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Abstract: This paper explores the value of weak-ties in classifying academic literature with the use
of graph convolutional neural networks. Our experiments look at the results of treating weak-ties
as if they were strong-ties to determine if that assumption improves performance. This is done by
applying the methodological framework of the Simplified Graph Convolutional Neural Network
(SGC) to two academic publication datasets: Cora and Citeseer. The performance of SGC is compared
to the original Graph Convolutional Network (GCN) framework. We also examine how node
removal affects prediction accuracy by selecting nodes according to different centrality measures.
These experiments provide insight for which nodes are most important for the performance of
SGC. When removal is based on a more localized selection of nodes, augmenting the network with
both strong-ties and weak-ties provides a benefit, indicating that SGC successfully leverages local
information of network nodes.
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1. Introduction

In addition to providing entertainment and social engagement, social networks also serve the
important function of rapidly disseminating scientific information to the research community. Social
media platforms such as ResearchGate and Academia.edu help authors rapidly find related work
and supplement standard library searches. Twitter not only serves as an important purveyor of
standard news [1] but also disseminates specialty news in fields such as neuroradiology [2]. Venerable
academic societies such as the Royal Society (@royalsociety) now have official Twitter accounts.
Shuai et al. [3] discuss the role of Twitter mentions within the scientific community and the citations that
create a topological arrangement between scientific publications. Given that scientific articles possess
the potential to change the landscape of technology, it is important to understand the information
transference properties of academic networks: can techniques originally developed for social networks
yield insights about scientific networks as well?

Pagerank [4] produced a revolution in the ability to search through the myriad of webpages by
examining the network structure for relevance. This concept has been applied to citation networks
in academic literature, which conceptually has many overlaps with the interlinking of websites,
and Ding et al. [5] apply the Pagerank algorithm to citations. The same first author extends this work
to investigate endorsement in the network as well [6]. Endorsement as a process produces an effect
that not only allows readers to navigate essential information, relevant overlaps or apply appropriate
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credit but also amplifies readership which is a dynamic seen frequently in online social processes.
These links are direct links and also referred to as strong-ties [7].

Indirect or weak-ties have also been identified as important in social networks, most notably in
Granovetter’s seminal work: “The strength of weak ties” [8]. These indirect edges can be created
through edges that span different communities (clusters of nodes) acting as ’bridges’. They can also be
the result of ’triangulation’ where ’friends-of-friends’ produce a link due to the common connection
they share. Figure 1 shows an example of a weak-ties connection between nodes A-C with a dotted
edge representing connectivity due to a shared connection with node B. It can be said that A-C are
connected from friends-of-friends, or triangulation creating a weak-tie. The work of [9] applies this
concept to predicting edge production in a social network of professional profiles and shows that the
explicit modeling of this triangulation dynamic leads to improved performance.

Figure 1. This figure illustrates how weak-ties can be produced through triangulation.

For our study on academic connections, we used two datasets, Cora [10] and Citeseer [11],
which are discussed in more detail in Section 3. In addition to network structure, these datasets
contain class labels, relating to the publication venues, which can be used to test machine learning
prediction algorithms. In datasets that exhibit homophily, utilizing the features of nodes within a
topological arrangement (an adjacency matrix) produces improved classification performance over
an instance only framework. Our investigation focuses on whether the explicit addition of weak
ties will assist the inference process since they provide assistance in other network based processes.
For instance, Roux et al. [12] investigate whether expertise within groups can cross the ’boundaries’
from communities which are cohesive due to strong-tie connections. The work of [13] considers how
differentiation of the edge types can improve the accuracy of social recommendations.

Determining the effect of interactions between nodes can be a time consuming process, which
requires computational resources to analyze large networks. With the goal of understanding how node
connections influence labels, various methodologies, such as [14], have been proposed where nodes
iteratively propagate information throughout the network until convergence is achieved. A notable
example of such is DeepWalk [15] which uses local information from truncated random walks
to learn the latent variable representations. Relational neighbor classifiers such as Social Context
Relational Neighbor (SCRN) have been shown to achieve good performance at inferring the labels
of citation networks [14]. Graph Convolutional Networks (GCNs) [16] extended the methodology of
Convolutional Neural Networks (CNNs) from images to graphs. GCNs, as CNNs, are constructed
upon multiple layers of neural networks which makes them less amenable to interpretation [17–19].

This paper uses the approach of the Simplified Graph Convolutional Neural Networks (SGC) [20]
to investigate the importance of strong vs. weak ties. The methodological framework, discussed in
more detail in Section 4, provides a reduction in the complexity of the model and computation time
required. It has an intuitive manner of producing feature projections and generating the non-linearity
for different classes. Even though it is a deep learning approach that accounts for multiple-layers,
the simplification allows a single parameter matrix to be produced that can more easily be interpreted
if desired. An SGC implementation can be found in the DGL library [21,22].



Mach. Learn. Knowl. Extr. 2020, 2 127

The SGC uses the features of the nodes and the connectivity in the adjacency matrix to infer the
class labels. In this paper we augment this adjacency matrix so that weak-ties are included as well.
This produces a matrix in which the strong-ties and the weak-ties are treated equally at the start of
the inference procedure. Results using this augmented adjacency matrix are compared to the label
produced using the original adjacency matrix. Our experiments also consider the possibility of missing
nodes. Obtaining complete datasets of networks is a challenge for a wide range of reasons; for instance,
online platforms limit the API calls from developer accounts to reduce the website loads. It is then
a crucial question as to whether the results of the investigation are sensitive to missing nodes [23].
Therefore, our experiments remove a range of pre-selected percentages of the network to compare the
results. Nodes are ranked for removal based on three different centrality algorithms: betweenness,
closeness, and VoteRank [24]. These algorithms sort the nodes in descending order and remove the top
percentage chosen (e.g., 20%) so that the inference is performed without the influence of these nodes.
We seek to answer the question: which gaps in the data are most likely to affect the SGC? The results
help provide another piece of evidence towards the utility of weak-ties in sociological processes.

