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Abstract: Forest structure estimation is very important in geological, ecological and environmental
studies. It provides the basis for the carbon stock estimation and effective means of sequestration
of carbon sources and sinks. Multiple parameters are used to estimate the forest structure like
above ground biomass, leaf area index and diameter at breast height. Among all these parameters,
vegetation height has unique standing. In addition to forest structure estimation it provides the
insight into long term historical changes and the estimates of stand age of the forests as well. There are
multiple techniques available to estimate the canopy height. Light detection and ranging (LiDAR)
based methods, being the accurate and useful ones, are very expensive to obtain and have no global
coverage. There is a need to establish a mechanism to estimate the canopy height using freely
available satellite imagery like Landsat images. Multiple studies are available which contribute in this
area. The majority use Landsat images with random forest models. Although random forest based
models are widely used in remote sensing applications, they lack the ability to utilize the spatial
association of neighboring pixels in modeling process. In this research work, we define Convolutional
Neural Network based model and analyze that model for three test configurations. We replicate the
random forest based setup of Grant et al., which is a similar state-of-the-art study, and compare our
results and show that the convolutional neural networks (CNN) based models not only capture the
spatial association of neighboring pixels but also outperform the state-of-the-art.
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1. Introduction

Estimation of forest’s structure is of immense importance in geological, ecological and
environmental studies. Carbondioxide, one of the constituents in the atmosphere, plays a vital
role in the life cycle on the planet. It is consumed by plants, via photosynthesis, to generate food
contents and oxygen. However, due to global industrial revolution, carbondioxide is constantly being
pumped into the atomosphere, resulting in rising levels. The level of carbondioxide has increased
from 280 ppm, before the industrial age, to around 390 ppm in 2012 and now it has risen to a value
of around 407 ppm [1]. To provide a fair perspective, this value has not gone above 300 ppm in the
past 800,000 years. Due to its contribution in green house effects, this rising level of carbondioxide is
resulting in a rise of average global temperatures. Keeping this burning issue of global warming in
focus, the carbon stock estimation at multiple scales has become a critical parameter [2]. Assessment
of forest’s structure directly yields the estimate of carbon stock. The analysis of global carbon cycle
is directly related to the variations in percentage coverage of the forests and can be used to manage
the sequestration and carbon-sources/carbon-sinks [3,4]. Furthermore, the forest covering and its
variations have a direct impact on the diversity of ecosystems. The severe consequences of deforestation
on the environment and ecosystems make the problem of forest structure estimation important to
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discover. Multiple parameters are being used to quantify the forest structures for the estimation of
carbon biomass. The noteworthy parameters are tree height, diameter at breast height (DBH), species of
trees, age of trees, leaf area index (LAI), vegetation height, above ground biomass (AGB), canopy gap
size and fractional cover [5–8]. The vegetation height is of particular importance here because it
provides the basis for the long term change analysis of forest regions [9,10] and when combined with
species information and site quality, it can be used to get the educated estimates of stand age and
successional stages [11]. The method of in situ surveys provides accurate figures at ground level based
on statistical sampling of the geographical region under study. Although accurate, this method is
not feasible because it requires a huge amount of resources in terms of manpower, time and cost for
complete spatial coverage and is susceptible to the area’s accessibility and human related errors at
large scale estimations. The method, even with its limited scope, is used to perform the calibrations
and evaluations of more automated techniques developed for this task [12].

Light detection and ranging (LiDAR) imaging provides an accurate mechanism to develop the 3D
models of the target. In this imaging mechanism, the LASER light is shot at a target in pulses and the
reflected light is received by a receiver. The reflection of light from variable distance causes it to arrive
at the receiver at slightly different times, and this difference in time is then converted into distance
which is then converted into high resolution three dimensional model of the target. LiDAR is proved
to be a useful tool to assess and manage the damages of natural disasters [13]. It is used in a wide
array of applications in forestry like large-scale forest inventory management, biophysical monitoring
of forests and biomass estimation [14–16]. It provides accurate means to map the canopy height and
has been used for this purpose several times [17–19]. The usefulness of LiDAR data in remote sensing
applications cannot be undermined, however, this data (when requested on-demand) is expensive
to obtain and does not have global coverage. There is a need to establish a mechanism to estimate
the height of vegetation using globally available and low cost (or even free) satellite data with the
assistance of available LiDAR data. In this work, we utilize the deep convolutional network to relate
the Landsat images with LiDAR data. This estimated mapping is then used to estimate the digital
canopy height through Landsat imagery only. Because the Landsat data has global coverage with a
massive database and is freely available, its utilization in digital canopy height estimation can provide
a very cheap alternative to expensive and hard to obtain LiDAR data.

