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Abstract: Prediction is a common machine learning (ML) technique used on building energy
consumption data. This process is valuable for anomaly detection, load profile-based building control
and measurement and verification procedures. Hundreds of building energy prediction techniques
have been developed over the last three decades, yet there is still no consensus on which techniques
are the most effective for various building types. In addition, many of the techniques developed are
not publicly available to the general research community. This paper outlines a library of open-source
regression techniques from the Scikit-Learn Python library and describes the process of applying them
to open hourly electrical meter data from 482 non-residential buildings from the Building Data Genome
Project. The results illustrate that there are several techniques, notably decision tree-based models,
that perform well on two-thirds of the total cohort of buildings. However, over one-third of the
buildings, specifically primary schools, performed poorly. This example implementation shows that
there is no one size-fits-all modeling solution and that various types of temporal behavior are difficult
to capture using machine learning. An analysis of the generalizability of the models tested motivates
the need for the application of future techniques to a board range of building types and behaviors.
The importance of this type of scalability analysis is discussed in the context of the growth of energy
meter and other Internet-of-Things (IoT) data streams in the built environment. This framework is
designed to be an example baseline implementation for other building energy data prediction methods
as applied to a larger population of buildings. For reproducibility, the entire code base and data sets
are found on Github.

Keywords: machine learning benchmarking; generalizable machine learning; building energy
prediction; building performance prediction; energy forecasting; machine learning; smart meters;
artificial neural networks; support vector machines; transfer learning

1. Introduction

Machine learning prediction models are highly impacting all facets of industry and science.
They are being developed to diagnose illnesses, drive cars, suggest purchases to potential customers
and mine the human genome. The built environment has the opportunity to leverage the
same algorithms and techniques to improve efficiency and to create new business models [1].
Building performance analysis has dozens of uses for temporal prediction of electricity, heating and
cooling energy. Prediction is often made both on the short-term (hours or days ahead) or long-term
(weeks, months or years ahead). Short-term prediction is generally used for real-time HVAC control
and efficiency of upcoming hours [2,3], scheduling and management of power stations and demand
response schemes [4–6] and the analysis of residential metering and sub-metering [7], in addition
to many other applications. Long-term prediction is used for the evaluation of energy conservation
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measures through a baseline model generation [8] and capacity expansion and planning. Figure 1
illustrates the measurement and verification procedure using long-term energy prediction models.
A period of baseline energy consumption is used to create a machine learning prediction model to
evaluate how much energy a building would use in a status quo baseline mode. An energy conservation
measure (ECM) is installed and the difference between the baseline is the avoided energy consumption
or demand. This process is crucial for the implementation of energy savings implementations as it
gives building owners, designers and contractors a means of evaluating the success of such measures.

Figure 1. Prediction models as a comparison to energy savings interventions (Used with permission
from the EVO–IPMVP [9]). This graphic illustrates one of the most common uses for long term building
performance prediction models and is recognizable through its place in the IPMVP standard.

1.1. Contemporary Building Energy Prediction

A recent comprehensive review of building performance prediction studies is available that
describes the models, techniques, input features and uses for energy prediction in buildings [10].
This study reviewed research that implemented the most common prediction modeling techniques
as applied to building energy prediction. These models include Support Vector Machines (SVM),
Artificial Neural Networks (ANN), Ensemble methods and various other techniques. A majority of the
literature focuses on a single building or a small set of buildings case studies. Other ML reviews in the
building industry show similar libraries of work [11,12].

The concern of the recent work in this area is the use of training data from a single case study
building. Figure 2 illustrates the number of buildings used to train models in a selection of long-term
prediction papers from the previously-mentioned review publication [10]. A majority of the models
produced were implemented on only a single building. Case studies are an integral part of the
building performance research community as they provide a tangible example of a new technology or
method on a real building project. However, the challenge of using a case study as a machine learning
application is that the results may not be generalizable across other types of buildings. Training a
machine learning model on such a small set of data results in a solution that is designed specifically
for that scenario. Such development produces models that have questionable value when applied to
the broader building stock.
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A majority of prediction 
studies using measured 
data implemented and 

tested the model(s) on a 
single building (33 out 

of 42)

