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Abstract: In real world applications, binary classification is often affected by imbalanced classes. In this
paper, a new methodology to solve the class imbalance problem that occurs in image classification
is proposed. A digital image is described through a novel vector-based representation called Kernel
Graph Embedding on Attributed Relational Scale-Invariant Feature Transform-based Regions Graph
(KGEARSRG). A classification stage using a procedure based on support vector machines (SVMs) is
organized. Methodology is evaluated through a series of experiments performed on art painting dataset
images, affected by varying imbalance percentages. Experimental results show that the proposed
approach consistently outperforms the competitors.

Keywords: kernel method; image classification; graph-based image representation

1. Introduction

Support vector machines (SVMs) [1] have found applications in different fields such as image
retrieval [2], handwriting recognition [3] and text classification [4]. In the case of imbalanced data,
in which the number of negative patterns, easier to identify and classify, significantly exceeds the positive
patterns, which are more difficult to identify and classify, the performance of SVM drops considerably.
In general, classifiers perform poorly with imbalanced datasets because they are designed to work on
sample data and the output is formulated from the simpler hypothesis that best fits the data. With
imbalanced data, the simplest hypothesis is often that all patterns are classified as negative; in essence the
positive patterns are not detected by the classifier, being included in the patterns classified as negative in
a completely wrong way. Another important issue, which makes the classifier too specific, is sensitivity
to noise, which in many cases leads to a wrong hypothesis. Specifically, some researchers modify the
behavior of existing algorithms for the purpose of making them more immune to noisy instances. These
approaches are designed for balanced datasets and, with highly imbalanced datasets, every pattern is
classified as negative. Furthermore, the positive may be treated as noise and completely ignored by
the classifier. A widely used approach is to bias the classifier to ensure more attention to the positive
patterns. In this paper, the image classification problem applied to imbalanced datasets is addressed.
In particular, an image is represented by a data structure Attributed Relational Scale-Invariant Feature
Transform-based Regions Graph (ARSRG) [5]. This approach is used in order to capture local and structural
image features. Moreover, ARSRG structures are mapped into a vector space through a graph kernel
application. Graph kernels aim at bridging the gap between the high representational power and the
flexibility of graphs in terms of feature vector representation. The images to be classified, also called target
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images, are encoded through a set of distances with model images. The final representation is called
Kernel Graph Embedding on Attributed Relational Scale-Invariant Feature Transform-based Regions
Graph (KGEARSRG). The classification stage is managed through SVM, using the One versus All (OvA)
paradigm, with the appropriate kernel modification called Asymmetric Kernel Scaling (AKS) [6].

The paper is organized as follows: Section 2 is dedicated to related literature. In Section 3 the proposed
framework is described. Results and conclusions are, respectively, reported in Sections 4 and 5.

2. Related Work

One of the biggest challenges during the design of a classifier regards the resolution of the imbalance
between the number of images belonging to a class focused by a user and the others that share some
features with that class. The imbalance problem has been investigated in literature applied to the image
classification field.

In [7] the authors compare the performance of artificial immune system-based image classification
algorithms to the performance of Gaussian kernel-based SVM in problems with a high degree of
class imbalance.

In [8] a methodology, based on resampling, developed to solve the class imbalance problem in the
classification of thin-layer chromatography (TLC) images is introduced. In addition, two approaches are
proposed for image classification. One based on a hierarchical classifier and another using a multiclassifier
system. Both classifiers are trained and tested using balanced datasets.

In [9] an approach for building a classification system for imbalanced data based on a combination of
several classifiers is presented. A final classification system combining all the single trained classifiers is
built. The approach can be defined as a sort of local undersampling, since each classifier uses a part of the
majority samples, or global oversampling since the minority class is replicated M times.

In [10] two genetic programming (GP) methods for image classification problems with class imbalance
are developed and compared. The first works on adapting a fitness function in GP in order to evolve
classifiers with good individual class accuracy, while the second implements a multi-objective approach
to simultaneously evolve a set of classifiers along a trade-off surface representing minority and majority
class accuracies.