Multiple studies have established the relationship between Landsat imagery and in situ
measurements like fractional cover [20], above earth woody vegetation biomass [21–23] and leaf
area index [24,25]. Some of these techniques utilize statistical techniques like linear and non-linear
regression models of single or multiple attributes while others incorporate machine learning techniques,
both supervised and unsupervised. Researchers have used the depth information from LiDAR data
and mapped it to Landsat data using statistical models to enhance spatiotemporal coverage [26–30].
Wilkes et al. utilize LiDAR derived canopy height in combination with a composite of Landsat imagery
with Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the canopy height using
random forest regression model [31]. Some use the composite of Landsat data with other sensors
in combination with LiDAR data to estimate the canopy height [31–33] while others focus on the
utilization of Landsat imagery only in combination with LiDAR data [33,34]. The common attribute of
all these works is that they use the random forest ensemble regression model.

The random forest machine learning ensemble algorithm is quite famous among remote sensing
experts [31,35–38] due to its ease of use, high non-linearity and robustness to outliers in training data.
Pal et al. classify seven classes of land covers in enhanced thematic mapper sensor data using random
forest models [35]. Mellor et al. utilize random forest models on thematic mapper sensor data in
combination with auxillary terrain data and climate attributes to classify between forest/non-forest
class [36]. Others have used random forest models for carbon mapping and above ground biomass
estimation [31,37,38]. Besides the popularity of random forest model among the experts, the inherent
shortcoming of random forest regressor, with reference to spatial data, is that it does not utilize the
spatial associations of landcover in satellite data. They make the prediction of single location by
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treating each input point independently. To exploit the mutual dependence of neighboring landcovers,
we use the convolutional neural networks (CNN) with Landsat and LiDAR data to estimate the digital
canopy height of the region under study. The proposed network predicts the canopy height with mean
absolute error of 3.092 m and variance of 0.864 m, outperforming the state-of-the-art.

2. Proposed Solution

In this research work, we are using the Landsat images in combination with digital canopy height
extracted from airborne LiDAR data in the area located near Flagstaff, Arizona. While previous
studies use similar or the same combination of types of data for canopy height estimation, they select
the random forest ensemble model for prediction. Because this algorithm utilizes the pixel-to-pixel
mapping to establish the model, it inherently loses the useful information of spatial relationship
between the neighboring land covers. As the remote sensing data is spatial in nature, our assumption
is that the neighboring land covers are associated with each other and do encode useful information,
when processed together. Keeping this in view, we propose the utilization of the deep CNN model
for estimation of vegetation height. These deep learning models have the capabilities to unravel the
hidden spatial patterns along with the radiometric associations of input (Landsat images in this case)
with the target data (LiDAR data in this case). To our knowledge, CNNs have never been used before
for the estimation of canopy height from Landsat and LiDAR data. We adopt a five stepped approach.
(1) data preprocessing (2) feature selection (3) model selection and training (4) inference (5) comparison
with recent similar work.

The rest of the paper is organized as follows. In Section 3, the study area and data is discussed.
The methodology is discussed in detail in Section 4. We present the results in Section 5 and conclude
the study in Section 6.

3. Study Area and Data

3.1. Study Area

This study is conducted in the area on the west and north west of Flagstaff, Arizona. This 89.7 km2

region falls in the area of Coconino National Forest Flagstaff, Arizona. Coconino national forest spans
a total area of 1.85 million acres. The average annual temperature of the forest is 8 ◦C. Average annual
rainfall precipitation is 500.44 mm and average snowfall is 192.3 cm. This forest is home to various tree
species, especially Ponderosa pines, Limber pine, Single leaf pinyon pine, Arizona cypress and many
others [39]. The type of vegetation in this forest is dependent upon the elevation. At lowest elevations
(4500 feet to 6500 feet), the forest is mainly covered in sagebrushes and small shrubs. In elevations
between 6500 feet and 8000 feet, the majority of the area is covered by Ponderosa pine (average height
of 37 m) [40]. Our area of study falls in this elevation bracket. Other species situated in the region
of study are Rocky Mountain juniper (average height of 15 m), quaking aspen (average height of
23 m) and Gambel oak (average height of 6 m). Table 1 shows the percentage coverage of the type of
trees in the study area. The maps shown in the Figure 1 display the area under study. The left image
shows the false color composite of Landsat data and the right image shows the corresponding canopy
height model.

