural expression. A graph structure is created using lines to connect
SIFT keypoints. G = (V, E, X) represents the graph; the set E represents edges; the set V represents
vertices; and the set X the associated SIFT descriptors. The node represents a keypoint detected by
the SIFT algorithm, and the associated label is the 128-dimension SIFT descriptor. The edge eαβ ∈ E
connects two nodes uα ∈ V and uβ ∈ V. The graph can be defined as complete if all keypoints,
extracted from the image, are connected among them. Formally, the set of edges is defined as follows:

E =

{
eij | ∀i, j

‖ pi − pj ‖
√

σiσj
< λ

}
(3)

where p = (px, py) represents the keypoint spatial coordinates, σ its scale, and λ is a threshold value.
An edge does not exist when the value is greater than the threshold λ. In this way, an extra edge is not
created. This formulation of the proximity graph reduces the computational complexity and, at same
time, improves the detection performance.

In [21], the median K-nearest-neighbor(K-NN) graph GP = (VP, EP) was defined. A vertex vi for
each of the N points pi is created, with VP = v1, ..., vN . Furthermore, a non-directed edge (i, j) is
created when pj is one of the K closest neighbors of pi and ‖ pi − pj ‖≤ η. η is the median of all
distances between pairs of vertices and can be defined as:

η = median(l,m)∈VP×VP
||pl − pm|| (4)

During K-NN graph construction, a vertex pi can be considered completely disconnected if
there are no K vertices that support the structure. The graph GP has the N × N adjacency matrix AP,
where AP(i, j) = 1 when (i, j) ∈ EP and AP(i, j) = 0 otherwise.
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3. Attributed Relational SIFT-Based Regions Graph

In this section, the Attributed Relational SIFT-based Regions Graph (ARSRG) is defined based on
two main steps: feature extraction and graph construction. Feature extraction consists of Region of
Interest (ROI) extraction from the image through a segmentation algorithm. Connected components
in the image are then detected with the aim of building the Region Adjacency Graph (RAG) [22],
to describe the spatial relations between image regions. Simultaneously, SIFT [8] descriptors,
which ensure invariance to rotation, scaling, translation, illumination changes, and projective
transforms, are extracted from the original image. Graph construction consists of the building of the
graph structure. Three levels can be distinguished in ARSRG: root node, RAG nodes, and leaf nodes.
At the first level, the root node represents the image and is connected to all RAG nodes at the second
level. Adjacency relationships among different image regions are encoded through RAG nodes. Thus,
adjacent regions in the image are represented by connected nodes. In addition, each RAG node is
connected to the root node at the higher level. Finally, SIFT descriptors extracted from the image are
represented through leaf nodes. At the third level, two types of configurations can appear: region based
and region graph based. In the region-based configuration, a keypoint is associated with a region based
on its spatial coordinates, whereas the region graph-based configuration describes keypoints belonging
to the same region connected by edges (which encode spatial adjacency). Below, the steps of feature
extraction and graph construction are described in detail.

3.1. Feature Extraction

3.1.1. Region of Interest Extraction

ROIs from the image through a segmentation algorithm called JSEG [18] are extracted.
JSEG performs segmentation through two different steps: color quantization and spatial segmentation.
The first step consists of a coarse quantization without degrading the image quality significantly.
The second step provides a spatial segmentation on the class-map without considering the color
similarity of the related pixel.

3.1.2. Labeling Connected Components

The next step involves the labeling of connected components on the segmentation result.
A connected component is an image region consisting of contiguous pixels of the same color.
The process of connected components labeling an image B produces an output image LB that contains
labels (positive integers or characters). A label is a symbol naming an entity exclusively. Regions
connected by the four-neighborhood and eight-neighborhood will have the same label (represented in
Algorithms 1 and 2 by the variable m containing a numerical value). Algorithm 1 shows a version of
connected components’ labeling.

Algorithm 1 Connected components′ labeling.

Require: I - Image to Label;
Ensure: I - Image Labeled;

1: m=0
2: for y=1:I_size_y do

3: for x=1:I_size_x do

4: if I[i][j] == 0 then

5: m=m+1
6: Component Label(I, x, y, m)
7: end if
8: end for
9: end for

10: return I
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Algorithm 2 Component label.

Require: I - Image to Label; i, j - image index; l - label;
Ensure: �;

1: if I[i][j] == 0 then

2: I[i][j]=m
3: Component Label(I, i− 1, j− 1, m)
4: Component Label(I, i− 1, j, m)
5: Component Label(I, i− 1, j + 1, m)
6: Component Label(I, i, j− 1, m)
7: Component Label(I, i, j + 1, m)
8: Component Label(I, i + 1, j− 1, m)
9: Component Label(I, i + 1, j, m)

10: Component Label(I, i + 1, j + 1, m)
11: end if

3.1.3. Region Adjacency Graph Structure

The second level of the ARSRG hosts a graph-based image representation named the Region
Adjacency Graph (RAG) [22]. In Algorithm 3, a pseudocode version of the RAG algorithm is shown.
A region represents an elementary component of the image, based on the image segmentation result.
In the RAG, a node is a region, and an edge describes the adjacency between two nodes. RAG is built
with reference to spatial relations between regions. Two regions are defined to be spatially close if they
share the same boundary. In this regard, a neighborhood check of the labeled region is performed
between the label of the pixel under consideration, named pixel(i, j) in Lines 2–4, and the labels of the
pixels belonging to its neighborhood (the eight directions included in the eight-neighborhood). If the
latter contain a different label with respect to pixel(i, j), then this means that there are two adjacent
regions represented in the RAG. The RAG is defined as a graph G = (V, E), where nodes are regions
in V and edges E are the boundaries that connect them. G is encoded through the adjacency matrix,
Adjacency_matrix (Line 5), which describes the topology of the graph connections. For example,
if Adjacency_matrix(i, j) contains one, this means that the regions i, j will be connected in the image.
Moreover, one of the main properties of RAG is the invariance to translation and rotation, useful for a
high-level image representation.