An added incentive for exploring the use of the SGC, is that it addresses an issue with the
application of GCNs (graph convolutional neural networks) [16], where the increase in the number of
layers beyond 2–3 can produce a degradation in the results. The number of layers employed by the
GCN also corresponds to the Kth order neighborhood used in the SGC, and the results will be compared
between both methodologies in Section 5. Although the application with GCNs [16] displays the
degradation with an increase in the number of layers, L (corresponding to the Kth order neighborhood),
the SGC does not display this degradation with an increase in K. The authors of [20] describe how the
non-linearity for applications such as social networks may introduce unnecessary complexity.

The next section presents key work in the development of graph CNNs and other scientific
explorations attesting to the power of weak-ties. Section 3 describes the datasets used in this study,
and Section 4 outlines the methodology of the SGC. Then, in Section 5, we present results on the effects
of augmenting the adjacency matrix with weak ties and removing nodes ranked on a selection of
centrality measures. Within the results section is a subsection which compares the performance of
the SGC with that of the GCN. Lastly, the conclusion is presented in Section 6, which summarizes the
outcomes, outlines future work, and discusses the application to other datasets.

2. Related Work

This section presents an overview of related work on graph convolutional neural networks and
weak ties.

2.1. Graph Convolutional Neural Networks

The work of [25] introduces how graph based methods can be used with convolutional neural
networks (CNNs). These graph based methods are spectrally defined and their use within a spatial
application utilizes recursive polynomials on the graph Laplacian. This enables spectrally motivated
approaches to handle heterogeneous graphs. Convolutional neural networks [26] are employed as
they allow for containing an efficient model architecture for extracting meaningful statistical patterns
in high-dimensional datasets that can also be large (big data applications [27]). The application of
CNNs to learn local stationary structures and apply them to hierarchical pattern searches has driven
many advancements in ML tasks [28]. A key contribution of [25] is that the extension of the model to
generalize to graphs is founded upon localized graph filters instead of the CNN localized convolution
filter (or kernel). It presents a spectral graph formulation and how filters can be defined in respect to
individual nodes in the graph with a certain number of ’hops’ distance. An introduction to the field
can be found in [29], where the reader can find a motivation for the fundamental analysis operations of
signals from regular grids (lattice structures) to more general graphs. The authors of [30] build upon
the work of signals on graphs and shows that a shift-invariant convolution filter can be formulated as
a polynomial of adjacency matrices. These filters are defined as polynomials of functions of the graph
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adjacency matrix, which describes an intuitive spatial formulation of the graph convolutional neural
network. The use of the adjacency matrix is utilized in the approach described in Section 4. The filter
uses the adjacency matrix and defines the exponent of the matrix as the degree polynomial. Effectively
these exponents in the polynomial represent the number of edges (’hops’) from any node.

The approach used here follows that of the work of [31], which relies on the adjacency matrix for
filtering. It is noteworthy to emphasize that the graph based approach, which the authors provide code
for, shows performance similar to the approach of CNNs the on CIFAR-10 and ImageNet datasets. This
generalization could help understand how signals produced in the datasets can be collected whether
they be image, document, sound based, brain region based, and more. Allowing for graph data that is
heterogeneous is a flexibility which can produce more interesting applications. The model employed
describes taking the single hop (defined edges) and the ’2-hop’ edges to be filtered upon that allows
an extended radius of feature influence to be introduced for classification. This concept of using the
adjacency matrix powers is explored in Section 5 where the exponent is taken over a range of values
which represents the number of ’hops’. The authors of [16] also use this concept of the hop number
that relies on the number of hidden-layers in the neural network and is the basis for the comparison
approach employed in this work (described in Section 4).

Weak-Ties

After the publication of Granovetter’s seminal work on the importance of weak ties [8] there
have been multiple follow-up studies exploring how social links affect a member’s ability to interact
with others in the network and how different types of edges serve disparate roles in transmission
and collaboration. Weak ties are important in many types of organizational structures; for instance,
Patacchini et al. [32] studied the role of weak ties in criminal collusion. Since innovation requires
teamwork and collaboration, organizations need to empower their workers to leverage their weak ties
as described in [33]. The work of [34] looks at the effect of weak-ties on the job search process. Extracting
information from the network of interactions is not a straightforward process and the work of [35]
examines how this can be performed. Given recent evidence for increased social contention [36,37],
the research of [38] considers the important question of how weak-ties can facilitate the increase of
emotions such as anger on social media. Although weak-ties can be found to play a role in negative
situations, there are other contexts where they play an important positive role, such as psychological
well being where casual friendships add to happiness (strong ties plus weak ties) [39].

3. Data

Two datasets, Cora [10] and Citeseer [11], were used in this study. The Cora dataset is a citation
network where the nodes refer to unique authors and the edges represent a weighted value for the
mean citation relationship (from scientific publications). These scientific publications are classified
and labeled into seven categories. The data were divided into a separate training and test set in
order to provide consistent benchmarks between methodologies. The Citeseer dataset is another
network dataset based upon citations where the nodes are also authors and edge values represent the
mean citation relationship; it includes six different class labels. The SGC methodology described in
Section 4 was used to infer the correct labels for a subset of the nodes in these datasets using both the
original connectivity matrix and an augmented one. Table 1 provides an overview of some of the basic
information of the datasets.

