
machine learning &

knowledge extraction

Article

Statistical Aspects of High-Dimensional Sparse
Artificial Neural Network Models

Kaixu Yang * and Tapabrata Maiti

Department of Statistics and Probability, Michigan State University, 619 Red Cedar Rd, East Lansing, MI 48824,
USA; maiti@msu.edu
* Correspondence: yangkaix@msu.edu

Received: 21 September 2019; Accepted: 31 December 2019; Published: 2 January 2020
����������
�������

Abstract: An artificial neural network (ANN) is an automatic way of capturing linear and nonlinear
correlations, spatial and other structural dependence among features. This machine performs well
in many application areas such as classification and prediction from magnetic resonance imaging,
spatial data and computer vision tasks. Most commonly used ANNs assume the availability of large
training data compared to the dimension of feature vector. However, in modern applications, as
mentioned above, the training sample sizes are often low, and may be even lower than the dimension
of feature vector. In this paper, we consider a single layer ANN classification model that is suitable for
analyzing high-dimensional low sample-size (HDLSS) data. We investigate the theoretical properties
of the sparse group lasso regularized neural network and show that under mild conditions, the
classification risk converges to the optimal Bayes classifier’s risk (universal consistency). Moreover,
we proposed a variation on the regularization term. A few examples in popular research fields are
also provided to illustrate the theory and methods.

Keywords: high-dimensional classification error; Bayes risk; sparse group lasso; neural network;
universal consistency

1. Introduction

High-dimensional models with correlated predictors are commonly seen in practice.
Most statistical models work well either in low-dimensional correlated case, or in high-dimensional
independent case. There are few methods that deal with high-dimensional correlated predictors,
which usually have limited theoretical and practical capacity. Neural networks have been applied in
practice for years, which have a good performance under correlated predictors. The reason is that the
non-linearity and interactions are brought in by the activation functions and nodes in the hidden layers.
A universal approximation theorem guarantees that a single-layer artificial neural network is able to
approximate any continuous function with an arbitrarily small approximation error, provided that
there is a large enough number of hidden nodes in the architecture. Thus, the artificial neural network
(ANN) handles the correlation and interactions automatically and implicitly. A popular machine
learning application that deals with this type of dependency is the spatio-temporal data, where the
traditional statistical methods model the spatial covariance matrix of the predictors. However, by
artificial neural networks, working with this big covariance matrix can be avoided. Moreover, artificial
neural networks also have good performance in computer vision tasks in practice.

A main drawback of neural networks is that it requires a huge number of training sample due
to large number of inherent parameters. In some application fields, such as clinical trials, brain
imaging data analysis and some computer vision applications, it is usually hard to obtain such a large
number of observations in the training sample. Thus, there is a need for developing high-dimensional
neural networks with regularization or dimension reduction techniques. It is known that l1 norm

Mach. Learn. Knowl. Extr. 2020, 2, 1; doi:10.3390/make2010001 www.mdpi.com/journal/make

http://www.mdpi.com/journal/make
http://www.mdpi.com
https://orcid.org/0000-0002-8971-0257
https://orcid.org/0000-0002-9362-4984
http://dx.doi.org/10.3390/make2010001
http://www.mdpi.com/journal/make
https://www.mdpi.com/2504-4990/2/1/1?type=check_update&version=2

Mach. Learn. Knowl. Extr. 2020, 2, 1 2 of 19

regularization [26] shrinks insignificant parameters to zero. Commonly used regularization includes
lp norm regularization, for example, see the keras package [6]. lp norm regularization with p ≥ 2
controls the model sensitivity [15]. On the other hand lp norm regularization with p < 2, where people
usually take p = 1 for computation efficiency, does not encourage group information. The group
lasso regularization [27] yields group-wise sparseness while keeping parameters dense within the
groups. A common regularization used in high-dimensional artificial neural network is the sparse
group lasso by [21], see for example [11], which is a weighted combination of the lasso regularization
and the group lasso regularization. The group lasso regularization part penalizes the input features’
weights group-wisely: A feature is either selected or dropped, and it is connected to all nodes in the
hidden layer if selected. The lasso part further shrinks some weights of the selected inputs features to
zero: A feature does not need to be connected to all nodes in the hidden layer when selected. This
penalization encourages as many zero weights as possible. Another common way to overcome the
high-dimensionality is to add dropout layers [23]. Randomly setting parameters in the later layers
to zero keeps less non-zero estimations and reduces the variance. Dropout layer is proved to work
well in practice, but no theoretical guarantee is available. [17] considers a deep network with the
combination of regularization in the first layer and dropout in other layers. With a deep representation,
neural networks have more approximation power which works well in practice. They propose a fast
and stable algorithm to train the deep network. However, no theoretical guarantee is given for the
proposed method other than practical examples.

On the other hand, though widely used, high-dimensional artificial neural networks still do not
have a solid theoretical foundation for statistical validation, especially in the case of classification.
Typical theory for low-dimensional ANNs traces back to the 1990s, including [1,2,8,25]. The existing
results include the universal approximation capabilities of single layer neural networks, the estimation
and classification consistency under the Gaussian assumption and 0-1 loss in the low dimensional
case. These theory assumes the 0-1 loss which is not used nowadays and are not sufficient for
high-dimensional case as considered here. Current works focus more on developing new computing
algorithms rather building theoretical foundations or only have limited theoretical foundations. [11]
derived a convergence rate of the log-likelihood function in the neural network model, but this does
not guarantee the universal classification consistency or the convergence of the classification risk. The
convergence of the log-likelihood function is necessary but not sufficient for the classification risk to
converge. In this paper, we obtained consistency results of classification risk for high-dimensional
artificial neural networks. We derived the convergence rate for the prediction error, and proved that
under mild conditions, the classification risk of a high-dimensional artificial neural network classifier
actually tends to the optimal Bayes classifier’s risk. This type of property has been established on
other classifiers such as KNN [7], which derived the result that the classification risk of KNN tends
to the Bayes risk, LDA [28], which derives the classification error rate under Gaussian assumptions,
etc. Popular tasks, like analyzing MRI data and computer vision models, were also included in these
research papers, and we applied the high-dimensional neural network to these demanding tasks
as well.

In Section 2, we will formulate the problem and the high-dimensional neural network formally.
In Section 3, we state the assumptions and the main consistency result. In Section 5, we apply the
high-dimensional neural network in three different aspects of examples: the gene data, the MRI data
and the computer vision data. In Section 6, further ideas are discussed.

2. The Binary Classification Problem

Consider the binary classification problem

P(Y = 1|X = x) = f (x), P(Y = 0|X = x) = 1− f (x),

Mach. Learn. Knowl. Extr. 2020, 2, 1 3 of 19

where x ∈ Rp is the feature vector drawn from the feature space according to some distribution PX ,
and f (·) : Rp → R is some continuous function. Note here that, in the function f (x), there can be any
interactions among the predictors in x, which ensures the possibility to handle correlated predictors.
Let PX,Y be the joint distribution on (X, Y), where X ∈ Rp and Y ∈ {0, 1}. Here p could be large,
and may be even larger than the training sample size n. To study the theory, we assume p has some
relationship with n, for example, p = O(exp(n)). Therefore, p should be written as pn, which indicates
the dependency. However, for simplicity, we suppress the notation pn and denote it with p.