Figure 2. In the most recent prediction review study [10], a majority of publications developed and
tested a machine learning modeling framework on data from a single building. These studies have the
tendency to create very complex models for those particular buildings.
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This type of generalizability challenge is discussed extensively in the machine learning community.
This concept is related to the bias-variance trade-off that is illustrated in Figure 3. A model with high
bias suffers from a lack of complexity to capture the behavior that is occurring in reality in a meaningful
way. This model would be considered as a scenario that is potentially underfitting the data. On the other
hand, an overly complex model suffers from high variance; this model can capture all the detailed
behavior in the data that is used to train the model, but the model does not perform as well with new
data sets (buildings) or future data.

Figure 3. Bias-variance trade-off (http://www.r2d3.us/visual-intro-to-machine-learning-part-2)—The
graph shows how as complexity increases the bias of the model drops as does the error rate. At a certain
point the model becomes so complex that variance or over-fitting becomes the key issue and the error
rates increase again. The tree-based models below the chart show the increasing complexity of models
of that type. Graphic adapted with permission from the authors of Reference [13].

Three fundamental studies were completed in the last four years, which took the process of
machine learning for prediction to a diverse set of buildings. The first used 400 randomly selected
buildings and applied six conventional, open prediction models to create a measurement and
verification baseline [8]. The next study used 537 buildings and applied ten prediction models
to understand further which model performed best among a large set of building [14]. The final study
focused on the evaluation of what percentage of the building stock are appropriate to be used with
automated methods as developed in the previous two studies [15].

http://www.r2d3.us/visual-intro-to-machine-learning-part-2
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Overall, these studies tested an extensive set energy prediction methods on a large set of buildings
and this method was a step in the direction of generalizability of energy prediction models. However,
these studies are problematic for use as a benchmarking data set for other researchers due to the lack
of access to the exact models or data used. Access to these aspects of their studies would allow future
techniques to be compared directly through the application of the old machine learning methods on
new data or implementation of modern methods on their old data. These studies give the community
an understanding of what models work better than others in the context of the bias-variance trade-off,
but they do not provide the ability to test new models and techniques.

1.2. The Importance of Benchmarking

Despite the advancement of machine learning and prediction for performance data for buildings,
a significant barrier to wide-spread dissemination is that the techniques are not easily reproducible
and the results are not generalizable. Engineers, data scientists and researchers should be asking
themselves does my machine learning technique scale across hundreds of buildings? And is it faster or more
accurate? How do we compare, each technique against previously created methods?

The time-series data mining community identified this problem as early as 2003: “Much of this
work has very little utility because the contribution made”...“offer an amount of improvement that
would have been completely dwarfed by the variance that would have been observed by testing
on many real-world data sets or the variance that would have been observed by changing minor
(unstated) implementation details [16]. This research group has most recently completed an extensive
review of time-series classification algorithms on the UC Riverside open time-series data set [17,18].

Since then, a large portion of the machine learning community has created a program called
MLPerf that uses benchmark data sets to test the software, hardware and cloud-based solutions for
applications such as image classification, speech recognition, sentiment analysis and several other
common machine learning challenges (https://mlperf.org/). This effort is predicted to move the
entire community forward by allowing for quantitative comparison of the library of techniques in
the community. Several other good examples of benchmarking data set and analysis can be found in
specific scientific domains such as biology [19], information retrieval [20] and intrusion detection [21].

The built environment still struggles with model generalizability despite these advancements in
the larger ML community. Most of the existing building performance data science studies rely on each
researcher creating their methods, finding a case study data set and determining efficacy on their own.
Not surprisingly, most of those researchers find extraordinarily positive results. However, the ability
to compare those results to other publications and techniques is limited.

Using an extensive, consistent benchmark data set from hundreds (or thousands) of buildings,
a researcher can determine how well their methods perform across a heterogeneous data set. If multiple
researchers use the same data set, then there can be meaningful comparisons of accuracy, speed and
ease-of-use. Figure 4 illustrates the vision that benchmarking can achieve in this context. The purpose
of this paper is to establish an example of machine learning benchmarking for energy forecasting
and prediction.

