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Abstract: A statistical hypothesis test is one of the most eminent methods in statistics. Its pivotal
role comes from the wide range of practical problems it can be applied to and the sparsity of data
requirements. Being an unsupervised method makes it very flexible in adapting to real-world
situations. The availability of high-dimensional data makes it necessary to apply such statistical
hypothesis tests simultaneously to the test statistics of the underlying covariates. However, if applied
without correction this leads to an inevitable increase in Type 1 errors. To counteract this effect,
multiple testing procedures have been introduced to control various types of errors, most notably
the Type 1 error. In this paper, we review modern multiple testing procedures for controlling
either the family-wise error (FWER) or the false-discovery rate (FDR). We emphasize their principal
approach allowing categorization of them as (1) single-step vs. stepwise approaches, (2) adaptive
vs. non-adaptive approaches, and (3) marginal vs. joint multiple testing procedures. We place a
particular focus on procedures that can deal with data with a (strong) correlation structure because
real-world data are rarely uncorrelated. Furthermore, we also provide background information
making the often technically intricate methods accessible for interdisciplinary data scientists.

Keywords: hypothesis testing; machine learning; statistics; multiple testing correction; multiple
comparisons; high-dimensional data; data science

1. Introduction

We are living in a data-rich era in which every field of science or industry generates data seemingly
in an effortless manner [1,2]. To cope with these big data a new field has been established called data
science [3,4]. Data science combines the skill sets and expert knowledge from many different fields
including statistics, machine learning, artificial intelligence, and pattern recognition [5–8]. One method
that is of central importance in this field is statistical hypothesis testing [9]. Statistical hypothesis testing
is an unsupervised learning method comparing a null hypothesis with an alternative hypothesis to
make a quantitative decision selecting one of these. When making such a decision there is a probability
to make a Type 1 (false positive) and Type 2 (false negative) error and the goal is to minimize both errors
simultaneously to maximize the power (true positives). The high dimensionality of many big data
sets requires the repetition of such testing many times to be tested for each covariate. Unfortunately,
these simultaneous comparisons can increase the Type 1 errors if no counter measures are taken.
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To avoid such false results different procedures have been introduced. In this paper, we discuss such
methods called multiple testing procedures (MTPs) (or multiple testing corrections (MTCs) or multiple
comparisons (MCs)) [10–12] for controlling either the family-wise error (FWER) or the false-discovery
rate (FDR). We emphasize their principal approach allowing categorization of them as (1) single-step
vs. stepwise approaches, (2) adaptive vs. non-adaptive approaches, and (3) marginal vs. joint MTPs.

For the model assessment of multiply tested hypothesis there are many error measures that can
be used focusing on either the Type 1 errors or the Type 2 errors. For instance, the FDX (false-discovery
exceedance [13]), pFDR (positive FDR [14]) or PFER (per family error rate [15]) are examples for Type 1
errors whereas the FNR (false negative rate [16]) is a Type 2 error. However, in practice, the FWER [17]
and the FDR [18,19] that are derived from Type 1 errors are the most popular ones and in this paper
we will focus on those.

A further distinction of MTPs is in the way they perform the correction. MTPs can be single-step,
step-down, or step-up procedures. Single-step procedures apply the same constant correction to
each test whereas stepwise procedures are variable in their correction and decisions also depend on
previous steps. Furthermore, the latter procedures are also based on rank ordered p-values of the
tests and they inspect them in either decreasing order of their significance (step-down) or increasing
(step-up) order. In recent decades many MTPs have been developed that fall within this setting [20].
For instance, we will discuss the Šidák [21], Bonferroni [17] and Westfall & Young [22] single-step
corrections and Holm [23], Hochberg [24], Benjamine & Hochberg [19], Benjamini-Yekutieli [25] and
Westfall & Young (maxT and minP) [22] for stepwise procedures and the Benjamini-Krieger-Yekutieli
multi-stage procedure [26].

Due to the importance of this topic MTPs have been discussed widely in the literature.
Unfortunately, modern MTC procedures are usually non-trivial and the original literature is quite
technical in many aspects [14,16,19,27]. Examples for advanced reviews can be found in [28–31].
This technical level possesses major challenges for interdisciplinary scientists not familiar with
statistical jargon. For this reason, our review does not aim at a compact and formal presentation
of the procedures that may be statistically elegant but practically difficult to decipher.

Specifically, our review differs from previous overview articles in the following points. First,
our presentation is intended for interdisciplinary scientists working in data science. For this reason,
we are aiming at an intermediate level of description and present also background information that
is frequently omitted in advanced texts. This should help to make our review useful for a broad
readership from many different fields. Second, we focus on MTC procedures that are practically
applicable to a wide range of problems. Due to the fact that usually covariates in data sets are, at
least to some degree, correlated with each other, and are not independent, we focus on approached
that can deal with such dependency structures [25,32–34]. That means we neglect to a large extend
the presentation of methods assuming independence or weak correlations because such methods
require an intricate diagnosis of the data to justify their application for real data. Third, we present
examples for the practical application of the methods for the statistical programming language R [35].
This should further enhance the accessibility of the presented methods.