Algorithm 3 Region adjacency graph.

Require: Labeled_image;
Ensure: Graph Structure (Adjacency_matrix);

1: Adjacency_matrix = 0

2: for pixel(i, j) ∈ Labeled_image do

3: for pixel(x, y) ∈ 8− neighborhood do

4: if pixel(i, j) 6= pixel(x, y) then

5: Adjacency_matrix(pixel(i, j), pixel(x, y)) = 1
6: end if
7: end for
8: end for
9: return Adjacency_matrix

3.1.4. Scale-Invariant Feature Transform

SIFT [8] descriptors are extracted to ensure invariance to rotation, scaling, translation,
partial illumination changes, and projective transform in the image description. SIFT is computed
during the feature extraction phase, through a parallel task with respect to RAG creation.
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3.2. Graph Construction

The ARSRG building process consists of the creation of three levels:

1. Root node: the node located at the first level of the graph structure and representing the image.
It is connected to all nodes at the next level.

2. Region Adjacency Graph (RAG) nodes: adjacency relations among different image regions
based on the segmentation result. Thus, adjacent image regions are represented by nodes
connected at this level.

3. Leaf nodes: The set of SIFT features extracted from the image. Two types of connections
are provided:

(a) Region based: A leaf node represents a SIFT keypoint obtained during feature extraction.
Each leaf node-keypoint is associated with a region based on its spatial coordinates in the
image. At this level, each node is connected to just one RAG higher level node (Figure 1a).

(b) Region graph based: In addition to the previous configuration, leaf nodes-keypoints
belonging to the same region are connected by edges, which encode spatial adjacency,
based on thresholding criteria (Figure 1b).

(a)

(b)

Figure 1. Region-based (a) and region graph-based (b) configurations. RAG, Region Adjacency Graph.

4. Formal Definitions

This section introduces detailed definitions for the purpose of formally fixing the ARSRG structure.
Definitions 1 and 2 describe the components related to the two configurations (as shown in Figure 1).
Definitions 3 and 4 define the sets of attributes associated with the nodes, through the functions
introduced by Definitions 5 and 6, of the second and third level. Definitions 7 and 8 introduce
connection structures for SIFTs. From Definitions 9 to 11, different types of edges between the levels
are described. Finally, Definitions 12 and 13 include the support structures for the second and third
level. The ARSRG structure is defined based on two leaf node configurations.
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Definition 1. ARSRG1st (first leaf nodes’ configuration): G is defined as a tuple G =

(Vregions, Eregions, VFSIFT , Eregions−SIFT), where:

• Vregions, the set of region nodes.
• Eregions ⊆ Vregions ×Vregions, the set of undirected edges, where e ∈ Eregions and e = (vi, vj) is an edge

that connects nodes vi, vj ∈ Vregions.
• VFSIFT , the set of SIFT nodes.
• Eregions−SIFT ⊆ Vregions × VFSIFT , the set of directed edges, where e ∈ Eregions−SIFT and e = (vi, v f j)

is an edge that connects source node vi ∈ Vregions and destination node v f j ∈ VFSIFT .

Definition 2. ARSRG2nd (second leaf nodes’ configuration): G is defined as a tuple
G = (Vregions, Eregions, VFSIFT , Eregions−SIFT , ESIFT), where:

• Vregions, the set of region nodes.
• Eregions ⊆ Vregions ×Vregions, the set of undirected edges, where e ∈ Eregions and e = (vi, vj) is an edge

that connect nodes vi, vj ∈ Vregions

• VFSIFT , the set of SIFT nodes.
• Eregions−SIFT ⊆ Vregions × VFSIFT , the set of directed edges, where e ∈ Eregions−SIFT and e = (vi, v f j)

is an edge that connects source node vi ∈ Vregions and destination node v f j ∈ VFSIFT .
• ESIFT ⊆ VFSIFT × VFSIFT , the set of undirected edges, where e ∈ ESIFT and e = (v fi, v f j) is an edge

that connect nodes v fi, v f j ∈ VSIFT

ARSRG structures, first and second leaf node configuration, are created based on
Definitions 1 and 2. The nodes belonging to sets Vregions and VFSIFT are associated with features
extracted from the image. In particular:

Definition 3. Fregions is a set of vector attributes associated with nodes in Vregions. An element, fi ∈ vi,
is associated with a node of the ARSRG structure at the second level. It contains the region dimension (pixels).

Definition 4. FSIFT is a set of vector attributes associated with nodes in VFSIFT . An element, fi ∈ v fi,
is associated with a node of the ARSRG structure at the third level. It contains a SIFT descriptor.

The association between features and nodes is performed through assignment functions defined
as follows:

Definition 5. The node-labeling function Lregions assigns a label to each node v ∈ Vregions of the ARSRG at the
second level. The node label is a feature attribute di extracted from the image. The label value is the dimension
of the region (pixels number). The labeling procedure of a v node occurs during the process of the ARSRG
construction.

Definition 6. The SIFT node-labeling function LSIFT assigns a label to each node v f ∈ VFSIFT of the ARSRG
at the third level. The node label is a feature vector fi, the keypoint, extracted from the image. The labeling
procedure of a v f node checks the position of the keypoint in the image compared to the region to which it belongs.

Furthermore, the RAG nodes ∈ Vregions are doubly linked in horizontal order, among them,
and in vertical order, with nodes ∈ VFSIFT . Edges ∈ Eregions are all undirected from left to right,
while edges ∈ Eregions−SIFT are all directed from top to bottom. The root node maintains a list of edges
outgoing to RAG nodes. Furthermore, each RAG node maintains three linked lists of edges: one for
outgoing from RAG nodes, one for outgoing from leaf nodes, and one for ingoing to the root node. Finally,
each leaf node maintains two linked lists of edges: one for ingoing to RAG nodes and one for outgoing
from leaf nodes. The edges in each list are ordered based on the distances between end nodes: shorter
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edges come first. These lists of edges have direct geometrical meanings: each node is connected to
another node in one direction: left, right, top, and bottom.