Figure 2 shows the degree distribution for the Cora dataset and how the distribution changes
when different percentages of the network were removed. Those percentages of the network were
removed according to different network centrality measures: betweenness in Figure 2a, closeness in
Figure 2b, and VoteRank in Figure 2c. Figure 3 shows the same operation but using the Citeseer dataset.
It is interesting to note how the Cora and Citeseer plots differ between their equivalent subfigures.
The plots for the betweenness and the closeness change much more than VoteRank which provides
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evidence that it is more robust against choosing nodes with many edges as a measure of centrality in
different datasets.
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Figure 2. These plots show the degree distributions for the Cora network of publications [10] and
how those distributions are altered when a certain percentage of the nodes are removed based upon
a metric. Each subfigure shows the results of applying a different metric to sort and remove nodes:
(a) node ’closeness’; (b) node ’betweenness’; (c) node ’VoteRank’ [24].
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Figure 3. These plots show the degree distributions for the Citeseer network of publications [11] and
how those distributions are altered when a certain percentage of the nodes are removed based upon a
metric. Each subfigure shows the results of using a different metric to sort and remove nodes: (a) node
’closeness’; (b) node ’betweenness’; (c) node ’VoteRank’ [24].
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Table 1. Summary statistics of the networks from the datasets used in this study: Cora [10] and
Citeseer [11]. Each of these datasets has a set of classes used to identify groups of publications in Cora
as well as with Citeseer.

Cora Citeseer

# of Nodes 2708 3327
# of Edges 10,556 9228

# of Classes 7 6
Average degree 3.8981 2.8109

Density 0.00143 0.00084
Triadic closure 0.0934 0.13006

4. Methodology

For a graph G = (V, A), V is the node within a set of N nodes V = {v1, v2, . . . , vN}, and the
adjacency matrix is a symmetric matrix, A ∈ RNxN . Each element of A, ai,j, holds the value of the
weighted edge between two nodes vi and vj (an absence of an edge is represented by aij = 0). The
degree matrix D = diag(d1, d2, . . . , dN) is a diagonal matrix of zero off diagonal entries and each
diagonal entry is the row sum of the matrix A; di = ∑j Aij. There is a feature vector, xi, for each
node i so that the set of features in the network of nodes is a n× d matrix, X ∈ Rn×d where d is the
dimensionality of the feature vector. Each node is assigned a class label from the set of classes C; for
each node we wish to utilize both A and X to infer yi ∈ {0, 1}C. yi ∈ {0, 1}C is ideally a one-hot
encoded vector which can be supplied data to assist the parameter estimations.

The normalized adjacency matrix with included self-loops is defined as,

S = D̃−
1
2 ÃD̃−

1
2 , (1)

and Ã = A + I and D̃ = diag(Ã). The classifier employed by the SGC is:

Ŷ = softmax(SKXΘ). (2)

Here, the softmax can be replaced with σ as used in binary logistic regression when C = 2, and for
the softmax on multiple categories we have softmax(x) = exp(x)/ ∑C

c=1 exp(xc). The component Θ is
the matrix of parameter values for the projections of the feature vectors so that it is of dimensionality
d× C, Θ ∈ Rd×C. Intuitively this can be understood as the parameter matrix holding a single vector
of parameters of length equal to that of the feature vector and as many of these vectors as there are
class labels. This linearization derives from the general concept in deep learning for sequential affine
transforms in layers which are subsequent stages,

Ŷ = softmax(S . . . SSXΘ(1)Θ(2) . . . Θ(K)). (3)

It can then be seen how the value of K chosen represents the number of layers in the network employed.
More details can be found in [20] where the methodological derivation is elaborated upon. A key
requirement in this framework is the setting of the parameter value k. This can be considered as a tuning
parameter for varying of the number of propagation steps taken. This relates to the matrix powers of
an adjacency matrix which produce in each entry the number of ’walks’ between nodes [40,41].

From the adjacency matrix the matrix including weak-ties produced through ’triangulation’ ([9])
can be found via the walks of length two with A2. The original adjacency matrix is said to contain the
strong-ties and there is considerable sociological research into the value of each type of connectivity [8].
In this work we explore the use of an adjacency matrix which contains both the strong-ties and the
weak-ties via;

A′ = A2 + A. (4)



Mach. Learn. Knowl. Extr. 2020, 2 131

Figure 4 demonstrates this, and it can be seen visually in the subfigures. Figure 4a shows a hypothetical
network with 4 nodes connected in a chain and Figure 4b shows how those nodes are connected when
A′ is produced from including both the strong-ties and the weak-ties.

(a) (b)

Figure 4. These show the concept of weak-ties produced through triangulation and how it can affect a
small network: (a) shows a hypothetical network; (b) shows the result of introducing the weak-ties into
the network as well as the original strong ties which were direct links.

Figure 5 shows a demonstration of the SGC methodology in its ability to accurately predict
class labels on the Cora and Citeseer datasets. To explore how robust the methodology is, different
percentages of the network were removed; nodes were selected for removal based on their rank
calculated from different centrality measures: betweenness, closeness, and VoteRank. Each network
measure expresses different aspects of a node’s position in a network and therefore changes in
the prediction accuracy, which assist in understanding empirically how node network placements
contribute the most in correct label prediction. The VoteRank algorithm considers local node influences
more than betweenness or closeness. Figure 5a shows results obtained from running the model on the
Cora dataset, and the Citeseer results are shown in Figure 5b.
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Figure 5. The Simplified Graph Convolutional Neural Networks (SGC) methodology was applied to
predicting the test case labels when a certain percentage of the nodes were removed based upon the
metrics closeness, betweenness, and VoteRank with the accuracy on the y-axis shown. These results
shown in (a) and (b) are for the network datasets Citeseer and Cora.
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5. Results

This section explores how the class label prediction accuracy is affected by different removal
strategies when the connectivity matrix contains both the links for the strong ties and the weak ties.
These results show how the parameter k can affect the accuracy of the prediction of class labels.
Section 4 explores how the Simplified Graph Convolutional Neural Network (SGC) methodology
performs on the datasets of Cora and Citeseer when different percentages of the nodes are removed.
The nodes are removed according to their rank in terms of network centrality positions: betweenness,
closeness, and VoteRank. For example, if 20% are removed using closeness as a measure, the nodes
were ordered according to the value of closeness from largest to smallest, and the top 20% of the nodes
in that percentile of closeness are removed. The purpose of this manipulation is to explore how robust
the methodology is to central node removals whose influence on class labels can extend beyond their
immediate vicinity.