This paper is organized as follows. In the next section, we present general preliminaries containing
definitions required for the discussion of the MTPs. Furthermore, we provide information about the
practical usage of MTPs for the statistical programming language R. Then we present a motivation
of the problem from a theoretical and experimental view. In Section 4 we discuss a categorization of
different MTPs and in the Sections 5 and 6 we discuss methods controlling the FWER and the FDR.
Then we discuss the computational complexity of the procedures in Section 7 and present a summary
of these in Section 8. This paper finishes in Section 9 with concluding remarks.

2. Preliminaries

In this section, we briefly review some statistical preliminaries as needed for the models discussed
in the following sections. First, we provide some definitions of our formal setting, error measures
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und different types of error control. Second, we describe how to simulate correlated data that can be
used for a comparative analysis of different MTPs. For a practical realization of this we also provide
information of an implementation for the statistical programming language R.

2.1. Formal Setting

Let us assume we test m hypotheses for which H1, H2, . . . Hm are the corresponding null
hypotheses and p1, p2 . . . , pm the corresponding p-values. The p-values are obtained from a comparison
of a test statistic ti with a sampling distribution assuming Hi is true. Briefly, assuming two-sided tests,
the p-values are given by

pi = Pr(|ti| > |T(α)||Hi is true) (1)

where T(α) is a cut-off value determined by the value of the significance level α of the individual tests.
We indicate the reordered p-values in increasing order by p(1), p(2) . . . , p(m) with

p(1) ≤ p(2) · · · ≤ p(m) (2)

and we call the correspondingly reordered null hypotheses H(1), H(1), . . . , H(m). When the indices of
the reorder p-values are explicitly needed, e.g., for the minP procedure discussed in Section 5.6, these
p-values are denoted by

pr1 ≤ pr2 ≤ · · · ≤ prm . (3)

In general, a MTP can be applied to p-values or cut-off values; however, corrections of p-values
are more common because one does not need to specify the type of the alternative hypothesis (i.e.,
right-sided, left-sided or two-sided) and in the following we focus on these.

Depending on the application, the definition of a set of hypotheses to be considered for a correction
may not always be obvious. However, in genomic or finance applications, tests for genes or stocks
provide such definitions naturally, e.g., as pathways or portfolios. In our context such a set of
hypotheses is called a family. Hence, an MTP is applied to a family of hypothesis tests.

In Table 1 we summarize the possible outcome of the m hypothesis tests. Here we assumed that
of the m tests m0 are true null hypotheses and m−m0 false null hypotheses. Furthermore, R is the
total number of rejected null hypotheses of which N1|0 have been falsely rejected.

Table 1. A contingency table summarizing the outcome of m hypothesis tests.

Decision

reject H0 accept H0

Truth H0 is true N1|0 N0|0 m0
H0 is false N1|1 N0|1 m−m0

R m−R m

The MTCs we discuss in the following make use of the error measures:

FWER = Pr(N1|0 ≥ 1) (4)

FDR = E[FDP] (5)

PFER = E[N1|0] (6)

PCER =
E[N1|0]

m
(7)
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Here FWER is the family-wise error which is the probability to make at least one Type 1 error.
Alternatively, it can be written as

FWER = 1− Pr(N1|0 = 0). (8)

The FDR is the false-discovery rate. The FDR is the expectation value of the false-discovery
proportion (FDP) defined as

FDP =

{N1|0
R R ≥ 1

0 R = 0
(9)

Finally, PFER is the per family error rate, which is the expected number of Type 1 errors and PCER
is the per comparison error rate, which is the average number of expected Type 1 error across all tests.

Definition 1 (Weak control of FWER). We say a procedure controls the FWER in the weak sense if the FWER
is controlled at level α only when all null hypotheses are true, i.e., when m0 = m [36].

Definition 2 (Strong control of FWER). We say a procedure controls the FWER in the strong sense if the
FWER is controlled at level α for any configuration of null hypotheses.

Similar definitions as for a weak and strong control of the FWER stated above can be formulated
for the control of the FDR. In general, a strong control is superior because it allows more flexibility
regarding the valid configurations.

Formally, an MTP will be applied to the raw p-values p1, p2 . . . , pm and, according to some
method-specific rule,

pi ≤ ci (10)

based on cut-off (or critical) values ci, a decision is made to either reject or accept a null hypothesis.
After the application of such a MTP the problem can be restated in terms of adjusted p-values,
i.e., padj

1 , padj
2 . . . , padj

m . Typically, the adjusted p-values are given as a function of the critical values.
For instance, for a single-step Bonferroni correction, the estimation of adjusted p-values corresponds
just to the multiplication with a constant factor, padj

i = mpi, whereas m is the total number of
hypotheses. A more complex example is given by the single-step minP procedure using data-dependent
factors [22].