For a new observation x0 ∈ Rp, the Bayes classifier, denoted C∗(X), predicts 1 if f (x) ≥ ps and 0
otherwise, where ps ∈ (0, 1) is a probability threshold, which is usually chosen as 1/2 in practice. The
Bayes classifier is proved to minimize the risk

R(C) =
∫
Rp×{0,1}

1{C(X) 6=Y}dPX,Y. (1)

However, the Bayes classifier is not useful in practice, since f (x) is unknown. Thus a classifier
is to be found based on the observations {(x1, y1), ..., (xn, yn)}, which are drawn from PX,Y. A
good classifier based on the sample should have its risk tend to the Bayes risk as the number of
observations tends to infinity, without any requirement for its probability distribution. This is the
so-called universal consistency.

Multiple methods have been adopted to estimate f (x), including the logistic regression (a linear
approximation), generalized additive models (GAM, a non-parametric nonlinear approximation which
does not take interactions into account), neural networks (a complicated structure which is dense in
continuous functions space), etc. The first two methods usually work in practice with a good theoretical
foundation, however, they sometimes fail to catch the complicated dependency among the feature
vector x in a wide range of applications (brain images, computer visions and spatial data analysis). The
neural network structure is proved to be able to capture this dependency implicitly without explicitly
specifying the dependency hyper-parameters. Consider a single layer neural network model with p
predictor variables. The hidden layer has mn nodes, where mn may be a diverging sequence depending
on n. Similar to pn, we suppress mn as m. A diagram is shown in Figure 1.

Input
layer

Hidden
layer

Output
layer

... ...

Input 1

Input 2

Input p− 1

Input p

Ouput

Figure 1. A diagram for the single-layer neural network model.

For an input vector x ∈ Rp, its weight matrix θ ∈ Rp×m and its hidden layer intercept vector
t ∈ Rm, let the vector ξ ∈ Rm be the corresponding values in the hidden nodes, which is defined as

ξk = tk + θT
k x, k = 1, ..., m.

Let ψ(·) be an activation function, then the output for a given set of weight β is calculated by

b + βTψ(ξ),

Mach. Learn. Knowl. Extr. 2020, 2, 1 4 of 19

where the function ψ(·) is the function ψ(·) being applied element-wisely. We have a wide range
of choices for the activation function. [16] proved that as long as the activation is not algebraic
polynomials, the single layer neural network is dense in the continuous function space, and can thus
be used to approximate any continuous function. This structure can be considered as a model which,
for a given activation function ψ(·), maps a p× 1 input vector to an real-valued output

η(θ,t,β,b)(x) = βTψ(t + θTx) + b =
m

∑
k=1

βkψ(tk + θT
k x) + b,

where η(θ,t,β,b)(x) ∈ R is the output of the single hidden layer neural network with parameter
(θ, t, β, b). Applying the logistic function σ(·), σ(η(θ,t,β,b)(x)) ∈ (0, 1) as an approximation of f (x)
with parameters (θ, t, β, b)

P(Y = 1|X = x) ≈ σ(η(θ,t,β,b)(x)), P(Y = 0|X = x) ≈ 1− σ(η(θ,t,β,b)(x)),

where σ(·) = exp(·)/[1 + exp(·)]. According to the universal approximation theorem, see [8], with a
big enough m, the single layer neural network is able to approximate any continuous function with a
quite small approximation error.

By [2], assuming that there is a Fourier representation of f (x) of the form f (x) =
∫
Rp eiωT x F̃(dω),

let ΓB,C = { f (·) :
∫

B ‖ω‖2| f̃ (dω) < C} for some bounded subset of Rp containing zero and for some
constant C > 0. Then for all functions f ∈ ΓB,C, there exists a single layer neural network output
η(x) such that ‖η(x) − f (x)‖2 = O(1/

√
m) on B. Later [20] generalizes the result by relaxing the

assumptions on the activation function and improved the rate of approximation by a logarithmic factor.
They showed that on a bounded domain Ω ⊂ Rp with Lipschitz boundary, assuming f ∈ Hr(Ω)

satisfies γ(f) =
∫
Rp(1 + |ω|)m+1| f̂e(ω)|dω < ∞ for some extension fe ∈ Hr(Rp) with fe|Ω, if the

activation function σ ∈Wr,∞(R) is non-zero and satisfies the polynomial decay condition |(Dkσ(t))| ≤
Cr(1 + |t|)−s for some 0 ≤ k ≤ r and some s > 1, we have

inf
fm∈NeuNetm

‖ f − fm‖Hr(Ω) ≤ C(s, r, Ω, σ)γ(f)m−1/2,

where the norm is in Sobolev space of order r, and C(s, r, Ω, σ) is a function of s, r, Ω and σ only. Both
results ensure the good approximation property of single layer neural network, and the convergence
rate is independent of the dimension of x, p, as long as f has a Fourier transform which decays
sufficiently fast.

Towards building the high-dimensional ANN, we start by formalizing the model. Let X be a
n× p design or input matrix,

X =

x11 · · · x1p
· · · · · · · · ·
xn1 · · · xnp

 =

xT
1
...

xT
n

 =
[

x(1) · · · x(p)

]
,

let y be a n× 1 response or outcome vector,

y =
[
y1 · · · yn

]T
,

let θ be a p×m parameter or input weight matrix,

θ =

θ11 · · · θ1m
· · · · · · · · ·
θp1 · · · θpm

 =

θT
(1)
...

θT
(p)

 =
[
θ1 · · · θm

]
,

Mach. Learn. Knowl. Extr. 2020, 2, 1 5 of 19

let t be a p× 1 parameter vector,

t =
[
t1 · · · tm

]T
,

let β be a m× 1 parameter vector representing node weights,

β =
[

β1 · · · βm

]T
,

and let b be a scalar parameter.
When one tries to bring neural network into the high-dimension set up, or equivalently, the small

sample size scenario, it usually does not work well. The estimability issue [14] arise from the fact
that even a single layer neural network may have too many parameters. This issue might already
exist in the low dimensional case (n < p), let alone the high dimension case. A single layer neural
network usually includes mp+ 2m+ 1 parameters, which is possible to be much more than the training
sample size n. In practice, a neural network may work well with one of the local optimal solutions
although this is not guaranteed by theory. Regularization methods can be applied to help obtain
a sparse solution. On one hand, proper choice of regularization shrinks partial parameters to zero,
which addresses the statistical estimability issue. On the other hand, regularization makes the model
more robust.

Assuming sparsity is usually the most efficient way of dealing with the high dimensionality. A
lasso type regularization on the parameters has been shown numerically to have poor performance on
neural network models. On one hand, lasso does not drop a feature entirely but only disconnect it
with some hidden nodes. On the other hand, lasso does not select dependent predictor variables in a
good manner [9]. Consider the sparse group lasso proposed by [21], which penalizes the predictors
group-wise and individually simultaneously. It is a combination of the group lasso and the lasso, see for
example [11]. The group lasso regularization part penalizes the input features’ weights group-wisely:
a feature is either selected or dropped, and it is connected to all nodes in the hidden layer if selected.
The lasso part further shrinks some weights of the selected inputs features to zero: a feature does not
need to be connected to all nodes in the hidden layer when selected.