As shown in Figure 5, we explore how the accuracy is affected by the different network measures
used to rank nodes for removal but with the modified adjacency matrix that defines the connectivity
for each node. This modification incorporates direct edges (links) called ’strong ties’, as well as links
between nodes that have a common friend. These newly introduced edges are the ’weak ties’ that are
a result of ’triangulation’ as shown in Figure 4. The changes in the results due to the inclusion of the
weak-ties can assist in establishing their importance in people’s classification efforts in real life. A set
of plots compare the accuracy of the SGC prediction of class labels with different network removal
rankings given the addition of weak ties. The effect of the parameter value of k on accuracy is also
explored to understand the sensitivity of the results to the only parameter that requires tuning in SGC.

Figure 6 shows the results of applying the SGC with different values of k for predicting class
labels. On the horizontal axis is the value of k and on the vertical axis the accuracy as a percentage of
the test class labels predicted correctly. The betweenness metric is used to rank the nodes and different
percentages of the network’s nodes are removed. The percentage values for each line are indicated in
the legend. Figure 6a,b shows the results obtained from using the Cora and Citeseer datasets where
the adjacency matrix used contains direct links between nodes and their strong-ties as well as their
weak-ties as described in Section 4. Figure 6c,d shows the results when the original adjacency matrix
containing only the strong-ties is used. For k = 0 similar results are obtained and for the final k value,
k = 7, but the progression differs. The difference in progression is evident for the Cora dataset at
k = 1 and up to k = 4 where the predictive accuracy for Figure 6a is reduced. This also applies to the
Citeseer dataset, and especially to the scenario where 20% or 30% of the nodes have been removed.
When k = 0 the SGC operates effectively in a manner similar to logistic regression where the network
information is not used and inference is conducted using only the features of the node in question.
These results support the conclusion that the augmented network topology of the strong-ties and the
weak-ties does not facilitate improved accuracy of label prediction.

Figure 7 also shows the results of applying the SGC with different values of k for predicting
class labels. The value of k is shown on the horizontal axis and on the vertical axis the accuracy as a
percentage of test class labels being predicted correctly. Here the closeness metric is used to rank the
nodes for removal. The different percentages for the removal of network nodes for each line is shown
in the plot legends. Figure 7a,b shows the results obtained from using the Cora and Citeseer datasets
where the adjacency matrix used contains direct links between nodes and their immediate neighbors
(strong-ties) as well as their weak-ties (edges obtained via triangulation) as described in Section 4.
Figure 7c,d shows the results when the original adjacency matrix containing only the strong-ties is
used. For k = 0 similar results are obtained between the different pairs as the connectivity of the
adjacency is not incorporated and node inference looks only at the features obtained from the node of
concern. For k = 7 similar values are obtained through the extended radius of the adjacency power,
but the progression of the trace differs between pairs of the plots. The difference between the pairs of
traces can be easily seen by inspection of the application to the Cora dataset at values k = 1 and up to
k = 4 where the predictive accuracy for Figure 7a is reduced. This also applies to the Citeseer dataset,
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and is attenuated when 20% or 30% of the nodes have been removed. These results also support the
conclusion that the augmented network topology of the strong-ties and the weak-ties does not facilitate
improved accuracy of label prediction and that these conclusions are robust according to removal with
a different network centrality ranking.
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Figure 6. The SGC methodology was applied to predicting the class labels of the datasets Cora and
Citeseer where the accuracy was plotted against the parameter k. The betweenness metric is used to
rank and remove different percentages of the network: (a) and (b) show how the prediction changes
when the network consists of strong-ties and weak-ties, and (c) and (d) show the results when the original
adjacency matrix containing only strong-ties is used.

Figure 8 also shows the results of applying the SGC with different values of k for predicting
class labels but uses the VoteRank centrality metric to rank the nodes for removal. The different
percentages of node removal for each line are shown in the plot legends. Figure 8a,b shows the results
obtained from the Cora and Citeseer datasets where the adjacency matrix used contains direct links
between nodes and their immediate neighbors (strong-ties) as well as their weak-ties (edges obtained
via triangulation) as described in Section 4. Figure 8c,d shows the results when the original adjacency
matrix containing only the strong-ties is used. When k = 0 similar results are obtained between the
different pairs as the connectivity of the adjacency is not incorporated and node inference looks only
at the features from the node of concern. The application of VoteRank changes the interpretation
of the previous results where both applications to Cora and Citeseer have improved results for the
augmented adjacency matrix (strong-ties and weak-ties) from k = 3 and upwards.
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Figure 7. The SGC methodology was applied to predicting the class labels of the Cora and Citeseer
datasets where the accuracy was plotted against the parameter k. The closeness metric is used to
rank and remove different percentages of the network: (a) and (b) show the prediction changes when
the network consists of strong-ties and weak-ties, and (c) and (d) show the results when the original
adjacency matrix containing only strong-ties is used.

The set of results show that for k < 3 the adjacency matrix containing the set of original strong-ties
edges suffices to produce the best results. For larger values of k the augmented adjacency, which
contains both the strong-ties and the weak-ties, can show improved performance when nodes are
removed according to the VoteRank algorithm and not according to betweenness or closeness. This
emphasizes that there is a complex interplay between how node centrality is measured and the manner
in which the inference methodology operates. It cannot be considered an a priori principle that weak-ties
can provide an increased predictive power due to its support from the social science domain and its
adherence to it. On the contrary, they induce a requirement for larger values of k to reach the maximum
accuracy implying that the SGC requires more ’layers’ which effectively aggregates information from
more distant nodes in order to counter balance the introduction of weak-ties as strong-ties. This can
provide anecdotal evidence that those two types of edges may require separate treatment. Further
experiments conducted, working with a starting network of only the weak-ties, produced networks
with an increased number of disconnected components.