Table 1. Landcover types and percentage in area of study.

Type of Trees Acres Percentage

Aspen 823.40 4.21
Mix Grass forb 2538.69 12.97

Juniper 103.71 0.53
Pinyon and Pinyon Juniper 872.41 4.46

Ponderosa Pine 13,521.55 69.10
Mix Shrubs 38.88 0.20

Mix Upper deciduous forest trees 1669.40 8.53
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Figure 1. Map of study area. The left image is the false composite image of area under study and the
right image is the digital canopy height generated from the light detection and ranging (LiDAR) data
obtained from OpenTopography [41]. The Landsat data not only contain 11 bands of Landsat 8 but
also contain 19 normalized and direct band ratios.

LiDAR Data

The LiDAR data used in this study is freely available on https://opentopo.sdsc.edu and was
collected on 16 October 2017 for Jonathan Donager, Northern Arizona University, School of Earth
Sciences and Environmental Sustainability to study the forest structure changes and its influence on
snowpack persistence and accumulation [41]. The data was gathered by National Center for Airborne
Laser Mapping (NCALM) as seed grant. The Raster resolution of this data is 0.5 m2 and the point cloud
density is 6.84 pt/m2. The digital elevation model (DEM) and digital terrain model (DTM) derived
from this data are used to compute the canopy height model (CHM) to be used in this study. Figure 1
displays the CHM map for the area under study. The data is resampled to match the spatial resolution
of Landsat data using nearest pixel settings. The height of the canopy ranges from 0 m to 34 m.

3.2. Landsat Data

The Landsat data is chosen in such a way that it falls as close to the date of acquisition of LiDAR
data as possible to minimize the temporal changes. The cloud free operational land imager (OLI) data
of the area of interest is available for 3 October 2017 and is selected for this study. The path/row of
the data is 37/36. The OLI sensor provides the data with spatial resolution of 30 m and radiometric
resolution of 16 bit. The OLI sensor is mounted on the Landsat 8 satellite which revisits the given area
every 16 days.

https://opentopo.sdsc.edu
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3.3. Feature Construction

Generally the deep learning models are known for their capability to mine the complex patterns
in the given data without the need of feature engineering, however, it is recommended to have some
features engineered as per domain knowledge. This results in relatively simpler models and also
contributes to faster convergence. Studies have shown that different vegetation indices and band ratios
are correlated with different canopy types and heights [34]. We take the head start from the work of
Grant et el. and calculate a total of 19 vegetation indices and band ratios mentioned in their study [34].
We stack these features with Landsat imagery. Table 2 provides the list of constructed indices as
features. Indexes 1 to 11 are for Landsat original bands. Indexes 12 to 30 are defined in Table 2.

Table 2. The list of used vegetation indices and simple band ratios.

Feature Index Feature Name

12 Modified Simple Ratio
13 Soil Adjusted Vegetation Index
14 Difference Vegetation Index
15 Modified Soil Adjusted Vegetation Index
16 Green Difference Vegetation Index
17 Normalized Burn Ration SWIR-1
18 Normalized Burn Ration SWIR-2
19 Normalized Difference Greenness Index
20 Chlorophyll Vegetation Index
21 Green Normalized Vegetation Index
22 Green Soil Adjusted Vegetation Index
23 Normalized Difference Vegetation Index
24 NIR/Green
25 SWIR-1/Red
26 SWIR-1/NIR
27 SWIR-1/Green
28 Red/Green
29 SWIR-2/SWIR-1
30 SWIR-2/Red

4. Methodology

We utilized the Landsat bands and selected vegetation indices stacked together as the input and
the corresponding canopy height image as the target to the model. The digital canopy height image
was down-sampled to match the spatial resolution of Landsat imagery using nearest pixels settings.
The following step-wise approach was followed for the training process.