In [11] a methodological approach to classification of pigmented skin lesions in dermoscopy images is
presented. SVM is used for the classification step. The class imbalance problem is addressed using various
sampling strategies and through Monte Carlo cross validation.

In [12] the problem of diagnosing genetic abnormalities by classifying a small image imbalanced
database of fluorescence in situ hybridization signals of types having different frequencies of occurrence
is addressed.

Finally, in [13] is investigated how class imbalance in the available set of training cases can impact the
performance of the resulting classifier as well as properties of the selected set. The test phase is performed
on a dataset for the problem of detecting breast masses in screening mammograms. Binary and k-nearest
neighbor classifiers are adopted.

3. Kernel Graph Embedding on Attributed Relational SIFT-Based Regions Graph (KGEARSRG)

In this section a novel kernel graph with reference to the ARSRG structure is introduced.
This representation is called Kernel Graph Embedding on Attributed Relational Scale-Invariant Feature
Transform-based Regions Graph (KGEARSRG). Let F = {ARSRG1, . . . , ARSRGN} ∈ RD be a dataset
composed of N ARSRG structures in a D-dimensional space. The aim is to reduce the dataset F ∈ RD into
a low-dimensional space y ∈ Rd(D � d), such that ARSRG topological information is preserved from
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RD to Rd. The framework attempts to find the optimal low dimensional vector representation that best
characterizes the similarity relationship between the node pairs in ARSRG structures.

3.1. Graph-Based Image Representation

The Attributed Relational SIFT-based Regions Graph (ARSRG) [5] is adopted to represent images and
is built based on two phases. The first phase, named feature extraction, provides regions of interest (ROIs)
from images by means of a segmentation technique and constructs a Region Adjacency Graph (RAG) [14]
to encode spatial relations between extracted regions. The second phase, named graph construction,
provides the construction of a graph, named the Attributed Relational SIFT-based Regions Graph (ARSRG),
formed by three levels: Root node, RAG nodes and leaf nodes. The root node encodes the whole image
and is connected to all the RAG nodes at the second level. RAG nodes encode geometric information
among different image regions. Thus, spatially adjacent regions in the image are represented by connected
nodes. Finally, leaf nodes represent the set of SIFT [15] descriptors extracted from the image in order to
ensure invariance to different conditions (view-point, illumination and scale). This level provides two
types of configurations: region based, in which a keypoint is associated to a region based on its spatial
coordinates, and region graph based, in which keypoints belonging to the same region are connected by
edges to encode spatial information. ARSRG is created based on two different leaf nodes configurations.

3.2. Graph Embedding

The goal is to provide a fixed-dimensional vector space image representation in order to process
the data for classification purposes. To this end, the concept of graph embedding is introduced. Given a
labeled set of sample graphs, T = {g1, . . . , gn} and the graph dissimilarity measure is d(gi, gj). T can be
any kind of graph set and d(gi, gj) can be any kind of dissimilarity measure. Subsequently, based on a
selected set P = {p1, . . . , pm} of m = n prototypes from T, the dissimilarity of a given input graph g is
computed to each prototype p ∈ P. This leads to m dissimilarities, d1 = d(g, p1), . . . , dm = d(g, pm), which
can be represented in an m-dimensional vector (d1, . . . , dm). In this way, any graph can transformed from
the training as well as any other graphs set into a vector of real numbers. More formally, given a graph
domain G,

T = {g1, . . . , gn} ⊆ G, (1)

the training set of graphs, subject to the next mapping phase, and

P = {p1, . . . , pm} ⊆ T, (2)

a set of prototype graphs. The vector of mapping between T and P is defined as

ϕP
m(g) = (d(g, p1), . . . , d(g, pm)) (3)

where d(g, pi) is any graph dissimilarity measure between graph g and the ith prototype. The distance d(·)
does not obey the triangular inequality. Considering the graphs g1, g2, g3 and the triangular inequality

d(g1, g2) ≤ d(g1, g3) + d(g3, g2), (4)

Equation (4) is not verified as it deals with complex structures where the number of nodes and edges can
be associated in a different way during the matching, and the distance varies according to the chosen
metric. This is a very complex problem that cannot be generalized using the triangular inequality.
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3.3. Kernel Graph Embedding