These results also support the claims of the authors of ’VoteRank’ when they state that the
methodology identifies a set of decentralized spreaders as opposed to focusing on a group of spreaders
which overlap in their sphere of influence. This is why the VoteRank targeted node removal was more
effective in reducing the accurate label inference since more locally influential nodes for classification
were identified; the weak-ties provided extra information about local labels in the absence of these
essential strong-tie connected nodes.
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Figure 8. The SGC methodology was applied to predicting the class labels of the Cora and Citeseer
datasets where the accuracy is plotted against the parameter k. The VoteRank metric is used to rank
and remove different percentages of the network: (a) and (b) show the prediction changes when
the network consists of strong-ties and weak-ties, and (c) and (d) show the results when the original
adjacency matrix containing only strong-ties is used.

Comparison to GCN

This section compares results from applying SGC [20] vs. using the original GCN framework [16].
Appendix B of [16] discusses the effect of adding more network layers on accuracy. It states that the
best choice is 2–3 layers and that after 7 layers there is steep degradation of accuracy. The number
of layers corresponds to the number of ’K’ hops as explored with the SGC previously. The SGC
methodology encapsulates the K hop neighborhood without the non-linearity and therefore avoids
the degradation of accuracy with increased K or L. Figures 9–11 present the results of applying the
GCN in the same set of situations that we evaluated with SGC. The number of layers L is on the
x-axis (corresponding analogously to the K in SGC) and the y-axis is the accuracy. In each of these
figures, the Cora and Citeseer datasets are used when examining the strong with weak ties in an
augmented network as well as using the original network containing only the strong ties. Each figure
removes a percentage of the nodes based upon the rank of the nodes with the centrality measures of
betweenness, closeness, and VoteRank respectively. The plots have three lines per plot where there are
different percentages (10%, 20%, and 30%) of the nodes removed based upon the centrality measure.
In each of the Figures 9–11 it can be seen how the accuracy degrades after L = 1 showing how the
SGC is able to include more network information about each node without introducing unnecessary
complexity which degrades accuracy. The degradation of the accuracy in relation to the choice of
centrality measure is comparable between the results, showing that the GCN is less specific to the node
network positions than the SGC is, which can be attributed to the non-linearity the GCN introduces
via the layers.
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Figure 9. The GCN methodology was applied to predicting the class labels of the datasets Cora and
Citeseer where the accuracy is plotted against the parameter L. The betweenness metric was used to
rank and remove different percentages of the network: (a) and (b) show the prediction changes when
the network consists of strong-ties and weak-ties, and (c) and (d) show the results when the original
adjacency matrix containing only strong-ties is used.

In Appendix A, an additional set of tables are provided in order to see the comparison between
the effectiveness of the SGC and the GCN over the values of K and L respectively. The two datasets
and the centrality measures with the different edge sets are examined.
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Figure 10. Cont.
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Figure 10. The Graph Convolutional Networks (GCNs) methodology was applied to predicting the
class labels of the Cora and Citeseer datasets where the accuracy is plotted against the parameter l.
The closeness metric is used to rank and remove different percentages of the network: (a) and (b) show
the prediction changes when the network consists of strong-ties and weak-ties, and (c) and (d) show the
results when the original adjacency matrix containing only strong-ties is used.

(a)

0 1 2 3 4 5 6 7

L

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

'Cora' strong and weak ties with 'rank' removal

10
20
30

(b)

0 1 2 3 4 5 6 7

L

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

'Citeseer' strong and weak ties with 'rank' removal

10
20
30

(c)

0 1 2 3 4 5 6 7

L

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

'Cora' strong ties with 'rank' removal

10
20
30

(d)

0 1 2 3 4 5 6 7

L

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

'Citeseer' strong ties with 'rank' removal

10
20
30

Figure 11. The GCN methodology was applied to predicting the class labels of the Cora and Citeseer
datasets where the accuracy is plotted against the parameter l. The VoteRank metric is used to rank
and remove different percentages of the network: (a) and (b) show the prediction changes when
the network consists of strong-ties and weak-ties, and (c) and (d) show the results when the original
adjacency matrix containing only strong-ties is used.

6. Conclusions

This paper explores the uses of the recently introduced methodology, the Simplified Graph
Convolutional Neural Network (SGC); class label inferences are produced based on the network
structure, represented by an adjacency matrix, in combination with node feature vectors. There is
interest in exploring this model in more depth since it provides a succinct yet expressive formulation
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for describing how nodes can influence class label prediction within a network. Besides the parameters
fitted in order to optimize the target label prediction, there is only a single parameter value k, which
requires manual tuning. This parameter is related to the number of layers Sk (described in Section 4).

The exploration conducted here investigates the degree to which the accurate prediction of class
labels is reduced by removing percentages of the network ranked by centrality metrics. This provides
evidence to the practitioner who collects data, that may contain gaps in the network, and needs to
know if the conclusions can be drastically affected by missing data on key nodes as to whether the
the SGC is sensitive to such issues. Three different network centrality measures are used to select
removal nodes: betweenness, closeness, and VoteRank. We find that the methodology does manage to
produce analogous predictions based upon different percentages of removal (10/20/30). The largest
observed changes were when the nodes were selected for removal with the VoteRank algorithm and
not with betweenness or closeness. This shows that the SGC label assignments are more sensitive to
the local label information derived from the features of the local nodes than well connected groups of
nodes in the center of the network. This also explains why it has displayed the ability to be robust in
its predictions.

The other question explored is whether the results would change if the SGC was supplied an
adjacency matrix that contained the ’triangulated edges’ to begin with. The existing edges in the
adjacency matrix can be referred to as strong-ties as they are direct links; the edges that connect
friends-of-friends (produced from triangulation A2), can be referred to as weak-ties. A matrix with both
of these edge sets was supplied to the SGC to compare the accuracy predictions. There is considerable
sociological literature discussing the importance of these edges in helping to discover important
connections. Our results show a degraded outcome with the exception of when nodes were removed
with the VoteRank algorithm. This indicates that the inclusion of the weak-ties provides a more robust
edge set when important local nodes are removed. The results do not show an ability to improve the
prediction of class labels for low removal percentages when weak-ties are included.