A very important aspect concerns the organization of the third level of the ARSRG structure.
To this end, the SIFT Nearest-Neighbor Graph (SNNG) is introduced.

Definition 7. An SNNG = (VFSIFT , ESIFT) is defined as:

• VFSIFT : the set of nodes associated with SIFT keypoints;
• ESIFT : the set of edges, where for each vi ∈ VFSIFT , an edge (vi, vip) if and only if dist(vi, vip) < τ exists.

dist(vi, vip) is the Euclidean distance applied to the x and y position of the keypoints in the image; τ is a
threshold value, and p stems from one to k, k being the size of VFSIFT .

This notation is very useful during the matching phase. Indeed, each SNNG indicates the set
of SIFT features belonging to the image region, with reference to Definition 2, and represents SIFT
features organized from the local and spatial point of view. A different version of SNNG is called the
complete SIFT Nearest-Neighbor Graph (SNNGc).

Definition 8. An SNNGc = (VFSIFT , ESIFT) is defined as:

• VFSIFT : the set of nodes associated with SIFT keypoints;
• ESIFT : the set of edges, where for each vi ∈ VFSIFT , an edge (vi, vip) if and only if dist(vi, vip) < τ exists.

dist(vi, vip) is the Euclidean distance applied to the x and y position of keypoints in the image; τ is a
threshold value; and p stems from one to k, k being the size of VFSIFT . In this case, τ is greater than the
maximum distance between keypoints.

Another important aspect concerns the difference between vertical and horizontal relationships
among nodes in the ARSRG structure. Below, these relations, edges, are defined.

Definition 9. A region horizontal edge e, e ∈ Eregions, is an undirected edge e = (vi, vj) that connects nodes
vi, vj ∈ Vregions.

Definition 10. A SIFT horizontal edge e, e ∈ ESIFT , is an undirected edge e = (v fi, v f j) that connects nodes
v fi, v f j ∈ VSIFT .

Definition 11. A vertical edge e, e ∈ Eregions−SIFT , is a directed edge e = (vi, v f j) that connects nodes
vi ∈ Vregions and v f j ∈ VFSIFT from source node vi to destination node v f j.

As can be seen, horizontal and vertical edges connect nodes of the same and different levels,
respectively. Finally, these relations are represented through adjacency matrices defined below.

Definition 12. The binary regions’ adjacency matrix Sregions describes the spatial relations among RAG nodes.
An element sij defines an edge, e = (vi, vj), connecting nodes vi, vj ∈ Vregions. Hence, an element sij ∈ Sregions
is set to one if node vi is connected to node vj, zero otherwise.

Definition 13. The binary SIFT adjacency matrix SSIFT describes the spatial relations among leaf nodes.
An element sij defines an edge, e = (v fi, v f j), connecting nodes v fi, v f j ∈ VFSIFT . Hence, an element
sij ∈ SSIFT is set to one if node v fi is connected to node v f j, zero otherwise.

Figure 2 shows the two different ARSRG structures on a sample image.
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(a) (b)

(c) (d)

Figure 2. (a) Original image; (b) RAG composed of four regions; (c) region-based leaf node
configuration; (d) region graph-based leaf node configuration. The red points in (c,d) represent
SIFT keypoints belonging to regions, while the green lines in (d) represent the edges of the graph-based
leaf node configuration.

5. Properties

In this section, the ARSRG structure’s properties arising from the feature extraction and graph
construction steps are highlighted.

Region features and structural information: The main goal of the ARSRG structure is to connect
regional features and structural information. The first step concerns image segmentation in order to
extract ROIs. This is a step towards the extraction of semantic information from a scene. Once the
image has been segmented, the RAG structure is created. This feature representation highlights
individual regions and spatial relations existing among them.

Horizontal and vertical relations: The ARSRG structure presents two types of relations (edges)
between image features: horizontal and vertical. Vertical edges define the image topological structure,
while horizontal edges define the spatial constraints for node (region) features. Horizontal relations
(Definitions 9 and 10) concern ROIs and SIFT features located at the second level of the structure.
The general goal is to provide the information of spatial closeness, define spatial constraints on the
node attributes, and characterize the feature map of a specific resolution level (detail) on a defined
image and that can be differentiated according to the computational complexity and the occurrence
frequency. Their order is in the range {1, . . . , n}, where n is the number of features specified through the
relations. In a different way, vertical relations (Definition 11) concern connections between individual
regions and their features. The vertical directed edges connect nodes among the second and third
levels of ARSRG (RAG nodes to leaf nodes) and provide a parent-child relationship. In this context,
the role of the ARSRG structure is to create a bridge between the defined relations. This aspect leads to
some advantages, i.e., the possibility to explore the structure both in breadth and in depth during the
matching process.
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Region features invariant to point of view, illumination, and scale: Building local invariant
region descriptors is a hot topic of research with a set of applications such as object recognition,
matching, and reconstruction. Over the last few years, great success has been achieved in designing
descriptors invariant to certain types of geometric and photometric transformations. Local Invariant
Feature Extraction (LIFE) methods work in order to extract stable descriptors starting from a particular
set of characteristic regions of the image. LIFE methods were chosen, for region representation,
in order to provide invariance to certain conditions. These local representations, created by using
information extracted from each region, are robust to certain image deformations such as illumination
and viewpoint changing. The ARSRG structure includes SIFT features, identified in [23] as the most
stable representations between different LIFE methods.