Kernel graph embedding is a framework that works with the purpose of extending the dot product
space from a linear to a nonlinear case using the kernel trick. The goal is to map data from the original
input space to an alternative higher dimensional space as

K(g1, g2) = 〈(φ(g1), φ(g2))〉, (5)

with φ being the implicit pairwise embedding between g1 and g2. The concept of kernel graph embedding
is applied in a particular way. Firstly, ARSRG structure extraction, from images stored in the entire dataset,
is performed. After, the ARSRG set is divided into two subsets in the following way:

ARSRGtargets = {ARSRGt1 , . . . , ARSRGtj}

ARSRGmodels = {ARSRGm1 , . . . , ARSRGmi}.
(6)

The first subset is composed of target images as in Equation (1), subset training T, while the second
subset is composed of model images as in Equation (2), subset prototypes P. Now, the distance vector
representing each ARSRG, belonging to a target set, is built as follows:

ARSRGtj={kpaths(ARSRGtj ,ARSRGm1 ),...,kpaths(ARSRGtj ,ARSRGmi )}. (7)

The vector components encode the distance between ARSRGtj and all ARSRGs contained in the
subset prototypes. Distance values are calculated through the kernel graph in [16] applied on ARSRG
pairs, particularly

kpaths(ARSRGtj , ARSRGmi ) = ∑
p1∈Path(ARSRGtj )

∑
p2∈Path(ARSRGmi )

kpath(p1, p2), (8)

where Path(ARSRGmi ) and Path(ARSRGtj) are the sets of all paths in ARSRGtj and ARSRGmi , located at
the third level of structures in the form of SIFT Nearest-Neighbor Graphs (SNNGs). An SNNG is defined
as follows:

SNNG = (VFSIFT , ESIFT) (9)

where:

• VFSIFT is the set of nodes associated to SIFT keypoints;
• ESIFT is the set of edges.

For each vi ∈ VFSIFT there is an edge (vi, vip) if and only if dist(vi, vip) < τ. dist(vi, vip) is a Euclidean
distance applied to the x and y positions of keypoints in the image, τ is a threshold value and p stems
from 1 to k, k being the size of VFSIFT . A path is, as usual, defined as a sequence of nodes, consisting of at
least one node and without any repetitions of nodes. Defining paths as sequences of neighboring pairwise
distinct edges allows to define kernels based on subpaths. In this context, edge walk and edge path are
defined. Given a graph G = (V, E) with {e1, . . . , el} ⊂ E and {vi1, vi2, vj1, vj2} ⊂ V, an edge walk

w = (e1, e2, . . . , el) (10)

is defined as a sequence of edges from e1 to el , where ei, with 1 ≤ i ≤ l, is a neighbor of ei+1 = ej, i.e.,
ei = (vi1, vi2) and ej = (vj1, vj2) are neighbors if vi2 = vj1. An edge path p is defined as an edge walk
without repetitions of the same edge. An edge path may contain the same node multiple times but every
edge only once. An edge path p is an Euler path in the graph exactly consisting of the edges of p. In this
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case, edge paths are used. Moreover, kpath is a positive definite kernel on two paths, defined as the product
of kernels on edges and nodes along the paths. To this end, a relation R(x′, x′′, x) is defined, where x′ is a
path and x′′ and x are graphs. R(x′, x′′, x) = 1 if x′′ is the graph created removing all edges in x′ from x.
R−1(x) is then the set of all possible decompositions of the graph x via R into x′ and x′′. R is finite and its
length is upper bounded by the number of edges, based on a finite number of paths in the graph. Now,
a kernel kpath on paths is defined as a product of kernels on nodes and edges in these paths, also named
tensor product kernel. Moreover, a trivial graph kernel kone = 1 is defined for all pairs of graphs. Now,
an all-paths kernel is defined as a positive definite R-convolution as

kpaths(ARSRGtj , ARSRGmi ) =

= ∑
R−1(ARSRGtj )