The datasets used in this study contained monolithic graphs, where every node is reachable from
any other node. There are many datasets where the data contains disjoint graphs, and this can be
particularly common when the observational capabilities are limited in comparison to the process.
A notable example is with protein interaction graphs. Applying the investigation taken here with
such data would alter the adjacency matrix but not in a way that would cause a failure in its ability to
follow the procedures described. Since the exploration did not depend upon a small fraction of the
number of nodes, the study could continue with such data as long as the distribution of the relative
betweenness and closeness is not excessively skewed for the subgraphs. The investigation therefore can
be conducted on a wide range of datasets to explore the role of weak ties in the networks. Corporate
networks are an interesting avenue for extensions as the nodes would be more ’complex’ entities
which may rely on their network connections in different ways. A key aspect of the extendibility is the
overhead of the approach. Since the parameter, feature and adjacency matrix are combined with linear
operators with a non-nested set of intermediate features, inferences are relatively cheaper than other
approaches that build deeper trees and introduce further non-linearities.
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Appendix A. Comparison of Results between the SGC and GCN

The following tables present the comparison of the results between the use of the SGC and the
GCN (shown separately in the Results section). Each table lists the centrality metric used to remove
nodes based upon its ranking: betweenness, closeness and VoteRank. The column ’P’ identifies
the percentage of the network nodes removed based upon that centrality metric. The column ’L’
represents the number of layers used by the GCN and the column ’K’ is for the exponent of the
normalized adjacency matrix in the SGC. Under the columns ’GCN’ and ’SGC’ which refer to the
graph convolutional neural network and simplified graph convolutional neural network respectively
are the columns ’S’ for the strong-ties used and ’SW’ for the strong-ties and weak-ties aggregated.
In Tables A1–A6, the cell entries show the accuracy; each centrality measure is reported for the two
datasets Cora and Citeseer.

Table A1. The GCN and SGC methodologies were applied to predicting the class labels of the Cora
dataset. The betweenness metric is used to rank and remove different percentages of the network.
S stands for when the network has the initial strong connections only and SW represents when the
network is augmented with weak ties alongside the strong ties. L and K denotes the number of layers
and the power in GCN and SGC framework respectively.

Metric P
GCN SGC

L S SW K S SW

Mean std Mean std Mean std Mean std

Betweenness

10

0 0.79 0.03 0.84 0.03 0 0.76 0.02 0.74 0.01

1 0.79 0.03 0.84 0.03 1 0.86 0.02 0.75 0.01

2 0.73 0.05 0.82 0.04 2 0.88 0.01 0.76 0.01

3 0.63 0.08 0.77 0.06 3 0.87 0.02 0.76 0.01

4 0.54 0.08 0.69 0.11 4 0.87 0.02 0.77 0.01

5 0.50 0.07 0.65 0.11 5 0.87 0.02 0.77 0.01

6 0.45 0.11 0.47 0.19 6 0.87 0.02 0.77 0.01

7 0.38 0.13 0.46 0.22 7 0.87 0.01 0.77 0.01

20

0 0.79 0.03 0.83 0.04 0 0.76 0.02 0.72 0.02

1 0.79 0.03 0.84 0.04 1 0.85 0.02 0.73 0.02

2 0.72 0.06 0.81 0.05 2 0.86 0.02 0.74 0.02

3 0.63 0.09 0.77 0.06 3 0.86 0.02 0.75 0.02

4 0.54 0.08 0.64 0.11 4 0.86 0.02 0.75 0.02

5 0.50 0.11 0.57 0.16 5 0.86 0.02 0.75 0.02

6 0.43 0.12 0.58 0.14 6 0.86 0.02 0.76 0.02

7 0.37 0.11 0.46 0.22 7 0.85 0.02 0.76 0.02

30

0 0.77 0.03 0.83 0.04 0 0.76 0.02 0.70 0.02

1 0.77 0.03 0.83 0.04 1 0.85 0.02 0.72 0.03

2 0.71 0.05 0.79 0.07 2 0.85 0.02 0.73 0.03

3 0.64 0.09 0.72 0.09 3 0.85 0.02 0.74 0.03

4 0.54 0.11 0.64 0.11 4 0.85 0.02 0.74 0.02

5 0.50 0.10 0.57 0.14 5 0.85 0.02 0.74 0.02

6 0.42 0.11 0.49 0.17 6 0.85 0.02 0.75 0.02

7 0.39 0.12 0.43 0.19 7 0.86 0.02 0.75 0.02
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Table A2. The GCN and SGC methodologies were applied to predicting the class labels of the Cora
dataset. The closeness metric is used to rank and remove different percentages of the network. S stands
for when the network has the initial strong connections only and SW represents when network is
augmented with weak ties alongside the strong ties. L and K denotes the number of layers and the
power in GCN and SGC framework respectively.