The creation of benchmarking data sets and methods sets the research community towards an
environment in which there is a measure of accountability in the claims made by new algorithms.
These new techniques will likely be implemented on the test case(s) developed in the course of a
research study but will also need to be applied as much as possible to benchmarking methods to show
which type of improvement is occurring in the literature and the quantification of development.

https://mlperf.org/
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Figure 4. Using a common benchmarking data set enables the comparison of algorithms developed
in the research community to quantify their performance as compared to each other. Many other
machine learning disciplines have benchmark data sets and using them quantifies the progress of
new approaches.

Good Examples from the Past—ASHRAE Great Energy Predictor Shootout I and II

In the non-residential building research domain, there is a single set of examples of a
benchmarking data set that was utilized for several machine learning studies. This set is the Great
Energy Predictor Shootout competitions held in the early 1990s and hosted by the ASHRAE Society.
The first competition included the use of a single building’s electrical, cooling and heating meters in a
contest where the participants were asked predict a single month of data using three months of training
data [22]. This competition resulted in several publications based on the top set of performers. A second
competition was held, the aptly-named Great Energy Predictor Shootout II that asked participants to
predict the energy savings for an energy savings project [23]. These data sets have since been used as a
benchmarking comparison data set on several studies, including one focused on residential modeling
using SVM [24] and another that predicts consumption of office buildings in Greece [25].

1.3. Improving Model Generalizability—Open Benchmarking Data Sets and Open Models

This paper outlines a demonstration of how benchmarking of performance prediction models
can be accomplished on an open data set using open-source prediction techniques. The variability of
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accuracy results across different sizes of machine learning implementation strategies will be tested
and discussed. Initially, in Section 2, an overview of prediction considerations for building energy
performance is reviewed. Next, in Section 3, a framework for implementation is outlined using an
open data set of 482 buildings. In Section 4, the results are showcased and interpreted in the context
of the different primary use types and operations considerations. Section 5 describes the usefulness
and interpretation of this test case scenario and potential future directions for the prediction model
development community. Finally, in Section 6, a discussion of the conclusions, limitations and a
request for data inclusion from future researchers are presented.

2. Review of Building Energy Prediction Input Considerations

To initiate the prediction model discussion, an overview of the conventional energy performance
prediction considerations is covered in this section. These aspects of machine learning-based modeling
for buildings are most prominent in non-residential buildings such as offices, educational facilities,
laboratories and health-care. These categories are the key considerations when developing prediction
models for buildings.

2.1. Daily, Weekly and Seasonal Schedules

Buildings operate on several types of schedules. A majority of non-residential buildings have
occupied and unoccupied periods that usually coincide with daytime and nighttime. These diurnal cycles
are generally one of the best indicators of the building use type—that is, offices are open from 9 a.m. to
6 p.m. and hotels are most active from 6 p.m. to 10 a.m. An example of daily pattern extraction and
analysis is found in the DayFilter process [26]. Most buildings also have a weekly schedule; the default
being certain behavior on weekdays and different behavior on weekends. Finally, many buildings
have seasonal changes such as when educational buildings have certain behavior during a regular
session versus during breaks or holiday seasons. Extraction and analysis of longer-term schedules
are covered extensively in an overview of temporal feature extraction from meter data using the
STL package [27,28]. The concept of scheduling in non-residential buildings is most often related
to the predefined schedules programmed into the automation systems in the building, unlike the
human behavior that is discussed later. These schedules are determined usually by the operations and
maintenance policy or by the energy management group within an organization. Many buildings have
very predictable schedules, while others are much more volatile. Modeling such behavior can often be
done using time-series methods that find auto-correlation behavior or by using date/time features as
inputs to prediction models.

2.2. Human Behavior

The concept of human behavior as an influence is similar to the previously-discussed schedules;
however, there is a more stochastic element to this behavior. Buildings that are more influenced by
occupant behavior generally have demand response-based control systems that use sensors, cameras or
other detection methods to modulate systems only when humans are present or using the space for a
specific purpose [29]. Sometimes humans even can control spaces using various types of interfaces
with the building, although this is less common in non-residential buildings. Modeling occupant
behavior is considered more complex than schedule as human behavior can be less systematic; thus,
auto correlation-based time-series methods are less effective.