∑
R−1(ARSRGmi )

kpath(x′1, x′2) ∗ kone(x′′1 , x′′2 ) =

= ∑
p1∈Path(ARSRGtj )

∑
p2∈Path(ARSRGmi )

kpath(p1, p2)

(11)

where Path(ARSRGmi ) and Path(ARSRGtj) are the sets of all paths in ARSRGtj and ARSRGmi . In this
case, kernel graph application requires a preprocessing step. ARSRGs are compared through the algorithm
in [5], which provides SNNG pairs for the final application of the kernel graph. Essentially, edge path
search is performed on graphs contained in the ARSRG regions. Based on this procedure, kpath(p1, p2),
in Equation (8), encodes the distance between SNNG pairs belonging to regions in the matching set. Finally,
kernel matrix K may be expressed as:

K =


kpaths(ARSRGt1 , ARSRGm1 ) · · · kpaths(ARSRGt1 , ARSRGmi )

kpaths(ARSRGt2 , ARSRGm1 ) · · · kpaths(ARSRGt2 , ARSRGmi )
...

. . .
...

kpaths(ARSRGtj , ARSRGm1 ) · · · kpaths(ARSRGtj , ARSRGmi )

 . (12)

More precisely, given the sets ARSRGtargets and ARSRGmodels in the ARSRGtm equations, matrix K
encodes all pairwise distances between the ARSRGs. In particular, each row of the matrix K corresponds
to a vector-based representation of ARSRG ∈ ARSRGtargets as in Equation (7). This demonstrates how the
vector-based representation can be adopted for kernel matrix K and, subsequently, in the classification of
ARSRG structures. Figure 1 shows an example of an image represented by KGEARSRG.

Computational Cost

The computational cost related to KGEARSRG can be divided into different parts:

1. The computational cost for extracting SNNG pairs between image regions through SIFT match with
graph matching.

2. Kernel graph computation involves:

(a) The direct product graph upper bounded by n2, where n is the number of nodes.
(b) The inversion of the adjacency matrix of this direct product graph; standard algorithms for

the inversion of an x · x matrix require x3 time.
(c) The shortest-path kernel requires a Floyd-transformation algorithm which can be performed

in n3 time. The number of edges in the transformed graph is n2 when the original graph
is connected. Pairwise comparison of all edges in both transformed graphs is required to
determine the kernel value. n2 · n2 pairs of edges are considered, which results in a total
runtime of n4.
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(a) (b)

(c) (d)

Figure 1. Example of Kernel Graph Embedding on Attributed Relational SIFT-based Regions Graph
(KGEARSRG) application. (a) Original image; (b) Attributed Relational SIFT-based Regions Graph
(ARSRG) structure; (c) original image represented by ARSRG structure; (d) vector representation based
on KGEARSRG.

4. Experimental Results

The proposed algorithm has been applied to the art painting classification problem [17]. The datasets
adopted are publicly available and contain different digitized images of paintings together with the
corresponding ground truth data. The testing phase is organized into different blocks. First a comparison
with standard SVM [1] is performed. The second phase, differently, involves a comparison with C4.5 [18],
RIPPER [19], L2 Loss SVM [20], L2 Regularized Logistic Regression [21] and ripple-down rule learner
(RDR) [22]. Finally, performances are evaluated in terms of Adjusted F-measure (AGF) [6]. With reference
to Equation (9), it is important to focus attention on two parameters. τ allows to connect two SIFT keypoints
and is estimated based on the density and spatial proximity of keypoints. Clearly, the spatial proximity
leads to a reduction of the value. k represents the number of SIFT keypoints, the size of VFSIFT , to be
analyzed in order to construct the SNNG. Moreover, during classification, with reference to Equation (14),
the values k1 and k2 are used to transform the kernel and are connected to the size of the input data of each
class. The range adopted is variable, as they are very sensitive parameters, and can be easily understood
through the x and y axes of the graphs in Figures 2 and 3.