Metric P
GCN SGC

L S SW K S SW

Mean std Mean std Mean std Mean std

Closeness

10

0 0.80 0.04 0.83 0.03 0 0.77 0.02 0.76 0.01

1 0.80 0.04 0.83 0.03 1 0.85 0.02 0.83 0.03

2 0.75 0.06 0.82 0.03 2 0.87 0.01 0.85 0.02

3 0.67 0.08 0.78 0.05 3 0.87 0.01 0.85 0.01

4 0.55 0.12 0.68 0.09 4 0.87 0.02 0.86 0.01

5 0.49 0.10 0.62 0.14 5 0.88 0.01 0.86 0.01

6 0.44 0.12 0.57 0.16 6 0.86 0.02 0.86 0.02

7 0.40 0.12 0.48 0.18 7 0.87 0.02 0.86 0.02

20

0 0.79 0.03 0.84 0.04 0 0.76 0.02 0.77 0.02

1 0.79 0.03 0.84 0.03 1 0.86 0.01 0.84 0.04

2 0.72 0.07 0.81 0.05 2 0.88 0.02 0.86 0.02

3 0.65 0.10 0.77 0.07 3 0.87 0.02 0.87 0.02

4 0.56 0.13 0.68 0.13 4 0.88 0.02 0.87 0.02

5 0.51 0.10 0.59 0.13 5 0.87 0.01 0.87 0.02

6 0.44 0.12 0.56 0.15 6 0.87 0.02 0.87 0.02

7 0.43 0.12 0.47 0.16 7 0.87 0.02 0.87 0.02

30

0 0.78 0.04 0.83 0.04 0 0.75 0.02 0.75 0.03

1 0.78 0.04 0.83 0.04 1 0.86 0.02 0.82 0.03

2 0.72 0.06 0.81 0.05 2 0.87 0.02 0.85 0.03

3 0.65 0.11 0.74 0.09 3 0.87 0.02 0.86 0.02

4 0.56 0.12 0.66 0.13 4 0.87 0.03 0.87 0.02

5 0.50 0.10 0.61 0.12 5 0.87 0.03 0.87 0.02

6 0.46 0.12 0.57 0.14 6 0.87 0.02 0.87 0.02

7 0.36 0.10 0.49 0.17 7 0.87 0.02 0.88 0.03
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Table A3. The GCN and SGC methodologies were applied to predicting the class labels of the Cora
dataset. The VoteRank metric is used to rank and remove different percentages of the network. S
stands for when the network has the initial strong connections only and SW represents when network
is augmented with weak ties alongside the strong ties. L and K denotes the number of layers and the
power in GCN and SGC framework respectively.

Metric P
GCN SGC

L S SW K S SW

Mean std Mean std Mean std Mean std

Vote Rank

10

0 0.78 0.04 0.83 0.03 0 0.75 0.02 0.76 0.02

1 0.78 0.04 0.83 0.03 1 0.86 0.01 0.83 0.03

2 0.71 0.07 0.81 0.05 2 0.87 0.02 0.85 0.02

3 0.61 0.12 0.75 0.08 3 0.87 0.02 0.86 0.02

4 0.56 0.10 0.63 0.13 4 0.87 0.02 0.86 0.02

5 0.49 0.09 0.61 0.12 5 0.87 0.01 0.86 0.03

6 0.41 0.10 0.49 0.17 6 0.87 0.02 0.87 0.02

7 0.40 0.11 0.39 0.21 7 0.87 0.02 0.87 0.02

20

0 0.77 0.03 0.82 0.03 0 0.75 0.02 0.75 0.02

1 0.77 0.04 0.82 0.04 1 0.85 0.02 0.81 0.02

2 0.69 0.06 0.78 0.06 2 0.86 0.02 0.84 0.02

3 0.62 0.08 0.73 0.09 3 0.86 0.02 0.85 0.02

4 0.53 0.08 0.63 0.11 4 0.86 0.03 0.86 0.02

5 0.49 0.08 0.57 0.14 5 0.85 0.03 0.86 0.02

6 0.43 0.09 0.46 0.14 6 0.85 0.02 0.86 0.01

7 0.34 0.07 0.42 0.18 7 0.85 0.02 0.86 0.01

30

0 0.76 0.03 0.81 0.04 0 0.76 0.02 0.75 0.02

1 0.76 0.03 0.81 0.04 1 0.84 0.02 0.81 0.03

2 0.69 0.05 0.77 0.05 2 0.85 0.01 0.83 0.03

3 0.59 0.07 0.69 0.11 3 0.84 0.02 0.84 0.03

4 0.53 0.08 0.60 0.11 4 0.85 0.02 0.84 0.03

5 0.48 0.06 0.57 0.15 5 0.85 0.02 0.85 0.03

6 0.43 0.10 0.49 0.14 6 0.85 0.02 0.85 0.02

7 0.34 0.07 0.34 0.19 7 0.84 0.01 0.85 0.02
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Table A4. The GCN and SGC methodologies were applied to predicting the class labels of the Citeseer
dataset. The betweenness metric is used to rank and remove different percentages of the network. S
stands for when the network has the initial strong connections only and SW represents when network
is augmented with weak ties alongside the strong ties. L and K denotes the number of layers and the
power in GCN and SGC framework respectively.