2.3. Weather

A major energy-consuming component for most buildings is heating, ventilation and
air-conditioning (HVAC) systems. Intuitively, these systems tend to use more energy as the outdoor
conditions get hotter (in the case of cooling) or colder (in the case of heating). Often this relationship is
linear, but it can also be non-linear based on the HVAC system type and operation policy. Two common
building performance modeling techniques address the influence of weather using change point
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models [30] and the time-of-week and temperature [31]. The degree of influence of weather varies greatly
among the building stock. It is influenced by the percentage of internal load versus envelope-based
load, HVAC system type, climate and other factors.

2.4. Non-Routine Events

Non-routine events are disruptions in the regular operation of a building due to events such as
a change in the operational schedule of the building, equipment breakdowns and events or human
behavior that is highly irregular as compared to past behavior. These events could be planned or
unplanned by the operations and facilities management staff. Non-routine events are hard to predict
with conventional input variables but models can be tuned to quickly adapt to the change using
approaches related to change-point prediction or other types of behavior change detection techniques.
Changepoint detection models are often unsupervised and some techniques have been adapted from
the analysis of social media data to be used on energy meter data [27,32].

3. Benchmarking Open Source Methods on Open Building Energy Data for Long-Term Prediction

The goal of this paper is to show an example benchmarking analysis applied to a diverse
enough data set to illustrate the benefits of scalability and generalizability amongst the building
stock. The regression testing framework for this paper is outlined in this section. The open hourly data
from the Building Data Genome Project (BDG) is used in this paper as a starting point [33]. This data set
includes data from over 500 buildings, mostly from educational institutions. Figure 5 illustrates the
breakdown of four meta-data points from this data-set.
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Figure 5. Meta-data breakdown of the Building Data Genome Project benchmarking data set used in this
publication. Used with permission from the authors of Reference [33].

3.1. Machine Learning Input Variables

One year of whole building hourly electrical meter data is used in this process from a subset of
482 buildings from the main BDG repository. These buildings were selected due to the temporal and
metadata completeness. Various temporal and meta-data based model input variables were extracted
from the raw data for use in the machine learning process. The input variables available as predictors
of energy consumption are outlined in this section. Table 1 outlines the basic set of machine learning
input variables used in this benchmarking approach. The overall goal of this benchmarking process is



Mach. Learn. Knowl. Extr. 2019, 1 982

to predict the hourly whole building electrical meter data consumption of each building using these
input variables.

Table 1. Input features used in this benchmarking process.

Category Variable Behavior Targeted

Temporal Time of Day Daily schedules
Day of Week Weekly schedules

Public Holiday Schedule Holidays
Schedule Type Seasonal schedules (summer, etc.)

Weather Outdoor Air Temp. Sensible heating and cooling
Outdoor Air Hum. Latent heating and cooling

Meta Industry Sector General category of use
Primary Use Type Specific category of use

Floor area Size of building
Number of floors Height of building

Climate zone Type of climate
Maximum occupancy Total number of people
Cooling system type Typical cooling efficiency
Heating system type Typical heating efficiency
Performance rating Comparison to its peers

3.2. Training and Test Data Set Scenario

For the comparison of various open-source techniques, a simplified training and testing scenario
is utilized for the comparison. Four different training and testing data scenarios are tested, as seen
in Figure 6. Scenarios 1–3 are made up of 3, 6 and nine-month training windows and a three-month
continuous testing window. Scenario 4 is made up of 3-month training windows followed by a
one-month test window that repeats itself three times. These scenarios provide a certain level of
cross-validation that is realistic in the context of medium to long-term energy prediction in the
built environment.
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Figure 6. Overview of the four training/testing scenarios that are implemented on 482 buildings in
the benchmarking process. These buildings are mostly non-residential and are made up of offices,
laboratories, classrooms and dormitories.
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3.3. Open Source Regression Models from Sci-Kit Learn Python Library

The regression model catalog from the Sci-kit Learn Library is used in this benchmarking
process [34]. We use these models as a starting point for the benchmarking process as many of
these models have been developed for decades and are some of the most often used prediction models
in the machine learning community. The more extensive array of more advanced models (e.g., deep
learning, specific energy-focused prediction models) is left outside the scope of this paper as these will
be the improved techniques that the broader research community would likely be testing. The models
from this library use used with default hyperparameter and attributes settings.