Advantages due to detailed information located on different levels: The detailed image
description, provided by the ARSRG structure, represents an advantage during the comparison
phase. In a hierarchical way, the matching procedure explores global, local, and structural information,
within the ARSRG. The first step involves a filtering procedure for regions based on size. Small regions,
containing poor information, are removed. Subsequently, the matching procedure goes to the next
level of the ARSRG structure, analyzing features of single regions to obtain a stronger match. The goal
is to solve the mapping on multiple SNNGs (Definition 7) of the ARSRGs. In essence, this criterion
identifies partial matches among SNNGs belonging to ARSRGs. During the procedure, different
combinations of graph SNNGs are identified, and a hierarchy of the matching process is constructed.
In this way, the overall complexity is reduced, which is expected to show a considerable advantage
especially for large ARSRGs.

Advantages due to matching region-by-region: Region-Based Image Retrieval (RBIR) [24]
systems work with the goal of extracting and defining the similarity between two images based
on regional features. It has been demonstrated that users focus their attention on specific regions
rather than the entire image. Region-based image representation has proven to be more close to human
perception. In this context, in order to compare the ARSRG structures, a region matching scheme based
on the appearance similarities of image segmentation results can be adopted. The region matching
algorithm exploits the regions provided by segmentation and compares the features associated
with them. The pairwise region similarities are computed from a set of SIFT features belonging
to regions. The matching procedure is asymmetric. The input image is segmented into regions, and its
groups of SIFT keypoints can be matched within a consistent portion of the other image. In this way,
the segmentation result is used to create regions of candidate keypoints, avoiding incompatible regions
for two images of the same scene.

False matches’ removal: One of the main issues of LIFE methods concerns the removal
of false matches. It has been shown that LIFE methods produce a number of false matches,
during the comparison phase, that significantly affect accuracy. The main reason concerns the lack of
correspondence among image features (for example due to partial background occlusion of the scene).
Standard similarity measures, based on the features’ descriptor, are widely used, even if they rely
only on region appearance. In some cases, it cannot be sufficiently discriminating to ensure correct
matches. This problem is more relevant in the presence of low or homogeneous textures and leads
to many false matches. The application of the ARSRG structure provides a solution for this problem.
In order to reduce false matches, small ARSRG region nodes and the associated SIFT descriptors are
removed. Indeed, small regions and their associated features are not very informative, neither in
image description nor matching. The ratio test [8] or graph matching [25] can be applied to perform a
comparison among remaining regions. This filtering procedure has a strong impact on experiments,
resulting in a relevant accuracy improvement.
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6. Experimental Results

This section provides experimental results arising from different application fields. In particular:

1. Graph matching [4]: The ARSRG is adopted to address the art painting retrieval problem.
The ARSRG similarities, exploiting local information and topological relations, are measured
through a graph matching algorithm.

2. Graph embedding [5]: The ARSRG is adopted to effectively tackle the object recognition problem.
A framework to embed graph structures into the vector space is built;

3. Bag of graph words [6]: A vector encoding a histogram, the frequency of ARSRGs, for image
representation within the classification task is adopted.

4. Kernel graph embedding [7]: The ARSRG is adopted to effectively tackle the imbalanced
classification problem. The Kernel Graph Embedding on Attributed Relational Scale-Invariant
Feature Transform-based Regions Graph (KGEARSRG) provides a vector-based image
representation.

6.1. Graph Matching

This section reviews the results previously obtained in [4]. Three datasets are adopted
to compare the ARSRG with the LIFE methods, graph matching algorithms, and a CBIR
system. The first dataset, described in [26], is obtained by the union of images of Olga’s
gallery (http://www.abcgallery.com/index.html) and Travel Webshots (http://travel.webshots.com).
The second dataset, described in [27], is obtained by painting photos taken from the Cantor Arts Center
(http://museum.stanford.edu/). The third dataset, described in [28], contains 1002 images. Figure 3
shows some examples.

(a) (b)

Figure 3. In (a,b) some examples of art painting are reported.

Discussion

LIFE methods are compared on the dataset adopted in [26] and in terms of the Mean Reciprocal
Rank (MRR). Being an experiment based on punctual features, the goal is to find a solution to the false
positives problem during the matching phase, which is typical of this field. Table 1 provides the best
results reached by the ARSRG. The improvement is connected to the topological relationships among
features and the filtering over the complete set of features extracted from the image. Indeed, with the
purpose to discard many false matches, descriptors belonging to regions are compared instead of the
entire image, as proposed in standard approaches. The best values for the ρ parameter, which controls
the tolerance of false matches both in graph matching and the ratio test, are found through a tuning

http://www.abcgallery.com/index.html
http://travel.webshots.com
http://museum.stanford.edu/
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procedure, as described in [8,26] (0.6 and 0.7 were accepted in [26], while values greater than 0.8 were
rejected in [8]; ρ values of 0.7 and 0.8 are optimal for the ARSRG matching).

Table 1. Quantitative comparison using the Mean Reciprocal Rank (MRR) measure among SIFT [8],
SURF [29], ORB [30], FREAK [31], BRIEF [32], and the Attributed Relational SIFT-based Regions Graph
(ARSRG) matching on the dataset in [26].

ρ SIFT SURF ORB FREAK BRIEF ARSRG1st ARSRG2nd

0.6 0.7485 0.8400 0.6500 0.3558 0.4300 0.6700 0.6750
0.7 0.7051 0.6800 0.6116 0.3360 0.3995 0.7133 0.7500
0.8 0.6963 0.5997 0.5651 0.2645 0.4227 0.6115 0.8000

Precision and recall are adopted to measure the performance on the dataset in [27]. As can be
seen in Table 2, the SIFT-based approach is better in terms of recall. Differently, the ARSRG matching
yields comparable results with ρ equal to 0.8. In contrast, the ARSRG matching, in Table 3, is the
best approach in terms of precision with ρ equal to 0.6, 0.7, and 0.8. The results are obtained as the
consequence of the application of the image structural representation. Indeed, the ARSRG nodes,
the image regions, provide a partitioning rule across the entire SIFT set. In this way, the subsets are
selected separately during the processing. This strategy removes most of the false matches with the
purpose to discard several images as candidates for the final ranking.