1. Data preprocessing and partitioning.
2. Feature selection.
3. CNN model development and training.

4.1. Data Preprocessing and Partitioning

The input Landsat and the target canopy height images are divided into 30 × 30 pixel image tiles
with no overlap. The dataset forms a total of 87 (30 × 30) images. Both input and target images are
normalized using min-max scaler and then partitioned into training and test set by the 70:30 ratio.
The training dataset is further partitioned into training and validation set by ratio of 85:15. The training
data is used to train the model and is validated via validation dataset on each training epoch. The test
dataset is then used to model the generalization error. Figure 2 displays the true CHM of test data set
and shows that the test dataset is evenly distributed over the whole study region.
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Figure 2. Visual interpretation of test data set distribution over the area of study. The rest of the area
(not covered by these tiles) makes the training data.

4.2. Feature Selection

Every single feature serves a specific purpose in the bigger domain of remote sensing applications.
The red, green and blue bands, which lie in visible region of spectrum, provide the visual interpretation
of what we see on the ground. Short Wave Infrared bands (SWIR) can penetrate thin clouds and
discriminate moisture content of soil and vegetation. Near Infrared band (NIR) is highly responsive
to chlorophyll contents. These different bands, when combined in a specific manner, can lead to
completely new interpretations. Normalized Difference Vegetation Index (NDVI), which is derived
from NIR and Red band, provides pretty good estimation of biomass. Normalized Burn Ratio (NBR),
which is derived from NIR and SWIR, is used to estimate fire severity and highlight recently burned
areas. NDVI and NBR are two of the many good examples of how multiple bands can be combined in
different ways for different applications. The idea is to explore the option of combining all the features
together to form a complex composite input and feed it to deep learning algorithms which are known
for handling complex input–output relationships to see if it can model the relation between Landsat
data and canopy height or not. Three approaches are followed in the feature selection process and then
compared. In the first approach, all the 30 features are stacked together as bands and used in training.
In the second approach, the features selected by [34] are used to train the CNN. Figure 3 represents the
features selected by [34].

In the third approach, individual features (selected bands, band ratios and vegetation indices)
are assessed one-by-one using CNN training and are ranked based on validation mean square error.
Figure 4 displays the features with their usefulness. Once the features are enlisted based on their
usefulness, a threshold is defined on feature score to remove the “less useful” features. Features in
Figure 3 do not match with features in Figure 4 or have different ranking placement. There are three
major factors that may cause this difference. First, geographical locations of areas under study are very
different. Second, types of vegetation under study are different and third, the mechanism to select
features in the two studies is very different.
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Figure 3. Relative importance score of feature in [34].

Figure 4. CNN based feature usefulness score.

4.3. CNN Model Development

CNNs have drawn enough attention for their applications in image identification and signal
processing [42,43] and are being used in remote sensing applications like road network extraction [44],
vehicle detection [45], semantic segmentation [46] and scenario classification [47]. CNNs are capable of
unraveling the hidden patterns in image data. Besides pixel to pixel intensity association, CNNs utilize
spatial association of neighboring pixels for classification and regression tasks. Using the combinations
of convolutional layers and max pooling layers, CNN gets enhanced accuracy in classification tasks
and usually outperforms the traditional machine learning models like support vector machines and
random forests [48,49]. CNNs have several major components i.e., convolutional layers, pooling layers,
dropout layers and fully connected layers. The convolutional layers, in assistance with pooling layers,
are responsible for feature extraction at different scales in the image. Fully connected layers utilize
those features for regression or classification.

For this research work, we experimented with multiple configurations of the CNNs and after
comprehensive testing process we proposed the network architecture shown in Figure 5. The network
takes 30× 30× N image as input where N is the total number of bands. There are four convolutional
layers in the network. The first layer extracts 256 features from the input data at full 30× 30 resolution.
The result of the first layer is fed to the second convolutional layer which extracts 8 features from its
input image. The third layer extracts 16 features whereas the fourth (and the last layer) extracts one
feature image which is then passed through linear activation function. We have bypassed the fully
connected layer and the result of the linear activation layer is considered the target image. We use drop
out of 20% at first layer to avoid the overfitting problem. Each layer is followed by batch normalization
and activation function of rectified linear unit (ReLu) except the final layer (for which the activation is
linear). The stochastic gradient descent function is used for training with the Mean Absolute Error
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(MAE) as loss function as shown in (1). We utilize the MAE as loss metric to be able to make a fair
comparison with [34].