In general, for stepwise procedures the cut-off values ci vary with the steps, i.e., with index i,
and are not constant, which makes the estimation of the adjusted p-values more complex. As a result,
alternatively, the adjusted p-values can then be used for making a decision,

padj
i ≤ α, (11)

based on the significance level of α.
For historical reasons, we want to mention a very influential conceptual idea that inspired many

MTPs, which has been introduced by Simes [37]. There it has been proven that the FWER error
is weakly controlled if we reject all null hypothesis when an index i with i ∈ {1, . . . , m} exists for
which holds

pi ≤
iα
m

. (12)

That means the (original) Simes correction either rejects all m null hypothesis or none. This makes
the procedure practically not very useful because it does not allow to make statements about individual
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null hypothesis, but conceptually we will find similar ideas in subsequent sections; see Section 6.1
about the Benjamini-Hochberg procedure.

2.2. Simulations in R

To compare MTPs with each other to identify the optimal correction for a given problem, we
describe below a general framework that can be applied. Specifically, we show how to generate
multivariate normal data with certain correlation characteristics. Due to the fact that on this there
are many perspectives possible, we provide two complementary perspectives and the corresponding
practical realization using the statistical programming language R [35]. Furthermore, we show how to
apply MTPs in R.

2.3. Focus on Pairwise Correlations

In general, the population covariance between two random variables Xi and Xj is defined by

σij = cov(Xi, Xj) = E
[
(Xi − µi)(Xj − µj)

]
. (13)

From this the population correlation between Xi and Xj is defined by

ρij =
cov(Xi, Xj)

σiiσjj
=

σij

σiiσjj
. (14)

In matrix notation, the covariance matrix for a random vector X of dimension n is given by

Σ = E
[
(X − µX)(X − µX)

T
]
. (15)

By using the correlation matrix ρ, with elements given by Equation (14), the covariance matrix Σ

can be written as

Σ = DσρDσ (16)

with diagonal matrix Dσ = diag(σ11, . . . , σmm).
Hence, by specifying the pairwise correlations between the covariates the corresponding

covariance matrix can be obtained. This covariance matrix Σ can then be used to generated multivariate
normal data, i.e., N(µ, Σ). For simulating multivariate normal data with a mean vector of µ and a
covariance matrix of Σ one can use the R package mvtnorm [38,39]. An example is shown in Listing 1.

1 library(mvtnorm)
2

3 # data for group 1
4 dat1 <- rmvnorm(n=n, mean=mu1 , sigma=Sigma2 , method="chol")
5 # data for group 2
6 dat2 <- rmvnorm(n=n, mean=mu2 , sigma=Sigma2 , method="chol")
7

8 p.values <- vector(length=m) # m: number of hypotheses
9 for(i in 1:m){

10 res <- t.test(dat1[,i], dat2[,i], mu=0, alternative = "two.sided")
11 p.values[i] <- res$p.val
12 }

Listing 1: Generating multivariate normal data with the R package mvtnorm. An example is shown
for a two-sample, two-sided t-test. Each population is defined by a mean vector of µ (called mu1 and
mu2) and a covariance matrix of Σ (called Sigma1 and Sigma2).
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2.4. Focus on a Network Correlation Structure

The above way to generate multivariate normal data does not allow control of the causal structure
among the covariates. It controls only the pairwise correlations. However, for many applications it is
necessary to use a specific correlation structure that is consistent with the underlying causal relations
of the covariates. For instance, in biology the causal relations among genes are given by underlying
regulatory networks. In general, such a constraint covariance matrix is given by a Gaussian graphical
model (GGM). The generation of such a consistent covariance matrix is intricate and the interested
reader is referred to [40] for a detailed discussion.

For simulating multivariate normal data for constraint covariance matrices one can use the R
package mvgraphnorm [41]. An example is shown in Listing 2.

1 library(mvgraphnorm)
2

3 # data for group 1
4 dat1 <- rmvggm(n.samples=n1, net.str=g1, mean=mu1 , method="htf")$dat
5

6 # data for group 2
7 dat2 <- rmvggm(n.samples=n2, net.str=g2, mean=mu2 , method="htf")$dat
8

9 p.values <- vector(length=m) # m: number of hypotheses
10 for(i in 1:m){
11 res <- t.test(dat1[,i], dat2[,i], mu=0, alternative = "two.sided")
12 p.values[i] <- res$p.val
13 }

Listing 2: Generating multivariate normal data with the R package mvgraphnorm. An example is shown
for a two-sample, two-sided t-test. Each population is defined by a mean vector of µ (called mu1 and
mu2) and a covariance matrix of Σ (called Sigma1 and Sigma2). Furthermore, g1 and g2 are two causal
structures (networks).

2.5. Application of Multiple Testing Procedures

For the correction of the p-values one can use the ’p.adjust’ function which is part of the core
R package, see Listing 3. This function includes the Šidák, Bonferroni, Holm, Hochberg, Hommel,
Benjamini-Hochberg, and Benjamini-Yekutieli procedure. For the Benjamini-Krieger-Yekutieli and
Blanchard-Roquain procedure one can use the functions ’multiple.down’ and ’BlaRoq’ from the
mutoss package [42]. For the Step-down (SD) maxT and SD minP the multtest package [43] can be
used (see Reference Manual for the complex setting of the functions’ arguments). Recently a much
faster computational realization has been found for the Hommel procedure included in the package
hommel [44].