Table 2. Quantitative comparison, using the recall measure, among SIFT [8], SURF [29], ORB [30],
FREAK [31], BRIEF [32], and the ARSRG matching on the dataset in [27].

ρ SIFT SURF ORB FREAK BRIEF ARSRG1st ARSRG2nd

0.6 1.0 0.8666 0.8000 0.7333 0.7666 0.7333 0.7333
0.7 1.0 0.9000 0.8666 0.7333 0.8666 0.7666 0.7333
0.8 1.0 1.0 1.0 0.8333 1.0000 0.8000 0.8000

Table 3. Quantitative comparison using the precision measure, among SIFT [8], SURF [29], ORB [30],
FREAK [31], BRIEF [32], and the ARSRG matching on the dataset in [27].

ρ SIFT SURF ORB FREAK BRIEF ARSRG1st ARSRG2nd

0.6 0.0674 0.0820 0.2051 0.05584 0.10689 1.0 1.0
0.7 0.0401 0.0441 0.0742 0.04671 0.05664 1.0 1.0
0.8 0.0312 0.0338 0.0348 0.04072 0.03452 1.0 1.0

The datasets described in [26,28] are adopted for graph SIFT-based matching algorithms’
comparisons (HGM [15], RRWGM [33], TM [34]). Results, in term of MRR, are reported in
Tables 4 and 5. Again, the ARSRG reaches better results by adopting the region matching approach.
It provides false matches’ removal and hence improves the final results. The critical point of the graph
matching problem concerns the correspondence rule among nodes to be associated with and belonging
to different sets, represented by the images to be compared. In the standard case, the choice falls on
two whole sets. Differently, the ARSRG provides partitioning and thinning of the main set of features,
extracted from the entire image, providing an improvement in performance and execution time.

Table 4. Quantitative comparison, using the MRR measure, among the HGM [15], RRWGM [33],
and TM [34] algorithms and the ARSRG matching on the dataset in [26].

HGM RRWGM TM ARSRG1st ARSRG2nd

0.2600 0.1322 0.1348 0.6115 1.0
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Table 5. Quantitative comparison, using the MRR measure, among the HGM [15], RRWGM [33],
and TM [34] algorithms and the ARSRG matching on the dataset in [28].

HGM RRWGM TM ARSRG1st ARSRG2nd

0.1000 0.0545 0.0545 0.20961 0.39803

Table 6 describes the performance comparison, on the dataset presented in [26] and in terms
of MRR, with the Lucene Image Retrieval (LIRe) [35] system and related features: MPEG7 [36],
Tamura [37], CEDD [38], FCTH [39], ACC [40]. The LIRe system proves unsuitable for art paint retrieval
as shown by the poor performance. This behavior consists of a bad discrimination of relevant and
irrelevant images with a final ranking containing inadequate results. Differently, the ARSRG proves
to be very suitable for the problem faced. Surely, the aspect that provides a surge in performance is
linked to the dual information, local and structural, included in the ARSRG. In this way, the content of
the image is described with respect to the relation of its parts. Otherwise, it happens with the features
adopted by LIRe, which only provides localized information.

Table 6. Quantitative comparison using the MRR measure, among some features available in the
Lucene Image Retrieval (LIRe) [35] system and the ARSRG matching on the dataset in [26].

MPEG7 Tamura CEDD FCTH ACC ARSRG1st ARSRG2nd

0.2645 0.1885 0.2329 0.1924 0.1879 0.7133 0.7500

6.2. Graph Embedding

This section reviews the results previously obtained in [5]. The three datasets, different in size,
design, and topic, adopted to test the ARSRG are described below:

1. The Columbia Image Database Library (COIL-100) [41] is composed of 100 objects. Each object is
represented by 72 colored images that show it under different rotation points of view. The objects
were located on a black background.

2. The Amsterdam Library Of Images (ALOI) [42] is a color image collection composed of
1000 small objects. In contrast to COIL-100, where the objects are cropped to fill the full image,
in ALOI, the images contain the background and the objects in their original size. The objects
were located on a black background.

3. The ETH-80 [43] is composed of 80 objects from eight categories, and each object is represented by
41 different views, thus obtaining a total of 3280 images. The objects were located on a uniform
background.

Figure 4 reports some examples of objects.

(a) (b) (c) (d) (e) (f)

Figure 4. Example images from the Columbia Image Database Library (COIL-100) dataset (a,b),
the Amsterdam Library Of Images (ALOI) dataset (c,d), and the ETH-80 dataset (e,f).

Discussion

Results obtained on the ETH-80 database and the setup related to [44] are summarized in Table 7.
The training set is composed of 240 images, for each category (apples, cars, cows, cups, horses,
and tomatoes), 4 objects, and for each object, 10 different views. The testing set is composed of the
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remaining images, 60 per category (15 views per object). The results are achieved by Logistic Label
Propagation (LLP) [45] + Bag of Words (BoW) [46]) and those described in [44] by applying the
approaches in [47] (gdFil), in [48] (APGM), and in [49] (VEAM). The best performance, in Table 7,
is achieved by the ARSRG embedding adopting the LLP classifier. This case confirms that the ARSRG
embedding correctly deals with object view changes.

Table 7. Recognition accuracy on the ETH-80 database.