This study focuses on general forecasting methods as a foundation for comparison for more
building domain-specific regression or prediction models. These models do not take into consideration
the auto-correlation aspect of prediction or the building context-specific nature of the built environment.

3.4. Accuracy Metrics

The two metrics used in this analysis to evaluate model fit are the Coefficient of Variation of the
Room Mean Square Error (CVRMSE) and the Mean Absolute Percentage Error (MAPE). MAPE is a
commonly used loss function for regression problems and model evaluation. CVRMSE is one of the
metrics most commonly used in performance analysis of energy models in the building industry [9,35].
The metrics are a combination of the values of number of compared values (n), measured values (m),
predicted values ( f ) and parameters (p). Table 2 illustrates the formulas for these metrics. ASHRAE
Standard 14 guides the use of CVRSME for building performance comparison and fixes the p value
at 1.

Table 2. Model performance metrics used in this benchmarking process.

Performance Metric Equation

Coefficient of Variation of the RMSE CV(RMSE) =
100%

m̄

√
∑n

i=1(mi − fi)2

n − p

Mean Absolute Percentage Error MAPE =
100%

n

n

∑
i=1

∣∣∣∣ (mi − fi
mi

∣∣∣∣
4. Results

The range of regression models was implemented on the 482 buildings from the Building Data
Genome Project and two types of analysis are illustrated in this section. The first is focused on the
distribution of model fit across the population of buildings for each of the models. The second analysis
chooses the model with the highest overall accuracy across the building set and shows the diversity of
results across different randomly chosen sizes of prediction model implementation cohorts to illustrate
the generalizability of the tested models.

4.1. Model Fit Overview for the Example Benchmarking Scenario

Figure 7 illustrates the twelve Sci-Kit learn models applied to all the building use types using
the MAPE and CVRMSE metrics. The detailed results of all model implementations can be found in
Appendix A. The graphics in the appendix provide a more detailed breakdown of each of the building
use types according to all three error metrics as well as an analysis of each of the four training/testing
scenarios. This analysis is provided as an example of a typical predictive model implementation
scenario. Future researchers can take this analysis as a template to test their prediction models across
the range of buildings.
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Figure 7. Overview of models fit metrics MAPE and CVRMSE for each building use type across twelve
Sci-kit Learn models. ExtraTreeRegressor is the best at predicting most building types and there is little
difference between MAPE and CVRMSE in capturing model fit.

For the example analysis, it appears that laboratories have the highest accuracy across all of the
models. This situation could be due to laboratories being the most systematically schedule-driven of all
the building types. Laboratories often have large equipment that is operated continuously or in set time
schedules throughout an entire year. University classrooms and offices behave in similar ways across
the models as these two use types are often identical and many of these buildings are mixed-use types.
University dormitories have the fourth-highest accuracy for most of the models; however, they are
better fits for models such as the Huber Regressor or the TheilSen Regressor. Finally, the Primary
School buildings are by far the worst performers among the building use types. These buildings are
dependent more on human behavior within their annual schedule phases, resulting in the lack of
predictability using the methods and models outlined in this simple example.

This analysis shows that the models tested have a range of behavior and there is some consistency
of which models perform better or worse. The primary school classrooms pose a very distinct challenge
as opposed the other building use types. This scenario shows that a much more complex model is
likely necessary to model that particular building use type adequately. There would probably need to
be an ensemble or series of prediction models developed and tested to implement on the whole data
set to show overall improvement. These schools, in particular probably need additional input data as
well to be more adequately modeled.