Define the loss function as the log-likelihood function

l(θ, t, β, b) =
n

∑
i=1

[
yi(

m

∑
k=1

βkψ(tk + θT
k xi) + b)− log

(
1 + exp

(
m

∑
k=1

βkψ(tk + θT
k xi) + b

))]
. (2)

Besides the sparse group lasso regularization, we consider a l2 regularization on other parameters.
Then we have

θ̂sgl , t̂sgl , β̂sgl , b̂sgl = arg min
θ,t,β,b∈Rpm×m×m×1

− 1
n

l(θ, t, β, b)

+αλ
p

∑
j=1
‖θ(j)‖2 + (1− α)λ‖θ‖1, (3)

such that
‖β‖2

2 + ‖t‖2
2 + b2 ≤ K.

The sparse group lasso penalty [11,21] includes a group lasso part and a lasso part, which are
balanced using the hyper-parameter α ∈ (0, 1). The group lasso part treats each input as group of m
variables, including the weights for the m hidden nodes connected to each input. This regularization
will be able to include or drop an input variable’s m hidden nodes group-wisely [27]. The lasso
regularization is used to further make the weights sparse within each group, i.e., each input selected
by the group lasso regularization does not have to connect to all hidden nodes. This combination of
the two regularizations makes the estimation even easier for small sample problems. The l2 norm

Mach. Learn. Knowl. Extr. 2020, 2, 1 6 of 19

regularization on the other parameters is more about practical concerns, since it further reduces the
risk of overfitting.

Though with slight difference on the regularization, [11] proposed a fast coordinate gradient
descent algorithm for the estimation, which cycles the gradient descent for the differentiable part of
the loss function, the threshold function for the group lasso part and the threshold function for the
lasso part. Three tuning parameters, α, λ and K can be selected with cross-validations on a grid search.

3. The Consistency of Neural Network Classification Risk

In this section, we conduct the theoretical investigation of classification accuracy of the neural
network model. Before stating the theorems, we need a few assumptions. The independence property
of neural networks, see [25], [1] and [11], states that the first-layer weights in θ, t satisfy

(θi, ti) 6= ±(θi′ , ti′), ∀i 6= i′ = 1, · · · , m

and
θi 6= 0, ∀i,

the set of dilated and translated functions Rp → R

{1, σ(θT
1 x + t1), ..., σ(θT

mx + tm)}

is linearly independent.
The independence property means that different nodes depend on the input predictor variables

through different linear combinations and none of the hidden nodes is a linear combination of the
other nodes, which is crucial in the universal approximation capability of neural networks. [20] proved
that the above set is linearly independent if θ′is are pairwise linearly independent, as long as the
non-polynomial activation function is an integrable function which satisfies a polynomial growth
condition.

According to [11], if the parameters φ = (θ, t, β, b) satisfy the independence property, the
following equivalence class of parameters

EQ(φ) = {φ̃ ∈ Θ : ηφ̃(x) = ηφ(x)∀x}

contains only parameterizations that are sign-flips or rotations and has cardinality exactly 2mm!.
Let P be the distribution of Y for fixed X and Pn be the empirical measure. The best approximation

in the neural network space is the equivalence class of parameters by minimizing the population loss

EQ0 = arg min
φ∈Θ

∫
Rp×{0,1}

lφ(y, x)dPX,Y,

where lφ(y, x)dPX,Y is the loss function with parameters φ. Let Q be the number of equivalent classes
in EQ0. The Excess loss is defined as

ε(φ) =
∫
Rp×{0,1}

(
lφ(Y, X)− lφ0(Y, X)

)
dPX,Y (4)

where φ0 is a set of parameters in EQ0. Moreover, when we refer to a set of parameters in EQ0 for
some parameter φ, we mean that φ0 ∈ EQ0 has the minimum distance to φ. [11] has shown that this
excess loss plus the estimation of the irrelevant weights is bounded from above and may tend to zero
with proper choices of n, p and the tuning parameters.

Another concern is the estimability of the parameters. A common remedy is to assume sparsity of
the predictors. Thus we make the following assumption.

Mach. Learn. Knowl. Extr. 2020, 2, 1 7 of 19

Assumption 1. (Sparsity) Only s of the predictors are relevant in predicting y (without loss of generality, we
assume the first s predictors, denoted S are relevant, and the rest, denoted SC, are irrelevant), all weights in θ

associated with SC, denoted θSC , are zero in the optimal neural network EQ0.

The next assumption is a standard assumption in generalized models, which controls the variance
of the response from below and above. Consider a general exponential family distribution on y with
canonical function b(θ), common assumptions is to bound b′′(θ) and b′′′(θ) from above and below.
However, in binary classification problems, these functions are automatically bounded from above by
1, thus we only need to assume the boundedness from below. Some literature assume constant bounds
on these quantities, however, we do allow the bounds to change with n and the bounds may tend to
zero as n goes to infinity.

Assumption 2. (Boundedness of variance) The true conditional probability of y for a given x is bounded away
from 0 and 1 by a quantity ε̃, which might tend to zero.

The following two assumptions are inherited from [11]. The next assumption is a relatively weak
assumption on the local convexity of the parameters.

Assumption 3. (Local convexity) There is a constant hmin > 0 that may depend on m, s, f and the distribution
PX,Y, but does not depend on p such that for all φ ∈ EQ0, we have

[
∇2

φ

(∫
Rp×{0,1}

lφ(y, x)dPX,Y

)]
φ=φ0

� hmin

[
I 0
0 0

]

where A � B means that A− B is a positive semi-definite matrix.

The next assumption is made to bound the excess loss from below for the parameters outside
EQ0, i.e., the true model is identifiable. Let d0(φ) be the minimum distance from an element in EQ0 to
φ, then we assume

Assumption 4. (Identifiability) For all ε > 0, there is an αε that may depend on m, s, f and the distribution
PX,Y, but does not depend on p such that

αε ≤ inf
φ

{
ε(φ) : d0(φ) ≥ ε and ‖θSC‖1 ≤ 3 ∑

j∈S
Ωα(θ(j)

−θ
0,(φ)
(j)) + ‖(t, β, b)− (t0,(φ), β0,(φ), b0,(φ))‖2

}
.

Assumption 3 states that though neural network is a non-convex optimization problem globally,
the parameters of the best neural network approximation of the true function f (x) has a locally convex
neighborhood. The assumption can be assured in this way. By the continuity of the representation of
the neural network and the loss function, the integration in Assumption 3 is infinitely continuously
differentiable with respect to the nonzero parameters, therefore the second derivative is a continuous
function of the nonzero parameters. By the definition of the parameters of the best neural network
approximation, φ0 minimizes the integration in Assumption 3. If there is not a positive hmin that
satisfies assumption, it either contradicts with the fact that the second derivative is continuous or the
definition of φ0.