1 library(mutoss)
2 library(multtest)
3 library(hommel)
4

5 # example usage
6 p.adj <- p.adjust(p.values , method="hochberg") # Hochberg correction
7

8 p.adj <- multiple.down(p.values , alpha =0.05)$adjPValues # BYK procedure
9

10 p.adj <- BlaRoq(p.values , alpha =0.05 , silent=TRUE)$adjPValues # BR -2S procedure
11

12 p.adj <- hommel(p.values) # very fast Hommel procedure

Listing 3: Application of MTPs to raw p-values given by the variable p.values.
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3. Motivation of the Problem

Before we discuss procedures for dealing with MTCs, we present motivations that demonstrate
the need for such a correction. First, we present theoretical considerations that quantify formally the
problem of testing multiple hypotheses and the accompanied misinterpretations of the significance
level of single hypotheses. Second, we provide an experimental example that demonstrates these
problems impressively.

3.1. Theoretical Considerations

Suppose we are testing three null hypotheses H0 = {H1, H2, H3} independently, each for a
significance level of α = 0.05. That means for each hypothesis test Hi with i ∈ {1, 2, 3} we are willing
to make a false positive decision of α whereas α is defined by

α = Pr(reject Hi|Hi is true). (17)

For these three hypotheses we would like to know our combined error, or our simultaneous error,
in rejecting at least one hypothesis falsely, i.e., we would like to know

Pr(reject at least one H0|all H0 are true). (18)

To obtain this error we need some auxiliary steps. Assuming independence of the null hypotheses,
from the αs of each hypothesis test follows that the probability to accept all three null hypotheses H0 is

Pr(accept all three H0|all H0 are true) = (1− α)3. (19)

The reason for this is that 1− α is the probability to accept Hi when Hi is true, i.e.,

1− α = Pr(accept Hi|Hi is true). (20)

Furthermore, because all three null hypotheses are independent from each other
Pr(accept all three H0|all H0 are true) is just the product of these hypotheses,

Pr(accept all three H0|all H0 are true) =
3

∏
i=1

Pr(accept Hi|Hi is true) = (1− α)3. (21)

From this we can obtain the probability to reject at least one H0 by

Pr(reject at least one H0|all H0 are true) = 1− Pr(accept all three H0|all H0 are true) (22)

= 1− (1− α)3. (23)

because this is just the complement of the probability in Equation (19).
For a significance level of α = 0.05 we can now calculate that Pr(reject at least one H0|all H0 are

true) = 0.14, i.e., despite the fact that we are only making an error of 5% in falsely rejecting Hi for a
single hypothesis the combined error for all three tests is 14%.

In Figure 1 we show the generalization of this for m independent hypothesis tests given by

FWER = Pr(reject at least one H0|all H0 are true) (24)

= 1− Pr(accept all m H0|all H0 are true) (25)

= 1− (1− α)m. (26)
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As one can see, the probability to reject at least one H0 falsely approaches quickly 1. Here the
dashed red line indicates the number of tests for which this probability is 95%. That means for testing
59 tests or more we are almost certain to make such a false rejection.

n=59
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Figure 1. Shown is the FWER = Pr(reject at least one H0|all H0 are true) in dependence on the number
of tests for α = 0.05 for all tests. The inlay highlights the first 10 tests.

The inlay in Figure 1 highlights the first 10 tests to show that even with a moderate number of
tests the FWER is much larger than the significance level of an individual test. Ideally, one would like
a strong control of the FWER because this guaranties a control for all possible combinations of true
null hypotheses.

These results demonstrate that the significance level of single hypotheses can be quite misleading
with respect to the error from testing many hypotheses. For this reason, different methods have been
introduced to avoid this explosion in errors by controlling them.

3.2. Experimental Example

To demonstrate the practical importance of the problem an experimental study was presented
by [45]. In their study they used a post-mortem Atlantic salmon as subject and showed “a series of
photographs depicting human individuals in social situations with a specified emotional valence,
either socially inclusive or socially exclusive. The salmon was asked to determine which emotion the
individual in the photo must have been experiencing” [45]. Using fMRI neuroimaging to monitor the
brain activity of the deceased salmon they found out of 8064 voxels 16 to be statistically significant
when testing 8064 hypotheses without any multiple testing correction.

Since the physiological state of the fish is clear (it is dead) the measured activities correspond to
Type 1 errors. They showed also that by applying multiple correcting procedures these errors can be
avoided. The purpose of their experimental study was to highlight the severity of the multiple testing
problem in general fMRI neuroimaging studies [46] and the need for applying MTC procedures [47].

However, the above problems are not limited to neuroimaging but similar problems have
been reported in proteomics [48], transcriptomics [49], genomics [50], GWAS [51], finance [52],
astrophysics [53] and high-energy physics [54].