4.2. Generalizability Analysis

In this analysis, the diversity of modeling accuracy is put in the context of different sizes of
prediction model implementation populations. The goal of this analysis is to show that for each
machine learning modeling approach the usefulness of the modeling technique is better proven with
the larger the size and diversity of implementation on real-world building data sets. The first way
to illustrate this concept is to show the range of modeling accuracy for our simple benchmarking
example across all the buildings tested. Figure 8 illustrates a line chart that plots the increasing error
rates across the 482 buildings using the ExtraTreesRegressor model, which was the best performing
model for most of the building types. This visualization has been manually segmented into three zones.
Zone 1 illustrates buildings (almost two-thirds of the data set) in which the example benchmarking
modeling scenario presented in this paper is considered adequate or good. It can safely be stated that
this model is generalizable across that cohort of buildings. On the other hand, Zones 2 and 3 illustrate
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buildings in which either the input features or the model itself cannot account for behavior in those
buildings; thus they do a poor or very poor job at predicting their consumption. Most of these buildings
are from the previously-mentioned Primary/Secondary School use type. Future researchers would
add complexity to the overall modeling strategy or invent a whole new approach to create a paradigm
in which the entire range of buildings shows good performance.

To further investigate, different cohorts (or groups of buildings) are randomly extracted from the
performance accuracy data set to show the median MAPE values based on how many buildings are
in the cohort. In Figure 9, the MAPE from various sizes of prediction model implementation were
extracted from the overall data set. One thousand random extractions of each of the cohort sizes
yielded are plotted as the average median accuracy with uncertainty bars. In this scenario, a single,
randomly selected building would have a much higher median error rate than even a group of five
buildings. Median was chosen as the metric as it reduces the influence of the extreme outliers of error.
As more buildings are added to the analysis, the error rate gets closer to the actual generalizable error
rate for this particular modeling technique, in this case, a MAPE of around 14%.

This example scenario illustrates that using a randomly selected building to apply a simple
baseline model produces worse results than for a more extensive set of buildings. However, in a
typical predictive model case study situation, an analyst often picks a building and builds a more
complex model specifically for that building. In that situation, the analyst chooses specific input
features from that building that would result in the lowest error. This model, while accurate on that
single building, would likely be less reliable on the more substantial portfolio of buildings. This case
would cause the error rate for the single building cohort to be much lower than the larger groups.
This scenario is not tested in this paper due to the constraints of building and testing much more
complex prediction models.

Range of buildings implemented

101

102

103

M
AP

E

Zone 1 Zone 2 Zone 3

Figure 8. Sorted MAPE for all buildings in the benchmarking example for the prediction model
ExtraTreesRegressor. Three zones are identified and colored as groups of buildings that have different
general levels of performance in the benchmarking example in this paper. Zone 1 illustrates the models
with good fit, while Zone 2 and 3 show buildings poor and very poor performance respectively.

It should be noted that the analysis in this section should only be interpreted in the context of the
buildings, input features, models and model fit metrics outlined in this paper. This whole scenario is
provided as a template for future researchers and companies who want to implement various modeling
techniques on the BDG data set while adding their own case study data sets. The subsequent sections
outline some areas of potential future improvement in this pursuit.
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Figure 9. Different sizes of cohorts of buildings that were randomly selected show different relative
median performance. In the benchmarking scenario presented in this paper, a randomly selected single
building would have a higher error rate on average and much more uncertainty than cohorts that
are larger.

5. Discussion

5.1. Long-Term versus Short-Term Forecasting Applications

It should be noted that this benchmarking test setup is aligned with the use of prediction in the
context of measurement and verification. This type of prediction is considered medium or long-term
forecasting focused on the evaluation of energy savings of building performance interventions.
This application has several characteristics that differentiate it from short-term applications such
as day-ahead prediction for control and demand response. For example, long-term forecasting is
usually retroactive as the energy savings prediction is focused on what energy the building would
have consumed if the intervention had not taken place. This situation means that input variables
such as weather are known and not forecasts themselves. Additionally, in this benchmark scenario,
only a few time-series features are used, notably the time-of-day and day-of-week. Short-term
forecasting usually incorporates more of the near-term historical structure of the data to make forecasts.
The relevance of what happened yesterday or the day before can be informative to the short-term
application. The benchmarking process in this paper could be adapted to focus on these short-term
forecasting applications.