Assumption 4 states that the non-optimal neural networks can be distinguished from the best
neural network approximation in terms of the excess loss, if the parameters of the non-optimal neural
network is not in the ε-neighborhood of any of the parameters of the best neural network class EQ0.
Similar to the compatibility condition in [4], the condition does not have to or even may not hold for the

Mach. Learn. Knowl. Extr. 2020, 2, 1 8 of 19

whole space, but is only needed in the subspace {φ : ‖θSC‖1 ≤ 3 ∑j∈S Ωα(θ(j) − θ
0,(φ)
(j)) + ‖(t, β, b)−

(t0,(φ), β0,(φ), b0,(φ))‖2}, thus this is a weaker condition than imposing the lower bound on the excess
loss. The subspace is derived from the the basic inequality of the definition of φ̂ with rearranging terms
and norm inequalities, see for example [4]. Similar subspace can also been found in the compatible
condition in [19]. Since s is unknown, it can not be checked in practice, but it is sufficient to check the
inequality for all sets S ∈ {1, ..., p} with cardinality s0 if s0 is known, which is a stronger version of
Assumption 4.

Now we are ready to state our main result. We have to admit that our theory based on the
estimator from (3) is the global optima, which suffers from the biggest problem in optimization
research: the gap between the global optima in theory and a local optima in practice. We will leave
this computational issue to future research.

Theorem 1. Under Assumptions 1–4, let our estimation be from Equation (3), choosing tuning parameter
λ ≥ 2Tλ̃ for some constant T ≥ 1 and λ̃ = c

√
m log n/n(

√
log Q+

√
m log p log(nm)/(1− α+ α/

√
m)),

if log(n)/(nε̃2) → 0, s2mλ2/(nε̃2) → 0 and n−1m9/2s5/2
√

log(p) → 0 as n → ∞, assume that our
prediction is within a constant distance from the best approximation η0(x), then we have

R(Ĉ)− R(C∗)→ 0 as n→ ∞

A proof of this theorem is given in appendix. This theorem states that with proper choice of
tuning parameters and under some mild assumptions and controls of n, p and s, the high-dimensional
neural network with sparse group lasso regularization tends to have the optimal classification risk.
This is a significant improvement in the theoretical neural network study, since it gives the theoretical
guarantee that high dimensional neural network will definitely work in such situations.

4. Simulation

In this section, we will show two examples. The first example is a revisit of the simulation study
in [17], where we show numerical results that the sparse group lasso neural network (SGLNN)’s
performance is close to the Deep Neural Persuit (DNP)’s performance in their set up. The second
example considers a scenario where the sample size is much smaller, where we show numerical results
that the SGLNN out-performs the DNP.

4.1. Dnp Simulation: Revisit

In this subsection, we revisit the experiment in [17] and compare those models with the neural
network with sparse group lasso regularization. We used exactly the same setup as [17]. The input
variable X was drawn from U(−1, 1), where the feature dimension p was fixed to be 10, 000. The
corresponding labels were obtained by passing X into the feed forward neural network with hidden
layer sizes {50, 30, 15, 10} and ReLU activation functions. Input weights connecting the first m inputs
were randomly sampled from N(0, 0.5). The remaining input weights were kept zero. Furthermore, 5%
of the labels were randomly chosen and flipped to add noises. For each m = 2, 5, 10, 25, we generated
800 training samples, 200 validation samples and 7500 test samples. We report the AUC and F1
scores of the models in Table 1 on 5 repetitions of the data generation, which was exactly the same as
in [17]. The DNP model was coded according to their algorithm outline in python with pyTorch. The
HSICLasso was implemented with the package by the authors followed by the support vector machine
(SVM) package in scikit-learn. The LogR-l1 model was implemented with the LogisticRegressionCV
package in scikit-learn.

In this simulation study, the assumptions in our theory are all satisfied. First, we have a sparse
level of 2, 5, 10 and 25, which are very small portions of the total number of features, 10,000, thus
Assumption 1 is satisfied. Second, we have controlled the seed such that the labels are balanced
between 0 and 1, and the true probabilities generated from the neural network are bounded away

Mach. Learn. Knowl. Extr. 2020, 2, 1 9 of 19

from 0 and 1 by a non-negligible constant, thus assumption 2 is satisfied. Then, we generate x from
uniform distribution and y from a neural network structure, which is a continuous distribution plus
a continuous map from the original space to the probabilities [0, 1]. Therefore, the local convexity
assumption is justified by continuity. Finally, Assumption 4 is a property of neural networks that has
been argued in Section 3. Therefore, this example not only serves as a revisit of the DNP paper, but
also serves as a support for our theory.

From the results, we see both the SGLNN model and the DNP model outperform the other two
baseline models. The SGLNN’s performance is very close to the performance of DNP with a small gap,
which is in accordance to our expectations. Deeper neural networks have much higher representation
powers of complicated functions. The stability of the two models are close, with the SGLNN having
slightly smaller SE in the m = 2 and m = 5 cases. The DNP model does not use dropout in the
prediction process, while the SGLNN uses l1 norm penalty along with the group lasso penalty. The
SGLNN is expected to show stabler results. The reason that we see no significant difference in SE is
that the sample size, 800, is large enough to train the DNP with a full network on the selected variables
without overfitting. To further investigate the performance, we study the smaller sample scenario in
the next subsection.

Table 1. The AUC and F1 score of the compared models in the simulation study. Standard errors are
given in the parentheses.

True Dim 2 5 10 25

LogR-l1 AUC(std) 0.897(0.015) 0.745(0.035) 0.661(0.029) 0.629(0.015)
HSIC-Lasso AUC(std) 0.920(0.001) 0.844(0.015) 0.732(0.025) 0.638(0.021)

DNP AUC(std) 0.925(0.020) 0.879(0.035) 0.784(0.020) 0.669(0.016)
SGLNN AUC(std) 0.911(0.015) 0.862(0.021) 0.770(0.021) 0.658(0.016)

LogR-l1 F1 score(std) 0.889(0.022) 0.748(0.032) 0.668(0.037) 0.638(0.027)
HSIC-Lasso F1 score(std) 0.914(0.000) 0.791(0.010) 0.680(0.012) 0.368(0.028)

DNP F1 score(std) 0.959(0.009) 0.849(0.033) 0.769(0.017) 0.811(0.015)
SGLNN F1 score(std) 0.940(0.005) 0.839(0.012) 0.747(0.019) 0.754(0.015)

4.2. Smaller Sample Size Case

In this subsection, we consider a smaller sample size, which happens in many applications such
as clinic trials, genetic expression data analysis and MRI data analysis. With the same set up as the
model generation in the last subsection, we generate a training sample of size n = 100, 200, 300 and
500. The number of active features is fixed to be m = 5. The total sample size is set to 10, 000, thus
the corresponding testing sample sizes are 9900, 9800, 9700 and 9500. We compare the performance
between the SGLNN and DNP in this set up. The results are shown in Table 2.

Table 2. The AUC and F1 score of the compared models in a smaller sample size scenario with m = 5.
Standard errors are given in the parentheses.