4. Types of Multiple Testing Procedures

MTPs can be categorized in three different ways. (1) Single-step vs. stepwise approaches,
(2) adaptive vs. non-adaptive approaches and (3) marginal vs. joint MTPs. In the following section,
we discuss each of these categories.
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4.1. Single-Step vs. Stepwise Approaches

Overall, there are three different types of MTPs commonly distinguished by the way they
conceptually compare p-values with critical values [55].

1. Single-step (SS) procedure
2. Step-up (SU) procedure
3. Step-down (SD) procedure

The SU and SD procedures are commonly referred to as stepwise procedures.
Assuming we have ordered p-values as given by Equation (2) then the procedures are defined

as follows.

Definition 3. Single-step (SS) procedure: A SS procedure tests the condition

p(i) ≤ ci (27)

and rejects the null hypothesis i if this condition holds.

For a SS procedure there is no order needed in which the conditions are tested. Hence, previous
decisions are not taken into consideration. Furthermore, usually, the critical values ci are constant for
all tests, i.e., ci = c for all i.

Definition 4. Step-up (SU) procedure: Conceptually, a SU procedure starts from the least significant
p-value, p(m), and goes toward the most significant p-value, p(1), by testing successively if the condition

p(i) ≤ ci (28)

holds. For the first index i∗ for which this condition holds the procedure stops and rejects all null hypothesis j
with j ≤ i∗, i.e., reject the null hypotheses

H(1), H(1), . . . , H(i∗). (29)

If such an index does not exist do not reject any null hypothesis.

Formally, a SU procedure identifies the index

i∗ = max
{

i ∈ {1, . . . , m}|p(i) ≤ ci
}

(30)

for the critical values ci. Usually, the cis are not constant but change with index i.

Definition 5. Step-down (SD) procedure: Conceptually, a SU procedure starts from the most significant
p-value, p(1), and goes toward the least significant p-value, p(m), by testing successively if the condition

p(i) ≤ ci (31)

holds. For the first index i∗ + 1 for which this condition does not hold the procedure stops. Then it rejects all
null hypothesis j with j ≤ i∗, i.e., reject the null hypotheses

H(1), H(1), . . . , H(i∗). (32)

If such an index does not exist do not reject any null hypothesis.
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Formally, a SD procedure identifies the index

i∗ = max
{

i ∈ {1, . . . , m}|p(j) ≤ cj, for all j ∈ {1, . . . , i}
}

(33)

for the critical values ci.
Regarding the meaning of both procedures, we want to make two remarks. First, we would like

to remark that the direction, either ’up’ or ’down’, is meant with respect to the significance of p-values.
That means a SU procedure steps toward more significant p-values (hence it steps up) whereas a SD
procedure steps toward less significant p-values (hence it steps down).

Second, the crucial difference between a SU procedure and a SD procedure is that a SD procedure
is more strict requiring all p-values below i∗ to be significant as well whereas a SU procedure does not
require this.

In Figure 2 we visualize the working mechanism of a SD and a SU procedure. The dashed red
line corresponds to the critical values ci and the blue points to rank ordered p-values. Whenever a
p-value is below the dashed red line its corresponding null hypothesis is rejected, otherwise accepted.
The green range indicates p-values identified with a SD procedure whereas the orange range indicates
p-values identified with a SU procedure. As one can see, a SU procedure is less conservative than a SD
procedure because it does not have the monotonicity requirement.
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Figure 2. An example visualizing the differences between a SU and a SD procedure. The dashed
red line corresponds to the critical values ci and the blue points to rank ordered p-values. The green
range indicates p-values identified with a SD procedure whereas the orange range indicates p-values
identified with a SU procedure.

4.2. Adaptive vs. Non-Adaptive Approaches

Another way to categorize MTPs is if they estimate the number of null hypotheses m0 from the
data or not. The former type of procedures is called adaptive procedures (AD) and the latter ones
non-adaptive (NA) [56,57]. Specifically, adaptive MTP estimate the number of null hypotheses m0

from a given data set and then use this estimate for a multiple test procedure. In contrast, NA MTP
assume m0 = m.
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4.3. Marginal vs. Joint Multiple Testing Procedures

A third way to categorize MTPs is if they are using marginal or joint distributions of the test
statistics. Multivariate procedures are capable of taking into account the dependency structure in the
data (among the test statistics) and, hence, such MTPs can be more powerful than marginal procedures
because the latter just ignore this information. For instance, the dependency structure manifests as a
correlation structure which can have a noticeable effect on the results.

Usually, procedures using joint distributions are based on resampling approaches, e.g.,
Bootstrapping or permutations [10,22]. Hence, they are nonparametric methods which require
computational approaches.

5. Controlling the FWER

We start our presentation of MTPs with methods for controlling the FWER [58]. In the following,
we will discuss procedures from Šidák, Bonferroni, Holm, Hochberg, Hommel, and Westfall-Young.
This discussion emphasizes the working mechanisms behind the procedures. In Section 8 we present a
summary of the underlying assumptions the procedures rely on.