The framework has been developed in two different programming languages. The kernel was
developed in Matlab code, while the part related to classification was developed in Java code, with
integration in Waikato Environment for Knowledge Analysis (WEKA) (https://www.cs.waikato.ac.nz/
ml/weka/).

https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/


Mach. Learn. Knowl. Extr. 2019, 1 968

4.1. Asymmetric Kernel Scaling (AKS) for Support Vector Machines

The main idea, to preserve local angles, consists in applying a conformal transformation. In [23],
with purpose of improving SVM performance, a (quasi) conformal transformation on the kernel is adopted.
The aim is to increase the break up between the two classes near the boundary and therefore to widen the
resolution in this area. The general transformation form is:

K′(x, x′) = D(x)K(x, x′)D(x′) (13)

where D(x) positive is defined. K′ is Gaussian, and meets Mercer conditions, if D(x) and K are Gaussian.
The improvement consists in managing various training instances in the two classes [6]. The goal is to

extend areas located near the sides of the separation, which represent the boundary on the surface, in order
to compensate for its asymmetry related to minority instances. In the first instance, SVM provides an
approximate boundary position. Subsequently, the negative χ− and the positive χ+ points are segmented
into two sets. In the second instance, the following kernel transformation is applied:

D(x) =

{
e−k1 f (x)2

, if x ∈ χ+

e−k2 f (x)2
, if x ∈ χ−

(14)

where k1 and k2 are free parameters and f (x) is given by:

f (x) = ∑
s∈SV

αsys K(xs, x) + b. (15)

The instance class relies on the location of the hyperplane where it falls, specifically with rerefence to
the sign of f (x). Support Vectors (SVs) are by definition the xi such that αi > 0 and b represents the bias;
by doing this, the space is enlarged on different sides of the boundary surface, which makes it possible
to equilibrate the imbalance due to the data. Proper values for k1 and k2 are adopted to manage the
transformed kernel during classification and are estimated based on the size of the input data of each class.

4.2. OvA Classification Setting

The classification performance of the AKS classifier is tested over the standard OvA paradigm on
different low, medium and high imbalanced image classification problems. One of the simplest multiclass
classification schemes is to create N different binary classifiers, each one trained in order to distinguish
the pattern of a single class among the patterns in remaining classes. When a new pattern is ready for
classification, the N classifiers are run and the classifier that outputs the largest positive value is chosen.
In the case shown, a skewed dataset is considered, where a positive minority class of patterns has to be
recognized against a negative majority class. At this point, the application of the OvA schema is simple;
each image of a target set, encoded by the KGEARSRG procedure, is submitted to the classification process;
then the membership class associated to this image is considered against others present in the target set.
This step is performed for all membership classes with the purpose of compensating the multiclass case.

4.3. Datasets

The first dataset [24] is composed of two sets of images belonging to 16 classes. The first set contains
15 paintings belonging to Olga’s gallery (http://www.abcgallery.com/index.html) and is named the
originals set. The second set contains 100 photos of paintings, taken by tourists with different digital
cameras, available on Travel Webshots (http://travel.webshots.com) and is named the photographs set.
We adopt the originals set as the model set and the photographs set as the target set, with images to be

http://www.abcgallery.com/index.html
http://travel.webshots.com
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classified. The second dataset [5] is composed of 99 painting photos taken from the Cantor Arts Center
(http://museum.stanford.edu/). The images are divided into 33 classes. In addition, in order to apply
image classification tasks, 10 additional images, belonging to 33 classes, have been added. We adopt the
first 99 painting photos as the model set and the last 10 additional images as the target set, the images to be
classified. Subsequently, the imbalance rates to formulate different classification problems are calculated.
Tables 1 and 2 show settings about the configuration of the datasets and, in particular, the imbalance rate
(IR) in the last column is shown with reference to Equation (16).

IR =
%maj
%min

(16)

IR is defined as the ratio between the percentage of images belonging to the majority class over the
minority class.

Table 1. The one vs. all (OvA) configuration for the dataset in [24].