Training sample size 100 200 300 500

DNP AUC(std) 0.606(0.118) 0.701(0.091) 0.727(0.074) 0.828(0.043))
SGLNN AUC(std) 0.624(0.099) 0.703(0.089) 0.762(0.053) 0.820(0.026)

DNP F1 score(std) 0.567(0.095) 0.634(0.073)) 0.679(0.043) 0.750(0.035)
SGLNN F1 score(std) 0.602(0.073) 0.641(0.069) 0.690(0.029) 0.746(0.029)

From the results, we see the SGLNN model outperforms the DNP in the smaller sample size
scenario when n = 100, 200, 300. The reason is that DNP overfits the training data due to small
sample size, while SGLNN has lower risk of overfitting compared with DNP. In all the four sample
sizes, the SGLNN has smaller SE than the DNP model’s SE. SGLNN achieved this by a simpler

Mach. Learn. Knowl. Extr. 2020, 2, 1 10 of 19

representation and the extra l1 norm regularization. The results suggest that we need a simpler model
to prevent overfitting when the training sample size is very small, which is the case in most biology
data. Moreover, an extra l1 regularization makes the model more stable and reliable.

5. Real Data Examples

In this section, we gave real data applications in different research areas: gene expression data,
MRI data and computer vision data. These examples indicate that the sparse neural network has
good performance and is useful in correlated predictor situations. Through all three examples, the
regularized neural network was implemented with fast speed using the algorithm by [11] through their
library in python3 on a desktop computer with Ubuntu 18 system on a i7 processor and GTX1660TI
graphic cards.

To evaluate the model performance, all accuracy results were measured on the testing sets which
were not used for training and averaged on different train test splits. The number of features in the
results are medians among all numbers of features that correspond to the best models evaluated from
cross-validation.

5.1. Example 1: Prostate Cancer Data

In this example, we considered a prostate cancer gene expression data, which is publicly available
in http://featureselection.asu.edu/datasets.php. The data set contains a binary response with 102
observations on 5966 predictor variables. Clearly, the data set is really a high-dimensional data set.
The responses have values 1 (50 sample points) and 2 (52 sample points), where 1 indicates normal
and 2 indicates tumor. All predictors are continuous predictors, with positive values.

Forty observations from no expression group and forty observations from the expression group
were randomly selected to form the training group. The remaining 22 observations form the testing
group. We run the sparse ANN model on a replication of 100 different train–test splits. On average, the
sparse neural network selects only 18 predictors and uses four hidden nodes. Using a cross-validation
technique, the hyper-parameters, and thus the number of features were decided. It has a average
training error rate of 0.04 and a testing error rate of 0.045. The results compared with other methods are
listed in Table 3. The sparse ANN and l1 penalized linear SVM perform the best with 95.5% and 95%
accuracy, respectively. The gradient boosting tree classifier [5] is a powerful ensemble classification
method but performs worse than regularized methods in the high-dimensional setting with an accuracy
of 92.2% using 83.5 features (on average). The logistic regression with l1 regularization uses 36 features
and achieves an accuracy of 93.3%. The generalized additive model (GAM) performs the worst with
an accuracy of 91.8%, mainly due to the infeasibility of basis expansion in this data set, where the data
distribution is highly skewed.

In summary, we showed numerically that the sparse group lasso penalized neural network
is able to achieve at least as good as the existing methods along with providing strong theoretical
support. The greater standard error mainly comes from additional tuning parameters. In terms of
the number of predictor variables, it is not the best. However, as we found in the investigation, since
ANN is a non-convex optimization problem, as people continue to train the model and tune the
hyper-parameters, they get better accuracy rates with less number of predictor variables.

http://featureselection.asu.edu/datasets.php

Mach. Learn. Knowl. Extr. 2020, 2, 1 11 of 19

Table 3. Test accuracy with standard error in parentheses and median of number of features for
different classifiers in the Prostate gene data example.

Classifier Test accuracy Number of features

Regularized neural network 0.955(0.066) 18
Gradient boosting tree 0.922(0.058) 83.5

Logistic Regression with Lasso 0.933(0.058) 36
l1 penalized Linear SVM 0.950(0.052) 16

Generalized additive model with group lasso 0.918(0.061) 5

5.2. Example 2: Mri Data for Alzheimer’S Disease

Data used in this example is from the Alzheimer’s disease Neuroimaging Initiative (ADNI)
database (http://www.loni.ucla.edu/ADNI). We used T1-weighted MRI images from the collection of
standardized datasets. The description of the standardized MRI imaging from ADNI can be found in
http://adni.loni.usc.edu/methods/mri-analysis/adni-standardized-data/. The images were obtained
using magnetization prepared rapid gradient echo (MARAGE) or equivalent protocols with varying
resolutions (typically 1.0× 1.0 mm in plane spatial resolution and 1.2 mm thick sagittal slices with
256× 256× 256 voxels). The images were then pre-processed according to a number of steps detailed
at http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/, which corrected gradient
non-linearity, intensity inhomogeneity and phantom-based distortion. In addition, the pre-processed
imaging were processed by FreeSurfer for cortical reconstruction and volumetric segmentation by
Center for Imaging of Neurodegnerative Diseases, UCSF. The skull-stripped volume (brain mask)
obtained by FreeSurfer cross-sectional processing were used in this study.

In our example, we used images from ADNI-1 subjects obtained using 1.5 T scanners at screening
visits, and we used the first time point if there are multiple images of the same subject acquired
at different times. There are totally 414 subjects, among which 187 are diagnosed as Alzheimer’s
disease and 227 healthy subjects at the screening visit. An R package ANTsR were applied for imaging
registration. Then, the 3dresample commands in AFNI were used to adjust the resolution and reduce
the total number of voxels of the imaging to 18× 22× 18. The x axis and y axis for horizontal plane, x
axis and z axis for coronal plane and y axis and z axis for sagittal plane. Only the 1100 voxels located
in the center of the brain were used as features for classification. After removing the voxels with zero
signal for most of the subjects, we have 1971 voxels left in use.

We randomly sampled 100 from the 187 AD subjects and 100 from the 227 healthy subjects
as our training set, and the rest 214 subjects as testing set. The sparse ANN model was run on
100 replications of different train–test split. On average, the neural network finally selects seven
predictors and used 12 hidden nodes. It has a training error rate of 0.21 and a testing error rate of 0.224.
The results compared with other methods are listed in Table 4. The sparse ANN has a competitive
performance which is slightly better than the PMLE-LDA with similar standard error. The goal of this
experiment is not to show that the sparse group lasso neural network outperforms the other methods
significantly, but just demonstrates that the model can be tuned to work as good as the other methods
along with statistical theory. With finer tuning of the hyper-parameters, the results can be further
improved. We compared the results with a few methods including the MLE-LDA, the PMLE-LDA
(penalized MLE-LDA; [28]), the PREG-LDA (penalized regular LDA; [28]), the FAIR (Feature Annealed
Independence Rule; [10]) and the NB (Naive Bayes; [3]). Methods without regularization are not
presented, since the high dimensionality prevents it from giving stable solutions. The penalized
MLE-LDA produces an accuracy rate of 77.2% using only five predictor variables. The PREG-LDA
method has the least number of predictors, 3, but has a lower accuracy rate 0.750. The rest of the
methods perform worse. Besides the application, this example indicates that the ANN could be an
alternative tool for spatial data modeling, at least for classification.

http://www.loni.ucla.edu/ADNI
http://adni.loni.usc.edu/methods/mri-analysis/adni-standardized-data/
http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/

Mach. Learn. Knowl. Extr. 2020, 2, 1 12 of 19

Table 4. Test accuracy with standard error in parentheses and median of the number of features for
different classifiers in the MRI Alzheimer’s disease example.