Metric P
GCN SGC

L S SW K S SW

Mean std Mean std Mean std Mean std

Betweenness

10

0 0.73 0.02 0.75 0.02 0 0.72 0.02 0.74 0.01

1 0.73 0.02 0.75 0.02 1 0.76 0.02 0.75 0.01

2 0.66 0.06 0.71 0.04 2 0.78 0.02 0.76 0.01

3 0.60 0.07 0.66 0.08 3 0.76 0.01 0.76 0.01

4 0.52 0.08 0.61 0.08 4 0.77 0.01 0.77 0.01

5 0.42 0.15 0.54 0.14 5 0.77 0.02 0.77 0.01

6 0.31 0.16 0.33 0.18 6 0.76 0.02 0.77 0.01

7 0.21 0.02 0.25 0.13 7 0.77 0.02 0.77 0.01

20

0 0.72 0.02 0.74 0.03 0 0.71 0.01 0.72 0.02

1 0.73 0.02 0.74 0.03 1 0.76 0.02 0.73 0.02

2 0.65 0.04 0.70 0.04 2 0.76 0.02 0.74 0.02

3 0.57 0.08 0.63 0.06 3 0.77 0.02 0.75 0.02

4 0.54 0.08 0.58 0.07 4 0.75 0.02 0.75 0.02

5 0.36 0.12 0.48 0.16 5 0.76 0.02 0.75 0.02

6 0.22 0.05 0.30 0.16 6 0.76 0.02 0.76 0.02

7 0.23 0.06 0.21 0.02 7 0.77 0.02 0.76 0.02

30

0 0.73 0.02 0.72 0.03 0 0.71 0.02 0.70 0.02

1 0.73 0.02 0.72 0.03 1 0.74 0.02 0.72 0.03

2 0.65 0.05 0.67 0.04 2 0.75 0.02 0.73 0.03

3 0.58 0.04 0.59 0.07 3 0.75 0.02 0.74 0.03

4 0.54 0.07 0.54 0.10 4 0.75 0.01 0.74 0.02

5 0.41 0.13 0.34 0.14 5 0.76 0.02 0.74 0.02

6 0.26 0.11 0.31 0.12 6 0.74 0.03 0.75 0.02

7 0.23 0.08 0.23 0.06 7 0.75 0.02 0.75 0.02
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Table A5. The GCN and SGC methodologies were applied to predicting the class labels of the Citeseer
dataset. The closeness metric is used to rank and remove different percentages of the network. S stands
for when the network has the initial strong connections only and SW represents when network is
augmented with weak ties alongside the strong ties. L and K denotes the number of layers and the
power in GCN and SGC framework respectively.

Metric P
GCN SGC

L S SW K S SW

Mean std Mean std Mean std Mean std

Closeness

10

0 0.74 0.02 0.74 0.02 0 0.72 0.02 0.72 0.02

1 0.74 0.02 0.74 0.02 1 0.76 0.02 0.74 0.02

2 0.69 0.05 0.70 0.04 2 0.76 0.02 0.75 0.02

3 0.62 0.06 0.65 0.07 3 0.76 0.01 0.75 0.02

4 0.56 0.09 0.54 0.12 4 0.76 0.01 0.75 0.02

5 0.39 0.16 0.46 0.16 5 0.76 0.02 0.75 0.02

6 0.30 0.11 0.34 0.17 6 0.74 0.02 0.75 0.02

7 0.24 0.04 0.27 0.11 7 0.74 0.02 0.75 0.02

20

0 0.72 0.02 0.74 0.03 0 0.72 0.02 0.72 0.02

1 0.72 0.03 0.74 0.03 1 0.76 0.03 0.73 0.02

2 0.66 0.06 0.69 0.05 2 0.76 0.01 0.73 0.02

3 0.59 0.07 0.63 0.08 3 0.77 0.02 0.74 0.02

4 0.53 0.07 0.54 0.11 4 0.75 0.02 0.74 0.02

5 0.44 0.12 0.46 0.16 5 0.75 0.01 0.74 0.02

6 0.30 0.12 0.31 0.11 6 0.74 0.02 0.74 0.02

7 0.27 0.08 0.28 0.09 7 0.74 0.03 0.74 0.02

30

0 0.71 0.02 0.74 0.03 0 0.71 0.03 0.73 0.02

1 0.72 0.02 0.73 0.03 1 0.75 0.02 0.74 0.03

2 0.66 0.04 0.68 0.05 2 0.76 0.03 0.75 0.03

3 0.59 0.07 0.64 0.06 3 0.77 0.01 0.76 0.03

4 0.53 0.07 0.55 0.11 4 0.76 0.03 0.76 0.03

5 0.38 0.13 0.45 0.16 5 0.75 0.02 0.76 0.03

6 0.26 0.03 0.40 0.16 6 0.76 0.02 0.76 0.02

7 0.25 0.02 0.26 0.06 7 0.76 0.02 0.76 0.02
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Table A6. The GCN and SGC methodologies were applied to predicting the class labels of the Citeseer
data set. The VoteRank metric is used to rank and remove different percentages of the network. S
stands for when the network has the initial strong connections only and SW represents when network
is augmented with weak ties alongside the strong ties. L and K denotes the number of layers and the
power in GCN and SGC framework respectively.

Metric P
GCN SGC

L S SW K S SW

Mean std Mean std Mean std Mean std

Vote Rank

10

0 0.73 0.03 0.74 0.02 0 0.72 0.02 0.73 0.03

1 0.73 0.03 0.74 0.02 1 0.76 0.01 0.75 0.03

2 0.66 0.05 0.70 0.04 2 0.76 0.01 0.76 0.03

3 0.59 0.07 0.65 0.05 3 0.74 0.01 0.76 0.02

4 0.49 0.15 0.58 0.09 4 0.76 0.01 0.76 0.02

5 0.43 0.13 0.45 0.19 5 0.75 0.02 0.76 0.02

6 0.25 0.09 0.34 0.19 6 0.76 0.02 0.76 0.02

7 0.22 0.07 0.26 0.16 7 0.75 0.02 0.76 0.02

20

0 0.73 0.02 0.73 0.03 0 0.73 0.01 0.71 0.03

1 0.73 0.02 0.73 0.03 1 0.71 0.01 0.73 0.04

2 0.66 0.04 0.68 0.04 2 0.75 0.02 0.74 0.04

3 0.59 0.03 0.64 0.05 3 0.75 0.01 0.74 0.03

4 0.54 0.04 0.58 0.09 4 0.77 0.02 0.75 0.04

5 0.39 0.13 0.50 0.17 5 0.75 0.02 0.75 0.03

6 0.21 0.02 0.38 0.17 6 0.76 0.02 0.75 0.03

7 0.21 0.02 0.25 0.12 7 0.75 0.04 0.75 0.03

30

0 0.72 0.03 0.74 0.03 0 0.73 0.01 0.70 0.03

1 0.72 0.02 0.73 0.03 1 0.71 0.03 0.72 0.03

2 0.65 0.03 0.68 0.04 2 0.75 0.01 0.73 0.03

3 0.58 0.06 0.63 0.07 3 0.72 0.03 0.73 0.02

4 0.52 0.08 0.57 0.08 4 0.73 0.01 0.73 0.02

5 0.41 0.15 0.51 0.16 5 0.74 0.03 0.74 0.03

6 0.28 0.12 0.31 0.14 6 0.74 0.04 0.74 0.03

7 0.22 0.08 0.27 0.13 7 0.74 0.02 0.74 0.03
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