Problem Classification Problem (%min,%maj) IR

1 Artemisia vs. all (3.00,97.00) 32.33
2 Bathsheba vs. all (3.00,97.00) 32.33
3 Danae vs. all (12.00,88.00) 7.33
4 Doctor_Nicolaes vs. all (3.00,97.00) 32.33
5 HollyFamilly vs. all (2.00,98.00) 49.00
6 PortraitOfMariaTrip vs. all (3.00,97.00) 32.33
7 PortraitOfSaskia vs. all (1.00,99.00) 99.00
8 RembrandtXXPortrai vs. all (2.00,98.00) 49.00
9 SaskiaAsFlora vs. all (3.00,97.00) 32.33
10 SelfportraitAsStPaul vs. all (8.00,92.00) 11.50
11 TheJewishBride vs. all (4.00,96.00) 24.00
12 TheNightWatch vs. all (9.00,91.00) 10.11
13 TheProphetJeremiah vs all (7.00,93.00) 13.28
14 TheReturnOfTheProdigalSon vs. all (9.00,91.00) 10.11
15 TheSyndicsoftheClothmakersGuild vs. all (5.00,95.00) 19.00
16 Other vs. all (26.00,74.00) 2.84

Table 2. The OvA configuration for the dataset in [5].

Problem Classification Problem (%min,%maj) IR

1 Class 4 vs. all (1.00,9.00) 9.00
2 Class 7 vs. all (1.00,9.00) 9.00
3 Class 8 vs. all (1.00,9.00) 9.00
4 Class 13 vs. all (1.00,9.00) 9.00
5 Class 15 vs. all (1.00,9.00) 9.00
6 Class 19 vs. all (1.00,9.00) 9.00
7 Class 21 vs. all (1.00,9.00) 9.00
8 Class 27 vs. all (1.00,9.00) 9.00
9 Class 30 vs. all (1.00,9.00) 9.00

10 Class 33 vs. all (1.00,9.00) 9.00

4.4. AKS vs. SVM

This section describes the comparison between AKS and SVM. The experiments are conducted by
performing, in the first instance, a standard SVM classification, using a Gaussian kernel with base 0.5 and
C = 10, tuned through a grid search. Subsequently, the two step AKS described above is applied. In the

http://museum.stanford.edu/
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second step of AKS, the classification with the transformed kernel is performed. Grid search and fivefold
cross validation have been applied to find the optimal value of the parameters and AGF has been used as
the performance measure.

It can be seen in Figure 2 that the proposed method needs a wide search in the parameters space for
fine tuning and the performance is shown to be very sensitive to a good choice of parameters. Out of a
narrow interval of k1 and k2 for effective improvement, performance tends to drop quickly. Comparing
performance with a careful choice of parameters, the proposed approach consistently dominates standard
SVM. Differently, in Figure 3 performances are higher only with a single peak with respect to standard SVM.

(a) (b)

Figure 2. Parameter choice 1. The x and y axes represent the values of the parameters of the two methods,
while on the z axis is plotted the AGF for two of the OvA configurations of the dataset in [24]: (a) Artemisia
vs. all and (b) Danae vs. all. The gray and blue surfaces represent, respectively, the results with the AKS
and SVM classifiers.

(a) (b)

Figure 3. Parameter choice 2. The x and y axes represent the values of the parameters of the two methods,
while on the z axis is plotted the AGF for two of the OvA configurations on the dataset in [5]: (a) Class 4 vs.
all and (b) class 19 vs. all. The gray and blue surfaces represent, respectively, the results with the AKS and
SVM classifiers.