Method Accuracy

LLP+ARSRGemb 89.26%
LLP+BoW 58.83%

gdFil 47.59%
APGM 84.39%
VEAM 82.68%

Results obtained on the COIL-100 database with the setup related to [44,50] are summarized in
Table 8. In particular, the training set is composed of 11% of 25 of objects randomly selected, and the
remaining ones are the testing set. The results are achieved by Logistic Label Propagation (LLP) [45]
+ Bag of Words (BoW) [46]) and those described in [44,50] by applying their approach (VFSR) and
the approaches proposed in [47] (gdFil), in [48] (APGM), in [49] (VEAM), in [51] (DTROD-AdaBoost),
in [52] (RSW+boosting), in [53] (sequential patterns), and in [54] (LAF). In this case as well, the accuracy
of ARSRG embedding confirms its qualities.

Table 8. Recognition accuracy on the COIL-100 database.

Method Accuracy

LLP+ARSRGemb 99.55%
LLP+BoW 51.71%

gdFil 32.61%
VFSR 91.60%

APGM 99.11%
VEAM 99.44%

DTROD-AdaBoost 84.50%
RSW+Boosting 89.20%

Sequential Patterns 89.80%
LAF 99.40%

Results obtained on the ALOI database with the setup related to [55] are summarized in Table 9.
In particular, only the first 100 objects are adopted. Color images are converted to gray levels, and for
training, the second image of each class is adopted and the remaining for testing. A total of 200 images
are obtained, considering two images of each class. During each iteration, for each class, one additional
training image is attached. Table 9 shows only the results considering a batch of 400 images since
the intermediate results do not provide great differences. The results achieved by baseline Logistic
Label Propagation (LLP) [45] + Bag of Words (BoW) [46] and those obtained in [55] by applying
some variants of Linear Discriminant Analysis (ILDAaPCA, batchLDA, ILDAonK, and ILDAonL) are
reported. As can be seen, LLP+ARSRGemb performs with a small training set, and it is little affected
by overfitting problems.
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Table 9. Recognition accuracy on the ALOI database.

Method 200 400 800 1200 1600 2000 2400 2800 3200 3600

LLP+ARSRGemb 86.00% 90.00% 93.00% 96.00% 95.62% 96.00% 88.00% 81.89% 79.17% 79.78%
LLP+BoW 49.60% 55.00% 50.42% 50.13% 49.81% 48.88% 49.52% 49.65% 48.96% 49.10%
batchLDA 51.00% 52.00% 62.00% 62.00% 70.00% 71.00% 74.00% 75.00% 75.00% 77.00%

ILDAaPCA 51.00% 42.00% 53.00% 48.00% 45.00% 50.00% 51.00% 49.00% 49.00% 50.00%
ILDAonK 42.00% 45.00% 53.00% 48.00% 45.00% 51.00% 51.00% 49.00% 49.00% 50.00%
ILDAonL 51.00% 52.00% 61.00% 61.00% 65.00% 69.00% 71.00% 70.00% 71.00% 72.00%

Moreover, capturing local information and preserving the spatial relationships among them
provide a strong improvement of performance in the object recognition field. The only computational
overhead concerns the building of graph-based representation, while the classification can be
performed very quickly. Dimensionality reduction is of great importance, that is the transition
from a graph to a vector space. Essentially, there are three goals of embedding: first, to capture the
graph topology, node-to-node relationship, and other relevant information about the subgraphs of the
main structure; second, to reduce the speed of the process regardless of the size of the graph (graphs are
generally large, and a good approach must be efficient); third, to decide on the right dimensionality.
A longer vector representation retains more information while inducing greater complexity over
time and space than a more organized approach. It is important to find a balance according to the
requirements. In this case, the method first tries to preserve all the structural properties of ARSRGs and,
second, to take advantage of the tools included in the destination space. The embedding process allows
representing and analyzing information more easily as the vector space includes many processing
tools compared to the starting space.

6.3. Bag of ARSRG Words

This section reviews the results previously obtained in [6], named Bag of ARSRG Words (BoAW).
Same datasets described in Section 6.2 are adopted and, in addition, the dataset reported below:

• Caltech 101 [56]: This is an object image collection composed of 101 categories, with about 40 to
800 images per category. Most categories have about 50 images.

The classification stage is less difficult on the ALOI, COIL-100, and ETH-80 datasets because the
objects are represented on a simple background, unlike the Caltech 101 dataset, where images have an
uneven background. Figure 5 reports some examples of objects.

Discussion

The following setup, reported in [55] and the same as Table 9, is adopted: LLP [45] for classification
stage, the One-versus-All (OvA) paradigm for 30 executions, the shuffling operation on the training
and test set, image scaling on a size of 150× 150 pixels. Table 10 reports the accuracy results on the
ALOI dataset and achieved by Bag of Visual Words (BoVW) [46] and those obtained in [55] using some
variants of linear discriminant analysis (ILDAaPCA, batchLDA, ILDAonK, and ILDAonL) and in [5]
(ARSRGemb).
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(a) (b)

(c) (d)

Figure 5. Dataset images: (a) ALOI, (b) Caltech 101, (c) COIL-100, and (d) ETH-80.

Table 10. Results on the ALOI dataset. BoAW, Bag of ARSRG Words; BoVW, Bag of Visual Words.

Method 200 400 800 1200 1600 2000 2400 2800 3200 3600

BoAW 98.29% 92.83% 98.80% 96.80% 96.76% 98.15% 89.52% 82.65% 79.96% 79.88%
ARSRGemb 86.00% 90.00% 93.00% 96.00% 95.62% 96.00% 88.00% 81.89% 79.17% 79.78%

BoVW 49.60% 55.00% 50.42% 50.13% 49.81% 48.88% 49.52% 49.65% 48.96% 49.10%
batchLDA 51.00% 52.00% 62.00% 62.00% 70.00% 71.00% 74.00% 75.00% 75.00% 77.00%

ILDAaPCA 51.00% 42.00% 53.00% 48.00% 45.00% 50.00% 51.00% 49.00% 49.00% 50.00%
ILDAonK 42.00% 45.00% 53.00% 48.00% 45.00% 51.00% 51.00% 49.00% 49.00% 50.00%
ILDAonL 51.00% 52.00% 61.00% 61.00% 65.00% 69.00% 71.00% 70.00% 71.00% 72.00%

The best performance is reached by BoAW, which is able to adapt to object the recognition task.
Indeed, the main contribution is the combination of local and spatial information, which improves the
phases of image representation and matching.