Classifier Test Accuracy Number of Features

Regularized neural network 0.776(0.031) 7
MLE-LDA 0.692(0.030) 1971

PREG 0.750(0.029) 3
PMLE-LDA 0.772(0.025) 5

FAIR 0.632(0.033) 7
NB 0.674(0.024) 1971

5.3. Example: Karlsruhe Institute of Technology and Toyato Technology Institute (KITTI) Autonomous
Driving Data

For the generalization, we also give an example on the computer vision tasks. The data used in
this example is from [12], which has different aspect of images or stereos from high-resolution color
and gray-scale video cameras or ladar (laser radar). The image and stereo data includes daily traffic
data that help developing autonomous driving in different aspects. In our example, we used the 2D
object detection data, for example, see Figure 2.

Figure 2. Example image from the KITTI 2D object detection data set.

The 2D object data set includes 7481 training images and 7518 testing images, comprising a total
of 80,256 labeled objects. All images are colored and saved as a .png file. Since this was an open
competition, the labels for testing data are not available. We only used the training data set as our
example data. The original data includes 13 different label classes, however, to emphasize the binary
classification ability of the regularized ANN model, we took only two classes: pedestrian and car.
The sub-images of pedestrians and cars were extracted from the original images using the location
information provided by the data set. This gives us 18,000 car images and 7000 pedestrian images
of resolution ranging from 40-by-40 to 180-by-150. Since the regularized ANN methods is especially
useful when the sample size is small, we randomly sampled 2000 cars and 2000 pedestrians as our
data. We shuffled the 4000 images, and divided them into 800 training images and 3200 testing images.
Figure 3 show the images after pre-processing. A pre-processing steps are done with python libraries
including matplotlib, PIL and pandas.

Mach. Learn. Knowl. Extr. 2020, 2, 1 13 of 19

Figure 3. Example images of pedestrians and cars after pre-processing.

Since ANN does not handle local feature information as good as convolutional neural networks
(CNN), we did a feature extraction using the pre-trained VGG19 CNN model [22], whose weights
were trained on 120 million images of over 1000 classes. We adopted the convolutional layers from the
model as a feature extractor. To feed the images into the model, a re-sizing (from the original size to
224-by-224-by-3) were performed using bi-linear interpolation methods. The VGG19 feature extractor
generates a 4096-by-1 vector from each image. Our ANN model takes this 4096-dimensional input and
trains on the 800 images. We compare our results with the regular ANN, the logistic regression with
l1 regularization, the SVM with l1 regularization and the GAM with group lasso regularization. The
results are shown in Table 5. The regular neural network totally failed due to the high-dimensionality
and hence estimability issue. The logistic regression and the GAM have more nonzero features and
slightly greater standard error. The SVM has similar result to the SGLNN, but the SGLNN gains a
slightly better performance.

Table 5. Test accuracy with standard error in parentheses and median of the number of features for
different classifiers in the KITTI autonomous driving example.

Classifier Test Accuracy Number of Features

SGLNN 0.994(0.001) 148
Neural network 0.514(0.102) 4096

Log-l1 0.991(0.002) 176
SVM-l1 0.993(0.001) 144
GAM 0.989(0.002) 152

Moreover, we have plotted the accuracy score for all three examples along with the sparsity level.
l1 logistic regression, l1 SVM and group lasso penalized generalized additive model (GAM) are used
along with the sparse group lasso neural network (SGLNN). These plots give us a hint how sparsity
level influences the prediction results. The plots are given in Figure 4. All these examples illustrate the
usefulness and the numerical properties of our proposed high dimensional neural network model.

Figure 4. Test accuracy score vs sparsity level in the three examples.

Mach. Learn. Knowl. Extr. 2020, 2, 1 14 of 19

6. Discussion

In this paper, we considered the sparse group lasso regularization on high-dimensional neural
networks and proved that under mild assumptions, the classification risk converges to the optimal
Bayes classifier’s risk. To the best of our knowledge, this is the first result that the classification risk of
high-dimensional sparse neural network converges to the optimal Bayes risk. Neural networks are
very good approximations to correlated feature functions, including computer vision tasks, MRI data
analysis and spatial data analysis. We expect further investigation is warranted in the future.

An innovative idea that deserves further investigation is to specify a larger number of hidden
nodes and use a l0 + l1 norm penalty on the hidden nodes parameters β. This methods searches a
larger solution field and will give a model at least as good as the l2 norm penalty. Moreover, l0 + l1
norm penalty is proved to work well in low signal cases [18]. In detail, the formulation is to minimize
(3) plus an extra regularization on β: λ3‖β‖0 + λ4‖β‖1. This formulation does not bring in extra tuning
parameters, since we release the penalization on l2 norm of β and the number of hidden nodes m. With
l0 + l1 norm penalty, the parameters can be trained using coordinate descent algorithm with the l0 + l1
norm penalty being handled by mixed integer second order cone optimization (MISOCO) algorithms
via optimization software like Gurobi. This algorithm adds an extra step to the algorithm in [11] to
handle the l0 + l1 norm penalty.

The computational issue of finding the global optimal in non-convex optimization problems is
still waiting to be solved to eliminate the gap between theory and practice. This will pave way for
further theoretical research.

Author Contributions: Data curation, K.Y.; Formal analysis, K.Y.; Investigation, K.Y.; Methodology, K.Y.; Project
administration, T.M.; Software, K.Y.; Supervision, T.M.; Writing – original draft, K.Y.; Writing, review and editing,
T.M. All authors have read and agreed to the published version of the manuscript.

Funding: This paper is partially supported by NSF-DMS 1945824 and NSF-DMS 1924724.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Theorem

In this section, we give the proof for Theorem 1. To prove the theorem, we need the
following lemmas.

Lemma A1. For a general classifier Ĉ(x) of y, denote C∗(x) the Bayes classifier. Then we have

R(Ĉ)− R(C∗) ≤ 2EX [|σ(η(X))− σ(η̂(X))|] ≤ 2EX [|η(X)− η̂(X)|].

Proof. By the definition of R(C) and R(C∗), we have

R(Ĉ)− R(C∗)

=EX,Y

[
1{Ĉ(X) 6=Y}

]
−EX,Y

[
1{C∗(X) 6=Y}

]
=EXEY|X

[
1{Ĉ(X) 6=Y} − 1{C∗(X) 6=Y}

]
=EX

[
1{Ĉ(X)=0}η(X) + 1{Ĉ(X)=1}(1− η(X))

−1{C∗(X)=0}η(X)− 1{C∗(X)=1}(1− η(X))
]

=EX

[
1{Ĉ(X) 6=C∗(X)}|2η(X)− 1|

]
=EX

[
1{Ĉ(X)=1,C∗(X)=0 or Ĉ(X)=0,C∗(X)=1}|2η(X)− 1|

]
=2EX

[
1{σ(η̂(X))≥1/2,σ(η(X))<1/2 or {σ(η̂(X))<1/2,σ(η(X))≥1/2}

|η(X)− 1/2|]

Mach. Learn. Knowl. Extr. 2020, 2, 1 15 of 19

≤2EX [|σ(η(X))− σ(η̂(X))|] .