5.1. Šidák Correction

The first MTP we discuss for controlling the FWER has been introduced by Šidák [21]. Let’s say
we want to control the FWER at a level α. If we reverse Equation (26) we obtain an adjusted significance
level given by

αS = 1− (1− α)1/m. (34)

This equation allows calculation of the corresponding adjusted significance level αS of the
individual hypotheses for every FWER of α and every m (number of hypotheses). A null hypothesis
Hi is rejected if

pi ≤ αS (35)

holds. Hence, by using αS(m) the FWER is controlled at level α.
The procedure given by Equation (35) is called single-step Šidák correction. For completeness we

also want to mention that there is a SD Šidák correction defined by

pi ≤ 1− (1− α)1/m−i+1. (36)

From Equations (34) and (35) we can derive adjusted p-values for the single-step Šidák correction
which are given by

padj
i = min{1− (1− pi)

m, 1} (37)

These adjusted p-values can alternatively be used to test for significance by comparing them with
the original significance level, i.e.,

padj
i ≤ α. (38)

In Figure 3A, we show the adjusted significance level αS of the individual hypotheses for a
single-step Šidák correction in dependence on the number of hypotheses m for α = 0.05. As one can
see, the adjusted significance level αS becomes quickly more stringent for an increasing number of
hypothesis tests m.
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Figure 3. (A) Single-step Šidák correction. Shown is αS in dependence on m for α = 0.05. (B) Bonferroni
correction. Shown is the FWER in dependence on m for α = 0.05.

5.2. Bonferroni Correction

The Bonferroni correction controls the FWER under general dependence [17]. From a Taylor
expansion of Equation (34) up to the linear term, we obtain the following approximation given by

αB =
α

m
. (39)

By using Boole’s inequality one can elegantly show that this controls the FWER [50].
Equation (39) is the adjusted Bonferroni significance level. We can use this adjusted significance

level to test every p-value and reject the null hypothesis Hi if

pi ≤ αB. (40)

From Equations (39) and (40) we can derive adjusted p-values which are given by

padj
i = min{mpi, 1}. (41)
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These adjusted p-values can alternatively be used to test for significance by comparing them with
the original significance level, i.e.,

padj
i ≤ α. (42)

The result of this is shown in Figure 3. Specifically, the FWER in Equation (26) is shown for the
corrected significance level αB given by

FWER = 1− (1− αB)
m. (43)

As one can see, the FWER is for all m controlled because it is always below α = 0.05. Here it is
important to emphasize that the y-axis range is only from 0.048 to 0.05 to see the effect.

5.3. Holm Correction

A modified Bonferroni correction has been suggested by [23], called the Holm correction.
In contrast to a Bonferroni correction, but also Sidak, it is a sequential procedure that tests ordered
p-values. For this reason, it has also been also called ’the sequentially rejective Bonferroni test’ [23].

Let us indicate by

p(1) ≤ p(2) · · · ≤ p(m) (44)

the ordered sequence of p-values in increasing order. Then the Holm correction tests the following
conditions in a SD manner:

Step 1.: Reject H(1) if p(1) ≤
α

m
(45)

Step 2.: Reject H(2) if p(2) ≤
α

m− 1
(46)

Step 3.: Reject H(3) if p(3) ≤
α

m− 2
(47)

...

Step m.: Reject H(m) if p(m) ≤
α

1
(48)

If at any step the H(i) is not rejected, the procedure stops and all other p-values, i.e.,
p(i), p(i+1), . . . p(m) are accepted. Compactly, the above testing criteria of the steps can be written as

p(i) ≤
α

m− i + 1
(49)

for i ∈ {1, . . . , m}. As one can see, the first step, i.e., i = 1, is exactly a Bonferroni correction and
each following step is in the same spirit but considering the changed number of remaining tests.
The optimal cut-off index of this SD procedure can be identified by

i∗ = max
{

i ∈ {1, . . . , m}|p(j) ≤
α

m− j + 1
, for all j ∈ {1, . . . , i}

}
. (50)

From this the adjusted p-values of a Holm correction can be derived [12] and are given by

padj
(i) = max

j≤i

{
min

k∈{1,...,j}

{
(m− k + 1)p(k), 1

}}
. (51)
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The nested character of this formulation comes from the strict requirement of a SD procedure that
all p-values, p(i), need to be significant with j ≤ i (see the j index in Equation (50)). An alternative,
more explicit form to obtain the adjusted p-values is given by the following sequential formulation [59]:

padj
(i) =

min{mp(i), 1} if i = 1

max{padj
(i−1), (m− i + 1)p(i)} if i = {2, . . . , m}

(52)

A computational realization of a Holm correction is given by Algorithm 1.