C =
M

∑
t=1
|targett − predictedt | (1)

where targett is the canopy height model derived from LiDAR data, M is number of pixels in the
image (=900 in this case) and predictedt is the predicted average canopy height model by the network.

Figure 5. Our designed CNN. Here N is the number of features (bands and band ratios) in the input
Landsat data.

4.4. Network Training

Four approaches are followed for the training process of CNN. In the first test case, all 30 features
(11 bands and 19 band ratios and vegetation indices) are utilized in the training process. In the
second test case, the features are selected by [34] with selected CNN model. Grant et al. utilized
the SciKit Learn [50] random forest default feature selection model in their study so in the third test
case, those features are tested with random forest regression model with identical settings adopted by
Grant et al. In the fourth test case, we train and analyze the model using the features selected by the
CNN based procedure and the results are compared.

4.4.1. Test Case 1: Training with All the Features

In this approach, the Landsat data with all the bands along with the selected band ratios and
vegetation indices discussed in Section 3.3 are stacked together to form a total of 30 band images.
With canopy height image as the target output, the network is trained to minimize the mean absolute
error between prediction and known output.

4.4.2. Test Case 2: Training with Features Selected by Grant et al.

In order to cope with the overfitting in the first test case, it is important to select the useful features
before training the model. Grant et al. in their research [34] ranked the features discussed in Section 3.3
based on their usability score. They used the Scikit-Learn random forest library’s default feature
scoring mechanism to rank the features [50]. In this test case, we test our network by training using the
features selected according to [34] to see if it has any benefit in training or not. The selected features
are used to trained our proposed CNN model.

4.4.3. Test Case 3: Training with Features, Selected by Grant et al., Using Random Forest
Regression Model

Because the features in the previous test case are selected specifically for random forest models,
we test these features using random forest regression instead of our proposed CNN architecture.
We train the random forest model with the identical settings described in [34] for comparison.
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4.4.4. Test Case 4: Training with Features Selected by CNN Based Feature Selection Method

In this test case, we determine the feature usability score for CNN by analyzing each feature
individually. Each feature is used to train a simple CNN based model for 2000 epochs and then
ranked based on least mean square validation error. The reciprocal of this error is taken as the score
of usefulness. Figure 4 shows the usefulness score of the feature in descending order. We take all
the features with score greater than or equal to 200 and use them in the training process of the final
CNN model.

5. Results and Discussion

5.1. Test Case 1: Training with All Features

CNN model is trained with all the available features in this approach. With canopy height image
as the target output, the network is trained to minimize the mean absolute error between prediction
and known output. Figure 6 shows a training and evaluation graph for the training process. It is
visible from the graph that the training error decreases with increasing epochs and gets as low as
0.085 (2.89 m) but the validation error stays at 0.1 (3.4 m). This gap in the training and validation error
suggests that the model is overfitting.

Figure 6. Error vs. epochs graph for test case 1.

5.2. Test Case 2: Training with Features Selected by Grant et al.

In this approach, we select features in order to avoid overfitting. We select features according
to criteria mentioned in [34]. There seems to be no improvements in the training process when the
features selected from the research in [34] are utilized. The consistent gap in the training and validation
errors clearly indicates that the model is still overfitting. This is probably due to the fact that these
features are scored based on their performance on random forest regression algorithm and are not
suited to be used for CNN. Figure 7 displays the training and validation error of the process vs. epochs.
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Figure 7. Error vs. epochs graph for test case 2.

5.3. Test Case 3: Training with Features, Selected by Grant et al., Using Random Forest Regression Model

We use the same features as discussed in the previous test case and develop a random forest
regression model instead of our proposed CNN model. We use the identical settings for random forest
described in [34] for comparison. With the selected features and the settings, the trained model has
the accuracy of 0.0202 (0.68 m) in terms of mean squared error and 0.068 (2.33 m) in terms of mean
absolute error but the variance is very high i.e., 0.1522 (5.17 m). This suggests that for random forest
based regression model, the selected features in [34] may not be independent and may vary from
dataset to dataset.