For the second inequality, consider the Taylor expansion of σ(η(X)) at η̂(X), we have

EX [|σ(η(X))− σ(η̂(X))|]
=EX

[
|σ′(η∗(X))(η(X)− η̂(X)|

]
≤EX [|η(X)− η̂(X)|].

where η∗(X) lies on the line jointing η(X) and η̂(X), and the second inequality follows from the fact
that σ′(x) = exp(x)/(1 + exp(x))2 ≤ 1.

Lemma A2. Under assumptions, we have

1
n
‖η̂− η0‖2

2 = OP

(
log(n)

nε̃2

)
+ O

(
1

nε̃2m

)
+O

(
s2mλ2

nε̃4

)
+ OP

(
n−1m9/2s5/2√log p

)
where η̂ and η0 are the vectors of predictions for the sample x1, ..., xn using the estimated parameters and the
true parameters, respectively. Here the four terms come from the estimation, the neural network approximation,
the regularization and the excess loss error by the sparse group lasso regularization on θ, respectively.

Proof. By the definition of η̂, we have

− 1
n

n

∑
i=1

[yiη̂(xi)− log (1 + exp(η̂(xi)))]

+ λα
p

∑
j=1
‖θ̂(j)‖2 + λ(1− α)‖θ̂‖1

≤− 1
n

n

∑
i=1

[
yiη

0(xi)− log
(

1 + exp(η0(xi))
)]

+ λα
p

∑
j=1
‖θ0

(j)‖2 + λ(1− α)‖θ0‖1

Rearrange the terms and by Taylor expansion, we have

− 1
n
(η̂− η0)T(y− µ0) +

1
2n

(η̂− η0)TΣ0(η̂− η0)

− 1
n

n

∑
i=1

∂3l
∂η∗(xi)

(η̂i − η0
i)

3

≤λ
sn

∑
j=1

[
α(‖θ0

(j)‖2 − ‖θ̂(j)‖2) + (1− α)(‖θ̂(j)‖1

−‖θ0
(j)‖1)

]
− λ

p

∑
j=sn+1

[
α‖θ̂(j)‖2 + (1− α)(‖θ̂0

(j)‖1

]
≤λ

sn

∑
j=1

[
α(‖θ0

(j)‖2 − ‖θ̂(j)‖2) + (1− α)(‖θ̂(j)‖1 − ‖θ0
(j)‖1)

]
(A1)

Mach. Learn. Knowl. Extr. 2020, 2, 1 16 of 19

where Σ0 is diagonal matrix with Σ0
ii = exp(η0(xi))/[1 + exp(η0(xi))]

2, µ0 is the conditional
expectation of y given X in the neural network approximation space, η∗ lies on the line joining
η̂ and η0. Consider the second order term in Equation (A1), by Assumption 2, we have

1
2n

(η̂− η0)TΣ0(η̂− η0) ≥ ε̃2

2n
‖η̂− η0‖2

2.

Then the first term on the LHS of Equation (A1), by uTv ≤ ‖u‖2
2/4 + ‖v‖2

2, norm inequality,
maximal inequality (see proof in [13]) and result in [20],

1
n
|(η̂− η0)T(y− µ0)|

≤ 1
n
|(η̂− η0)T(y− µ)|+ 1

n
|(η̂− η0)T(µ− µ0)|

≤ ε̃2

4n
‖η̂− η0‖2

2 +
1

nε̃2 ‖y− µ‖2
2 +

ε̃2

8n
‖η̂− η0‖2

2

+
2

nε̃2 ‖µ− µ0‖2
2

=
3ε̃2

8n
‖η̂− η0‖2

2 + OP

(
log(n)

nε̃2

)
+ O

(
1

nε̃2m

)
.

Combining this result with Equation (A1), we have

ε̃2

8n
‖η̂− η0‖2

2 −
1
n

n

∑
i=1

∂3l
∂η∗(xi)3 (η̂i − η0

i)
3

≤λ
sn

∑
j=1

[
α(‖θ0

(j)‖2 − ‖θ̂(j)‖2)

+(1− α)(‖θ̂(j)‖1 − ‖θ0
(j)‖1)

]
. (A2)

Note that ∣∣∣∣ ∂3l
∂η∗(xi)3

∣∣∣∣ = ∣∣∣∣exp(η∗(xi))[1− exp(η∗(xi))]

[1 + exp(η∗(xi))]3

∣∣∣∣ ≤ 1.

Then, by applying the norm inequality, Equation(A2) becomes

ε̃2

8n
‖η̂− η0‖2

2 −
1
n
‖η̂− η0‖3

2

≤λ
sn

∑
j=1

[
α(‖θ0

(j)‖2 − ‖θ̂(j)‖2) + (1− α)(‖θ̂(j)‖1

−‖θ0
(j)‖1)

]
+ OP

(
log(n)

nε̃2

)
+ O

(
1

nε̃2m

)
. (A3)

Apply the auxiliary lemma in [24], see also [11], we have

‖η̂− η0‖2
2/nC2

0

≤λ
sn

∑
j=1

[
α(‖θ0

(j)‖2 − ‖θ̂(j)‖2) + (1− α)(‖θ̂(j)‖1

−‖θ0
(j)‖1)

]
+ OP

(
log(n)

nε̃2

)
+ O

(
1

nε̃2m

)
(A4)

where

C0 = max
(

1
ε0
√

n
,

R2

αε0

√
n

)

Mach. Learn. Knowl. Extr. 2020, 2, 1 17 of 19

ε0 =
ε̃2

16
for some constant R, and some aε0 that depends on ε0, sn and K. Then by norm inequalities, the first
term of RHS of Equation (A4) becomes

λ
sn

∑
j=1

[
α(‖θ0

(j)‖2 − ‖θ̂(j)‖2) + (1− α)(‖θ̂(j)‖1

−‖θ0
(j)‖1)

]
≤λ

sn

∑
j=1

[
α‖θ0

(j) − θ̂(j)‖2 + (1− α)‖θ0
(j) − θ̂(j)‖1

]
≤λ

sn

∑
j=1

[α +
√

m(1− α)]‖θ0
(j) − θ̂(j)‖2

≤1
2

λ2s[α +
√

m(1− α)]2C2
0 +

1
2C2

0
‖θ0

S − θ̂S‖2
2 (A5)

According to [11], when we choose λ ≥ 2Tλ̃ for some constant T ≥ 1 and λ̃ =

c
√

m log n/n(
√

log Q +
√

m log p log(nm)/(1− α + α/
√

m)), we have

1
2C2

0
‖θ0

S − θ̂S‖2
2 ≤

(
λ̃ ∨ ε(θ̂, β̂, t̂, b̂)

)
=O

(
n−1m9/2s5/2√log p

)
(A6)

with probability at least

1−
√

m
n2 − c log n exp (

−
T2(
√

log Q +
√

m log p log(nm)/(1− α + α/
√

m))2

c1

)
:= 1− P1.