Results obtained on the Caltech 101 dataset, for particular image categories (bowling, cake,
calculator, cannon, cd, chess-board, joy-stick, skateboard, spoon, and umbrella) and comparing with
BoVW based on pyramidal representation [46], are summarized in Table 11. The best average accuracy
is obtained with a split of 60/40% training and test set, respectively.

Table 11. Results on the Caltech 101 dataset.

Method Accuracy

BoAW 74.00%
BoVW 83.00%

It is easy to notice that the performance when images are composed of non-uniform backgrounds
is different. Due to this aspect, which distorts image representation and consequently affects the
classification phase, BoVW is more powerful than BoAW. A possible solution could be a segmentation
step, during the preprocessing, to isolate the uninformative background, with the purpose to work
exclusively on the object to be represented. This loophole is not always efficient because removing
the background in some cases is tricky. Table 12 provides the average accuracy on the COIL-100
dataset based on the same setup of Table 8. Therefore, the results are related to BoVW and those
obtained in [44,50] by applying their solution (VFSR) and the approaches proposed in [47] (gdFil),
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in [48] (APGM), in [49] (VEAM), in [51] (DTROD-AdaBoost), in [52] (RSW+boosting), in [53] (sequential
patterns), in [54] (LAF), and in [5] (ARSRGemb). Furthermore, this experiment confirms that BoAW
provides the best performance.

Table 12. Results on the COIL-100 dataset.

Method Accuracy

BoAW 99.77%
ARSRGemb 99.55%

BoVW 51.71%
gdFil 32.61%
VFSR 91.60%

APGM 99.11%
VEAM 99.44%

DTROD-AdaBoost 84.50%
RSW+Boosting 89.20%

Sequential Patterns 89.80%
LAF 99.40%

Table 13 shows the results on the ETH-80 dataset and the setup related to Table 7. In addition
to BoVW, accuracy is related to the tests achieved in [44] by employing the solution proposed
in [5] (ARSRGemb), [47] (gdFil), in [48] (APGM), and in [49] (VEAM). As can be seen, the view
point changes case does not affect the performance of BoAW compared to the competitors.

As can be noted, ARSRG is suitable for particular types of images where the background is
uniform. Specifically, the object to be represented can be considered as the foreground, while the
background represents irrelevant information. Feature points are not detected, or just a few, in scanning
the background of the image. The background is divided from the foreground, through a filtering
step, also because it usually does not contain distinctive feature points useful for object coding.
This procedure is always effective except for the Caltech 101 dataset, in which it fails, in some cases,
as shown by the performance.

Table 13. Results on the ETH-80 dataset.

Method Accuracy

BoAW 89.29%
ARSRGemb 89.26%

BoVW 58.83%
gdFil 47.59%

APGM 84.39%
VEAM 82.68%

6.4. Kernel Graph Embedding

This section reviews the results previously obtained in [7]. The classification performance
through Support Vector Machine (SVM) and Asymmetric Kernel Scaling (AKS) [57] over the standard
OvA setup on low, medium, and high imbalanced image classification problems is tested, with art
painting classification application [58]. The datasets adopted are the same described in Section 6.1.
Tables 14 and 15 show the settings for the classification problems. Notice that the last column includes
the Imbalance Rate (IR), the ratio of the percentage of images belonging to the majority class and the
minority class, calculated through Equation (5).

IR =
%maj
%min

(5)
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Table 14. One-versus-All (OvA) configuration for the dataset in [26].

Problem Classification Problem (%min, %maj) IR

1 Artemisia vs. all (3.00, 97.00) 32.33
2 Bathsheba vs. all (3.00, 97.00) 32.33
3 Danae vs. all (12.00, 88.00) 7.33
4 Doctor_Nicolaes vs. all (3.00, 97.00) 32.33
5 HollyFamilly vs. all (2.00, 98.00) 49.00
6 PortraitOfMariaTrip vs. all (3.00, 97.00) 32.33
7 PortraitOfSaskia vs. all (1.00, 99.00) 99.00
8 RembrandtXXPortrai vs. all (2.00, 98.00) 49.00
9 SaskiaAsFlora vs. all (3.00, 97.00) 32.33
10 SelfportraitAsStPaul vs. all (8.00, 92.00) 11.50
11 TheJewishBride vs. all (4.00, 96.00) 24.00
12 TheNightWatch vs. all (9.00, 91.00) 10.11
13 TheProphetJeremiah vs all (7.00, 93.00) 13.28
14 TheReturnOfTheProdigalSon vs. all (9.00, 91.00) 10.11
15 TheSyndicsoftheClothmakersGuild vs. all (5.00, 95.00) 19.00
16 Other vs. all (26.00, 74.00) 2.84

Table 15. The OvA configuration for the dataset in [4].