4.5. Comparison Results

Further tests have been conducted in order to perform a comparison with C4.5 [18], RIPPER [19],
L2 Loss SVM [20], L2 Regularized Logistic Regression [21] and ripple-down rule learner (RDR) [22] for
a complete set of OvA classification problems. The parameters of the competitors are submitted to a
tuning procedure using a very wide range with respect to the parameters of the proposed method and are
subsequently initialized randomly. The best performances are shown below. The results of the two datasets
are different due to imbalance rates. In the dataset in [24], configuration includes approximately low,
medium and high rates. It is a great dataset for a robust testing phase because it covers full cases of class
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imbalance problems. In the dataset in [5], imbalance rates are identical for all configurations. The behavior
of classifiers can be analyzed through Tables 3 and 4. Table 3 shows the results of the dataset in [24]. It can
be seen that performances are significantly higher than in the comparison methods. The improvement
provided by AKS lies in the accuracy of the classification of patterns belonging to the minority class,
positive, which, during the relevance feedback evaluation, have a greater weight. Indeed, these latter are
difficult to classify compared to patterns belonging to the majority class, negative. The results reach a
high level of correct classification. This indicates that the improvements over existing techniques can be
associated with two aspects. The first involves the vector-based image representation extracted through
KGEARSRG. The second concerns the use of the AKS method for the classification stage. Table 4, in the
same as previous the way, shows the improvement introduced by AKS. Finally, for both cases results
indicate that the classification performance of AKS on the minority class is significantly higher than the
corresponding performance of the others classifiers. It is clear that our approach has the intrinsic ability to
more efficiently address classification problems that are extremely imbalanced. In other words, the AKS
classifier retains the ability to correctly recognize patterns originating from the minority class compared to
the majority class.

Table 3. Comparison results on the dataset in [24] and Table 1.

AGF

Problem AKS C4.5 RIPPER L2-L SVM L2 RLR RDR

1 0.9414 0.5614 0.8234 0.6500 0.5456 0.8987
2 0.9356 0.8256 0.6600 0.8356 0.8078 0.7245
3 0.9678 0.8462 0.8651 0.4909 0.6123 0.7654
4 0.9746 0.8083 0.6600 0.4790 0.4104 0.6693
5 0.9654 0.7129 0.9861 0.8456 0.4432 0.6134
6 0.9342 0.5714 0.9525 0.8434 0.9525 0.5554
7 0.9567 0.6151 0.7423 0.5357 0.4799 0.6151
8 0.8345 0.4123 0.3563 0.7431 0.5124 0.7124
9 0.9435 0.9456 0.9456 0.8345 0.6600 0.6600

10 0.8456 0.4839 0.5345 0.4123 0.4009 0.5456
11 0.9457 0.9167 0.9088 0.9220 0.8666 0.9132
12 0.6028 0.5875 0.5239 0.4124 0.4934 0.5234
13 0.8847 0.7357 0.6836 0.7436 0.7013 0.5712
14 0.9376 0.9376 0.8562 0.8945 0.8722 0.8320
15 0.9765 0.8630 0.8897 0.8225 0.7440 0.8630
16 0.7142 0.5833 0.3893 0.4323 0.5455 0.5111

Table 4. Comparison results on the dataset in [5] and Table 2.

AGF

Problem AKS C4.5 RIPPER L2-L SVM L2 RLR RDR

1 0.9822 0.6967 0.5122 0.4232 0.4322 0.6121
2 0.9143 0.5132 0.4323 0.4121 0.4212 0.5323
3 0.9641 0.4121 0.4211 0.4213 0.3221 0.4323
4 0.9454 0.4332 0.1888 0.4583 0.3810 0.3810
5 0.9554 0.3810 0.2575 0.5595 0.3162 0.6967
6 0.9624 0.3001 0.1888 0.1312 0.3456 0.3121
7 0.9344 0.3810 0.5566 0.4122 0.4455 0.2234
8 0.9225 0.4333 0.1112 0.2575 0.1888 0.1888
9 0.9443 0.6322 0.1888 0.1888 0.6122 0.6641

10 0.9653 0.1897 0.5234 0.6956 0.1888 0.1121
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5. Conclusions

Data imbalance classification is a common challenge in many fields such as pattern recognition,
bioinformatics and data mining. In this paper, the imbalance problem in image classification is addressed.
A novel way to represent a digital image based on KGEARSRG is presented. This representation is proved
to be very useful for mapping a dense graph space to a reduced space. The classification task is managed
through the SVM method based on a transformed kernel, named AKS. Experimental results indicate that
the combined approach of KGEARSRG and AKS has the intrinsic property of dealing more efficiently with
highly imbalanced datasets. Specifically, the method identifies instances from the minority class more
efficiently as compared to other classifiers in the same domain. In future, we will provide a comparison
against MLPs, k-NN and a mixture of models for different classification problems having a serious degree
of class imbalance.
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