Combining the results in Equations (A4)–(A6), we have

1
n
‖η̂− η0‖2

2 =OP

(
log(n)

nε̃2

)
+ O

(
1

nε̃2m

)
+ O

(
s2mλ2

nε̃4

)
+ OP

(
n−1m9/2s5/2√log p

)

Proof of theorem 1

Proof. By lemma A1, we have

R(Ĉ)− R(C∗) ≤ 2EX [|η(X)− η̂(X)|]

Thus it suffices to bound EX [|η(X)− η̂(X)|], or equivalently, |η(X)− η̂(X)| in probability. Let W
be the random variable |η(X)− η̂(X)| according to PX , then |η(X)− η̂(X)| is a vector of n i.i.d. copies
of W, denoted W1, ..., Wn. By lemma A2, we have

1
n

n

∑
i=1

W2
i =O

(
log(n)

nε̃2

)
+ O

(
1

nε̃2m

)
+ O

(
s2mλ2

nε̃4

)

Mach. Learn. Knowl. Extr. 2020, 2, 1 18 of 19

+ O
(

n−1m9/2s5/2√log p
)

with probability at least 1− P2 for some P2 → 0 as n → ∞. With proper choice of n, p and other
hyper-parameters, we have

1
n

n

∑
i=1

W2
i

P−→ 0 as n→ ∞. (A7)

Since X ∈ X for some bounded space X , by the weak law of large numbers, we have

1
n

n

∑
i=1

W2
i

P−→ EX [W2] as n→ ∞.

By definition, we have for any ε > 0,

P
(∣∣∣∣∣ 1n n

∑
i=1

W2
i − EX [W2]

∣∣∣∣∣ > ε

)
→ 0 as n→ ∞.

Combine this with Equation (A7), we have

EX [W2]→ 0 as n→ ∞.

Then by Jensen’s inequality, we have

EX [W] ≤
(

EX [W2]
)1/2

→ 0 as n→ ∞.

Therefore, we have
R(Ĉ)− R(C∗) ≤ 2EX [W]→ 0 as n→ ∞.

References

1. Anthony, M.; Bartlett, P.L. Neural Network Learning: Theoretical Foundations; Cambridge University Press:
Cambridge, UK, 2009.

2. Barron, A.R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf.
Theory 1993, 39, 930–945. [CrossRef]

3. Bickel, P.J.; Levina, E. Some theory for Fisher’s linear discriminant function,naive Bayes’, and some
alternatives when there are many more variables than observations. Bernoulli 2004, 10, 989–1010. [CrossRef]

4. Bühlmann, P.; Van De Geer, S. Statistics for High-Dimensional Data: Methods, Theory and Applications; Springer
Science & Business Media: Berlin/Heidelberg, Germany, 2011.

5. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd
International Conference on Knowledge Discovery and Data Mining, San Francisco, FL, USA, 13–17 August
2016; pp. 785–794.

6. Chollet, François and others. In Keras. Available online: https://keras.io (accessed on 1 January 2015).
7. Chaudhuri; K.; Dasgupta, S. Rates of convergence for nearest neighbor classification. In Proceedings of the

Advances in Neural Information Processing Systems 27 (NIPS 2014), Montréal, QC, Canada, 8–13 December
2014; pp 3437–3445.

8. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 2989, 2,
303–314. [CrossRef]

9. Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. Least angle regression. Ann. Stat. 2004, 32, 407–499.
10. Fan, J.; Fan, Y. High dimensional classification using features annealed independence rules. Ann. Stat. 2008,

36, 2605. [CrossRef] [PubMed]
11. Feng, J.; Simon, N. Sparse-Input Neural Networks for High-dimensional Nonparametric Regression and

Classification. arXiv 2017, arXiv:1711.07592.

http://dx.doi.org/10.1109/18.256500
http://dx.doi.org/10.3150/bj/1106314847
https://keras.io
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1214/07-AOS504
http://www.ncbi.nlm.nih.gov/pubmed/19169416

Mach. Learn. Knowl. Extr. 2020, 2, 1 19 of 19

12. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite.
In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition; Providence, RI,
USA, 16–21 June 2012.

13. Huang, J.; Horowitz, J.L.; Wei, F. Variable selection in nonparametric additive models. Ann. Stat.
2010, 38, 2282. [CrossRef] [PubMed]

14. Khuri, A. Linear Model Methodology; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009.
15. Kowalski, M. Sparse regression using mixed norms. Appl. Comput. Harmon. Anal. 2009, 27, 303–324.

[CrossRef]
16. Leshno, M.; Lin, V.Y.; Pinkus, A.; Schocken, S. Multilayer feedforward networks with a nonpolynomial

activation function can approximate any function. Neural Networks 1993, 6, 861–867. [CrossRef]
17. Liu, B.; Wei, Y.; Zhang, Y.; Yang, Q. Deep Neural Networks for High Dimension, Low Sample Size Data.

IJCAI 2017, 2287–2293.
18. Mazumder, R.; Radchenko, P.; Dedieu, A. Subset selection with shrinkage: Sparse linear modeling when the

SNR is low. arXiv 2017, arXiv:1708.03288.
19. Meier, L.; Van de Geer, S.; Bühlmann, P. High-dimensional additive modeling. Ann. Stat. 2009, 37, 3779–3821.

[CrossRef]
20. Siegel, J.W.; Xu, J. On the Approximation Properties of Neural Networks. arXiv 2019, arXiv:1904.02311.
21. Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. A sparse-group lasso. J. Comput. Graph. Stat. 2013, 22,

231–245. [CrossRef]
22. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv

Preprint 2014, arXiv:1409.1556.
23. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent

neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
24. Städler, N.; Bühlmann, P.; Van De Geer, S. `1-penalization for mixture regression models. Test 2010, 19,

209–256. [CrossRef]
25. Stonag, E.D. Critical points for least-squares problems involving certain analytic functions, with applications

to sigmoidal nets. Adv. Comput. Math. 1996, 5, 245–268. [CrossRef]
26. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. 1996, 58, 267–288.

[CrossRef]
27. Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser.

2006, 68, 49–67. [CrossRef]
28. Li, Y.; Maiti, T. High Dimensional Discriminant Analysis for Spatially Dependent Data; Technical Report;

Department of Statistics and Probability, Michigan State University: East Lansing, MI, USA, 2018.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1214/09-AOS781
http://www.ncbi.nlm.nih.gov/pubmed/21127739
http://dx.doi.org/10.1016/j.acha.2009.05.006
http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://dx.doi.org/10.1214/09-AOS692
http://dx.doi.org/10.1080/10618600.2012.681250
http://dx.doi.org/10.1007/s11749-010-0197-z
http://dx.doi.org/10.1007/BF02124746
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Binary Classification Problem
	The Consistency of Neural Network Classification Risk
	Simulation
	Dnp Simulation: Revisit
	Smaller Sample Size Case

	Real Data Examples
	Example 1: Prostate Cancer Data
	Example 2: Mri Data for Alzheimer'S Disease
	Example: Karlsruhe Institute of Technology and Toyato Technology Institute (KITTI) Autonomous Driving Data

	Discussion
	Proof of Theorem
	References