5.2. On the Need for Generalizability of Building Performance Forecasting in Various Applications

The results of this analysis illustrate that a narrow set of modeling configurations produce
different accuracy results across a range of buildings. If the goal of a machine learning expert is to
create accurate models for the whole population of buildings, then there is a significant amount of effort
to be done to improve the generalizable accuracy of the model strategy. The need for such generalizable
modeling strategies is emerging as the size of internet-of-things (IoT) and energy metering grows
exponentially. Portfolio managers might have hundreds of buildings with each building having
numerous sub-metering systems at the different levels of the energy-consuming hierarchy. It is
possible to develop and manually tune a machine learning model for a few meters but impractical for
hundreds or thousands of data streams.

However, in current practice, it is not always the objective to scale a model across numerous
buildings. The machine learning expert is instead tasked with the development of a data-driven
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model for a single building for scenarios such as demand response and automated fault detection
and diagnostics. In these scenarios, the impact of the customized models is more valuable that the
scalability or generalizability and there are resources and human resources to build customized models.
The primary reason for the lack of generalizability of techniques in the literature is likely due to the
contemporary lack of focus on the objective of individual model accuracy rather than overall scalability
amongst large numbers of buildings.

5.3. Potential Future Enhancements of the Benchmarking Process

As previously discussed, this benchmarking implementation is limited in its application of
prediction models, feature extraction techniques and parameter tuning. This subsection discusses the
potential future advancements in modeling frameworks in the context of the benchmarking example
in this paper and relevant recent prediction studies.

5.3.1. Testing Model Hyperparameters in the Benchmarking Process

Machine learning models often have several inputs that specify thresholds and options
that influence the way the model trains or predicts using the input training data and features.
These hyperparameters must be preset before implementation as they have an impact performance.
For example, neural network models such as multi-layer perceptrons have input parameters related
to hidden layer attributes and iterations that enable a user to tune them for best performance on a
particular data set. Further benchmarking work could focus on these modeling aspect to test which
configuration of parameters results in the best model fit.

5.3.2. Using More Advanced Time-Series Prediction Techniques

There is a library of time-series specific modeling techniques that could be tested on the benchmark
data set to understand how the univariate temporal structure of each meter could be used for prediction.
A recent review covered the used of more advanced time-series techniques for building energy
prediction [36]. This review illustrates the accuracy of the six most popular models: ANN [37],
ARIMA [38], SVM [39], Fuzzy [40], Grey [41] and MA and ES [42]. All of these top-performing
time-series models achieved less than 3% MAPE, yet only on a single or small set of meter data streams.
Once again, in the overall review, only a few studies used more than one building to train and test their
technique or released the data for others to implement and compare their techniques. These techniques
are valuable but the community deserves to understand how generalizable these techniques are and
how they scale.

5.3.3. Transfer Learning: Using Training Data from the Whole Population for Prediction of
Each Building

This area of innovation in modeling would seek to create prediction models that use the data
from hundreds or thousands of buildings to predict consumption for a single building. These models
would try to predict which other buildings are so similar due to their metadata or behavior that they
could be used to enhance model training. An analogous scenario in building prediction is the use
of surrogate models derived from physics-based simulation [43]. Another example is an application
that focuses on using cross-building transfer learning to model smart meter data in scenarios where
unlabeled data exists [44].

5.3.4. Automated Feature Extraction and Deep Learning Methods

In the example scenario from this paper, input features for prediction were extracted in a somewhat
manual process using engineering and professional judgment about which behavior needed to be
captured to predict the hourly energy consumption. This approach works for many buildings but
often there are complicated situations that manual feature engineering will miss. New types of
modeling, such as deep learning model can capture a more significant amount of more complex
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behavior without manual feature engineering. These models have shown tremendous value in image
and video recognition applications and have been applied to building performance prediction several
times [45–47]. These studies show promise but once again, are applied to a limited number of buildings
or sets of buildings. The community would benefit in understanding whether the complexity and
lack of interpretability of these models are worth the potential increase in accuracy across several
building types.