Problem Classification Problem (%min, %maj) IR

1 Class 4 vs. all (1.00, 9.00) 9.00
2 Class 7 vs. all (1.00, 9.00) 9.00
3 Class 8 vs. all (1.00, 9.00) 9.00
4 Class 13 vs. all (1.00, 9.00) 9.00
5 Class 15 vs. all (1.00, 9.00) 9.00
6 Class 19 vs. all (1.00, 9.00) 9.00
7 Class 21 vs. all (1.00, 9.00) 9.00
8 Class 27 vs. all (1.00, 9.00) 9.00
9 Class 30 vs. all (1.00, 9.00) 9.00

10 Class 33 vs. all (1.00, 9.00) 9.00

Discussion

AKS and standard SVM are compared in terms of the adjusted F-measure [59]. It can be seen in
Figure 6 that AKS outperforms standard SVM, and in order to reach noteworthy performance, a fine
tuning is needed. Differently, in Figure 7, the performance presents only a single peak of exceedance
with respect to SVM. Further comparisons have been performed with C4.5 [60], RIPPER [61], L2 loss
SVM [62], L2 regularized logistic regression [63], and Ripple-Down Rule learner (RDR) [64] on OvA
classification problems. Due to the distortion introduced by the imbalance rates, the results related to
the datasets are different. The dataset in [26], in which the configuration includes approximately low,
medium, and high rates, is great for a robust testing phase because it covers full cases of class imbalance
problems. Differently, for the dataset in [4], the imbalance rates are identical for all configurations.
Results are reported in Table 16, for the dataset in [26], and Table 17, for the dataset in [4]. It can be
noted that the performances are significantly higher than the competitors. In particular, the main
improvement, provided by AKS, concerns the accuracy of the classification of patterns belonging
to the minority class, positive, which, during the relevance feedback evaluation, have a greater
weight. Indeed, these latter are difficult to classify compared to patterns belonging to the majority
class, negative. The results reach a high level of correct classification due to two aspects. The first
involves the vector-based image representation, KGEARSRG, adopted. Graph kernels aim at bridging
the gap between the high representational power and the flexibility of graphs in terms of feature
vector representation. KGEARSRG provides a fixed-dimensional vector space image representation
in order to process the data for classification purposes. The second concerns the AKS method for the
classification stage. It has the intrinsic ability to more efficiently address classification problems that
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are extremely imbalanced. In other words, the AKS classifier retains the ability to correctly recognize
patterns originating from the minority class compared to the majority class.

(a) (b)

Figure 6. Parameter Choice 1. The x and y axes represent the values of the parameters of the two
methods, while on the z axis is plotted the Adjusted F-measure (AGF) for two of the OvA configurations
of the dataset in [26]: (a) Artemisia vs. all and (b) Danae vs. all. The gray and blue surfaces represent,
respectively, the results with the Asymmetric Kernel Scaling (AKS) and SVM classifiers.

(a) (b)

Figure 7. Parameter Choice 2. The x and y axes represent the values of the parameters of the two
methods, while on the z axis is plotted the AGF for two of the OvA configurations on the dataset in [4]:
(a) Class 4 vs. all and (b) Class 19 vs. all. The gray and blue surfaces represent, respectively, the results
with the AKS and SVM classifiers.

Table 16. Comparison results on the dataset in [26] and Table 14. RDR, Ripple-Down Rule learner.

AGF

Problem AKS C4.5 RIPPER L2-L SVM L2 RLR RDR

1 0.9414 0.5614 0.8234 0.6500 0.5456 0.8987
2 0.9356 0.8256 0.6600 0.8356 0.8078 0.7245
3 0.9678 0.8462 0.8651 0.4909 0.6123 0.7654
4 0.9746 0.8083 0.6600 0.4790 0.4104 0.6693
5 0.9654 0.7129 0.9861 0.8456 0.4432 0.6134
6 0.9342 0.5714 0.9525 0.8434 0.9525 0.5554
7 0.9567 0.6151 0.7423 0.5357 0.4799 0.6151
8 0.8345 0.4123 0.3563 0.7431 0.5124 0.7124
9 0.9435 0.9456 0.9456 0.8345 0.6600 0.6600

10 0.8456 0.4839 0.5345 0.4123 0.4009 0.5456
11 0.9457 0.9167 0.9088 0.9220 0.8666 0.9132
12 0.6028 0.5875 0.5239 0.4124 0.4934 0.5234
13 0.8847 0.7357 0.6836 0.7436 0.7013 0.5712
14 0.9376 0.9376 0.8562 0.8945 0.8722 0.8320
15 0.9765 0.8630 0.8897 0.8225 0.7440 0.8630
16 0.7142 0.5833 0.3893 0.4323 0.5455 0.5111



Mach. Learn. Knowl. Extr. 2020, 2 252

Table 17. Comparison results on the dataset in [4] and Table 15.

AGF

Problem AKS C4.5 RIPPER L2-L SVM L2 RLR RDR

1 0.9822 0.6967 0.5122 0.4232 0.4322 0.6121
2 0.9143 0.5132 0.4323 0.4121 0.4212 0.5323
3 0.9641 0.4121 0.4211 0.4213 0.3221 0.4323
4 0.9454 0.4332 0.1888 0.4583 0.3810 0.3810
5 0.9554 0.3810 0.2575 0.5595 0.3162 0.6967
6 0.9624 0.3001 0.1888 0.1312 0.3456 0.3121
7 0.9344 0.3810 0.5566 0.4122 0.4455 0.2234
8 0.9225 0.4333 0.1112 0.2575 0.1888 0.1888
9 0.9443 0.6322 0.1888 0.1888 0.6122 0.6641

10 0.9653 0.1897 0.5234 0.6956 0.1888 0.1121

7. Conclusions

In this paper, Attributed Relational SIFT-based Regions Graph (ARSRG), a structure for image
representation, is explored through the description and analysis of new aspects. Starting from previous
works and performing a thorough study, theoretical notions are introduced in order to clarify and
deepen the structural design of the ARSRG. It is demonstrated how the ARSRG can be adopted
in disparate fields such as graph matching, graph embedding, bag of graph words, and kernel
graph embedding with the applications of object recognition and art painting retrieval/classification.
The experimental results amply show how the performances on different datasets are better than
state-of-the-art competitors. Future developments certainly include the exploration of additional
application fields, the introduction of additional algorithms (mainly graph matching) to improve
performance comparison, and a greater enrichment of image features to include within the ARSRG.
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