Algorithm 1: SD Holm correction procedure.
Input: p(1) ≤ p(2) · · · ≤ p(m)

1 k = 0
2 while p(k+1) ≤ α/(m− k) do
3 k = k + 1

4 Reject H(1), H(1), . . . H(k)

Similar to a Bonferroni correction, also Holm does not require the independence of the test
statistics and provides a strong control of the FWER. In general, this procedure is more powerful than
a Bonferroni correction.

5.4. Hochberg Correction

Another MTC that is formally very similar to the Holm correction is the Hochberg correction [24],
shown in Algorithm 2. The only difference is that it is a SU procedure.

Algorithm 2: SU Hochberg correction procedure
Input: p(1) ≤ p(2) · · · ≤ p(m)

1 k = m
2 while p(k) > α/(m− k + 1) do
3 k = k− 1

4 Reject H(1), H(1), . . . H(k)

The adjusted p-values of the Hochberg correction are given by [59]:

padj
(i) =

p(i) if i = m

min{padj
(i+1), (m− i + 1)p(i+1)} if i = {m− 1, . . . , 2}

(53)

The Hochberg correction is an optimistic approach because it tests backwards, and it stops as
soon as a p-value is significant at level α/(m− k + 1). The SU character makes it more powerful and,
hence, the SU Hochberg procedure is more powerful than the SD Holm procedure.

5.5. Hommel Correction

The next MTP we discuss, the Hommel correction [60], is far more complex than the previous
procedures. The method evaluates the set

i∗ = max
{

i ∈ {1, . . . , m}|p(m−i+k) >
k
i

α, for all k ∈ {1, . . . , i}
}

(54)

and determines the maximum index for which this condition holds [28]. If such an index does not
exist, then we reject H(1), H(1), . . . H(m) otherwise we reject only the p-values for which holds
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p <
α

i∗
. (55)

In Figure 4 we visualize the testing condition for m = 7. In this figure the scaling factor
f (i, k) = k/i is shown in dependence on the index i and k. Each red point corresponds to an index
pair (i, k). Figure 4A shows f (i, k) for fixed i values and Figure 4B shows f (i, k) for fixed k values.
This leads to k respectively i dependent curves shown in blue, i.e., f (i fixed, k) and f (i, k fixed). In both
figures, the isolines shown as orange dashed lines, connect points with a constant index h = m− i + k.
For each blue line (in both figures) the points on these lines have indices h = m, h = m− 1 etc. going
from high to low values of f (i, k). These indices are used for the rank ordered p-values, i.e.,

p(h) = p(m−i+k). (56)
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Figure 4. The factor f (i, k) of the Hommel correction is shown in dependence on i and k. (A) The blue
lines correspond to fixed values of i. (B) The blue lines correspond to fixed values of k. The index h is
the argument of the ordered p-values, i.e., p(h).
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According to Equation (54), for each index i there are i different values of k. In Figure 4A these
correspond to the points on the blue lines and in Figure 4B these correspond to the points in vertical
columns. In Figure 4B we highlight just one of these as a green dashed line.

The following array in Equation (57) shows for each step of the procedure the corresponding
conditions that need to be tested. At Step 1, the index i = m. For reasons of simplicity we use the
notation F(i, k) = f (i, k)α = kα/i. Only if all conditions for a step (for a column) are true, the procedure
stops and i∗ corresponds to the i value of this step. Otherwise the procedure continues to the next step.

Step : 1 2 . . . m− 1 m
i : m m− 1 . . . 2 1

p(m) > F(m, m) p(m) > F(m− 1, m− 1) . . . p(m) > F(2, 2) p(m) > F(1, 1)
p(m−1) > F(m, m− 1) p(m−1) > F(m− 1, m− 2) . . . p(m−1) > F(2, 1)

...
...

p(3) > F(m, 3) p(3) > F(m− 1, 2)
p(2) > F(m, 2) p(2) > F(m− 1, 1)
p(1) > F(m, 1)

(57)

As one can see from the triangular shaped array, the number of conditions per step decreases by
one. Specifically, always the smallest p-value from the previous step is dropped. This increased the
probability for all conditions to hold from step to step because also the corresponding values of F(i, k)
increase. Specifically, F(c, d) < F(c− 1, d) hold for all c because

dα

c
<

dα

c− 1
(58)

holds for all c. Hence, the smallest p-values tested per step are compared to decreasingly
stringent conditions.

In algorithmic form, one can write the Hommel correction as shown in Algorithm 3. In this form
the Hommel correction is less compact but easier to understand. It has been found that the Hommel
procedure is more powerful than Bonferroni, Holm and Hochberg [28]. Finally, we want to mention
that very recently a much faster computational realization has been found [44]. This algorithm has a
linear time complexity and leads to an astonishing improvement allowing the application to millions
of tests.