5.3.5. Finding Additional Phenomena to Measure or Collect that Can Be Used as Input for the
Modeling Process

This scenario presented included a list of input features shown in Table 1. These are commonly
accessible input features for performance prediction and they capture consumption behavior for a
majority of the buildings. However, numerous other phenomena could be digitized using sensors or
harvested from data sources such as building information models (BIM). For example, carbon dioxide
sensor data from the building management system (BMS) would likely enhance the ability to predict
behavior related to occupancy. An explosion of internet-of-things (IoT) data is becoming available
to use to supplement prediction models. However, the limitation of using these data streams is that
all buildings in a benchmarking scenario would need to include such data for comparison to occur.
Collection and processing of such data are not trivial.

5.3.6. Focus on the Accuracy of a Modeling Framework Rather Than an Individual Model

The reality of applying machine learning models to a large number of buildings is that techniques
that generalize well will likely be a series of models and modeling and pre/post-processing steps.
The literature usually categorizes these processes as hybrids. This type of approach usually requires
the sharing of code to be able to reproduce the results. Kaggle machine learning competitions are
an excellent example of where elaborate ensembles and a whole series of modeling choices are what
yields the best results, not any single model algorithm [48,49].

5.3.7. Integration of Data-Driven Modeling with Physics-Based White-Box Modeling

A significant opportunity exists to combine the decades of physics-based modeling in the built
environment with machine learning models. The thermodynamic and heat transfer characteristics
contained in those simulation input files could enhance with prediction capability of data-driven
methods. The field of Bayesian calibration of simulation models provides the foundation for this
effort [50].

6. Conclusions

This publication gives readers a simple example of mainstream prediction techniques applied
to a large, diverse data set. Five different primary use types of buildings were analyzed—offices,
laboratories, university classrooms, dormitories and primary/secondary schools. The mainstream
models and input variables in this process produced reasonable results for most buildings with
ensemble methods such as decision-tree based techniques such as ExtraTrees and Bagging regressors.
Primary/Secondary schools stood apart as a difficult building type to predict due to seasonal shifts.
While these results are interesting, they are only relevant to the range of behavior from the 482 buildings
tested. This publication intends to provide an example of the application of open prediction models to
open data sets.

The results illustrate the there are a wide diversity of behavior types in the building stock and
no single modeling technique can claim, so far, that it comprehensively accounts for all the different
types of buildings or behaviors. Thus, the future of building performance prediction is likely to be
dominated by modeling frameworks or ensembles of methods that can account for a broad diversity
of behavior. Modeling techniques will likely filter buildings into groups that respond best to certain
types of prediction models. With a growing benchmarking data set that encompasses more and more
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building types and behavior from the overall populations of buildings, the value of these more complex
processes of models will be easier to showcase.

6.1. Limitations

The key limitation of this analysis is congruent with the limitation of machine learning in general:
the models developed and the resulting metrics are limited by the range of training data utilized to
build the models. The conclusions of the model comparison in this paper are only relevant to office,
laboratories, classrooms and dormitories from university campuses in the context of the geographical
and operational environments of the Building Data Genome Project data set. Thus, the primary goal of
this analysis is not to be comprehensive in capturing the behavior of the building stock but to provide
an example and data set that can be built upon with a more diverse set of data. It is crucial that additional
data from thousands (or millions) of other buildings are added overtime for the methodology to achieve the main
goal of a comprehensive benchmarking process. New algorithms coming into the public domain should be
tested against this growing set of building data sets to quantify what improvements are being made in
the domain.

6.2. Reproducibility

This publication is fully reproducible using the codebase from a Github repository focused
on benchmarking for the built environment (https://github.com/buds-lab/building-prediction-
benchmarking) and data publicly available from the Building Data Genome Project (https://github.
com/buds-lab/the-building-data-genome-project).
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Appendix A. Detailed Model Comparison Breakdowns
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Figure A1. Detailed Breakdown of Benchmarking Models on Office Buildings.
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Figure A2. Detailed Breakdown of Benchmarking Models on University Classroom Buildings.
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Figure A3. Detailed Breakdown of Benchmarking Models on University Laboratory Buildings.
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Figure A4. Detailed Breakdown of Benchmarking Models on University Dormitory Buildings.
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Figure A5. Detailed Breakdown of Benchmarking Models on Primary School Buildings.
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