5.4. Test Case 4: Training with Features Selected by CNN Based Feature Selection Method

In the last case, we determine the features’ usefulness score for our proposed CNN model. Figure 4
shows the usefulness score of the feature in descending order. We select all the features with score
greater than or equal to 200 and use them in the training process of the final CNN model. Figure 8
displays the training and validation error vs. epoch curves. The training and validation error decreases
down to 0.085 (2.89 m) and 0.0904 (3.092 m).

5.5. Discussion

For the test case 1, when all the features are selected for training, the mean absolute error for test
data is 3.65 m, mean square error is 1.05 m with the variance is 1.009 m. When the features selected
in [34] are assessed with CNN in test case 2, the mean absolute error is 3.43 m and mean squared
error is 0.98 m with the variance of 0.923. These test data results are better than the test case 1 but
the consistent gap between training and validation error graph in Figure 7 suggests that the model is
overfitting. In the third test case, when we train the random forest with the features selected in [34],
we get the model with mean absolute error of 2.33 m and mean square error of 0.686 m with the
variance of 5.168. In terms of test error, this model is better but the confidence is too low because
of very high variance. These results suggest that for the random forest model, the feature selection
method is dependent on the data and may need to be repeated for the data for new regions. Among all
the configurations tested, the test case 4, i.e., CNN model with the features selected based on the CNN
based techniques, provides the best accuracy in terms of errors and confidence in inference. The model
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provides the predictions with the mean absolute error of 3.092 m, mean squared error of 0.8872 m
and the variance of 0.864 m. Table 3 summarizes the accuracy of all the configurations on test data.
Figure 9 visually compares the predictions of our CNN model with the true canopy height model.
It can be seen in the predicted images that the CNN tends to smooth out spatial details in the image
but this can be improved by more training samples and relatively complex models. Keeping in view
the limited computational resources and available training data, we limit the complexity of the model
in this study. It is evident from the results that the CNN does exploit the spatial association of pixels
while predicting the canopy height from Landsat imagery.

Figure 8. Error vs. epochs graph for test case 4.

Figure 9. Visual comparison of predicted and actual canopy heights in different zones of area
under study.
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Table 3. Result comparison table for the four test cases.

Method Mean Absolute Error Mean Square Error Variance

CNN with all features 3.65 m 1.05 m 1.009 m
CNN with features in [34] 3.43 m 0.98 m 0.923 m

Random Forest regression model in [34] 2.33 m 0.686 m 5.168 m
CNN with our features 3.092 m 0.8872 m 0.864 m

6. Conclusions and Future Work

In this research work, we utilize the combination of Landsat imagery and LiDAR derived digital
canopy height model to develop a deep learning model to predict the canopy height from Landsat
data only. Literature is available with similar work. Grant et al. propose the solution for the same
problem in their research work [34]. They utilize the random forest ensemble regression model to make
the predictor. Our hypothesis is that random forest model is good in solving remote sensing related
problems, however, it is inherently incapable of exploiting the spatial associations of neighboring
pixels. In this work, we have proposed the usage of convolutional neural networks to develop the
deep learning model to predict the canopy height using Landsat data only. CNNs not only associate
the values of inputs to targets but also take into account the spatial structures in neighboring pixels
for training and inference. We conducted comprehensive testing and came up with a suitable CNN
structure. Inspired by the work in [34], we engineered a total of 19 vegetation indices and band
ratios. We tested multiple approaches to verify multiple feature selection methods and showed that
the feature selection using simple CNN based method works for CNN based models. For the given
data, we compared our work with random forest based model defined in [34] and showed that our
model outperforms the random forest model in terms of decision confidence. One of the limitations
of deep learning methods is that they require huge amounts of data and computational power for
successful implementation. In the absence of enough data, a heavy regularization penalty needs to
be applied in order to avoid the overfitting problem. Furthermore, it is observed that the (automatic)
selection of optimum features varies on a case to case basis, i.e., the feature selection method, adopted
by researchers in [34], in our area of study does not guarantee the selection of the same features because
of the difference in vegetation type and geographical location. The complexity of the model was kept
relatively low due to limited computational resources, however, for future work, we are planning to
increase the diversity in training along with the complexity of the model to get even better accuracy.
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