Algorithm 3: Hommel correction procedure
Input: p(1) ≤ p(2) · · · ≤ p(m)

1 i = m
2 while p(m−i+k) ≤ k

i α for at least one k ∈ {1, . . . , i} do
3 i = i− 1

4 i∗ = i
5 if i∗ = 0 then
6 Reject H(1), H(1), . . . H(m)

7 else
8 Reject H(l) with pl <

α
i∗

5.5.1. Examples

Let us consider some numerical examples for m = 5. In this case, the general array in Equation (57)
assumes the following numerical values.
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Step : 1 2 3 4 5
i : 5 4 3 2 1

p(5) > 0.05 p(5) > 0.05 p(5) > 0.05 p(5) > 0.05 p(5) > 0.05
p(4) > 0.04 p(4) > 0.037 p(4) > 0.033 p(4) > 0.025
p(3) > 0.03 p(3) > 0.025 p(3) > 0.016
p(2) > 0.02 p(2) > 0.012
p(1) > 0.01

(59)

• Example 1: p(1) = 0.011, p(2) = 0.021, p(3) = 0.031, p(4) = 0.41, p(5) = 0.051. In this case, i∗ = 5
and α/i∗ = 0.01. From this follows that no hypothesis can be rejected.

• Example 2: p(1) = 0.009, p(2) = 0.021, p(3) = 0.031, p(4) = 0.41, p(5) = 0.051. In this case, i∗ = 4
and α/i∗ = 0.0125. From this it follows that H(1) can be rejected.

• Example 3: p(1) = 0.009, p(2) = 0.021, p(3) = 0.024, p(4) = 0.41, p(5) = 0.051. In this case, i∗ = 3
and α/i∗ = 0.016. From this it follows that H(1) can be rejected.

These examples should demonstrate that the application and outcome of a Hommel correction
is non-trivial.

5.6. Westfall-Young Procedure

For most real-world situations, the joint distribution of the test statistics is unknown. Westfall and
Young made seminal contributions by showing that in this case resampling-based methods can be
used, under certain conditions, to estimate p-values without the need for making many theoretical
assumptions [22]. However, in order to do this one needs (1) access to the data and (2) be able to
resample the data in such a way that the resulting permutations allow estimation of the null hypotheses
of the test statistics. The latter is usually possible for two-sample tests but may be more involved for
other types of tests.

In particular, four such permutation-based methods have been introduced by Westfall and
Young [22]. Two of these are single-step procedures and two are SD procedures. The single-step
procedures are called single-step minP

p̃j = Pr
(

min
l∈{1,...,m}

Pl ≤ pj|HC
0

)
(60)

and single-step maxT

p̃j = Pr
(

max
l∈{1,...,m}

|Tl | ≥ tj|HC
0

)
(61)

and their adjusted p-values are given by the above Equations (60) and (61). Here HC
0 is an intersection of

all true null hypotheses, Pl denotes unadjusted p-values from permutations and Tl denotes test statistics
from permutations. The pj and tj are the p-values and test statistics from the un-permuted data.

Without additional assumptions, single-step maxT and single-step minP provide a weak control of
the FWER. However, for subset pivotality both procedures control the FWER strongly [22]. Here subset
pivotality is a property of the distribution of raw p-values and holds if all subsets of p-values have
the identical joint distribution under the complete null distribution [10,22,61] (for a discussion of
an alternative an practically simpler sufficient condition see [62]). Furthermore, the results from
single-step maxT and single-step minP give the same results when the test statistics are identically
distributed [49].

From a computational perspective, the single-step minP is computationally more demanding
than the single-step maxT because it is based on p-values and not on test statistics. The difference is
that one can get a resampled value of a test statistic from one resampled data set whereas for a p-value
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one needs a distribution of resampled test statistics which can only be obtained from many resampled
data sets. This has been termed double permutation [63].

The SD procedures are called SD minP

p̃rj = max
k∈1,...,j}

{
Pr
(

min
l∈{k,...,m}

Prl ≤ prk |H
C
0

)}
(62)

and SD maxT

p̃sj = max
k∈1,...,j}

{
Pr
(

max
l∈{k,...,m}

|Tsl | ≥ tsk |H
C
0

)}
(63)

and their adjusted p-values are given by the above Equations (62) and (63). The indices rk and sk are
the ordered indices, i.e., |ts1 | ≥ |ts2 | ≥ · · · ≥ |tsm | and pr1 ≤ pr2 ≤ · · · ≤ prm .

Interestingly, it can be shown that assuming the Pl are uniformly distributed in [0, 1] the p-values
in Equation (62) correspond with the ones obtained from the Holm procedure [63]. That means in
general the SD minP procedure is less conservative than Holm’s procedure. Again, the SD minP is
computationally more demanding than the SD maxT because of the required double permutations.
Also, assuming subset pivotality both procedures have a strong control of the FWER [64].

The general advantage of using maxT and minP procedures over all other procedures discussed
in our paper is that these use potentially the dependency structure among the test statistics. That
means when such a dependency (correlation) is absent there is no apparent need for using these
procedures. However, most data sets have some kind of dependency since the associated covariates
are usually connected with each other. In such situations, the maxT and minP procedures can lead to
an improved power.

In algorithmic form, the SD maxT and SD minP procedure can be formulated as shown in
Algorithms 4 and 5. For Step 2 in Algorithm 5, it is important to point out that the estimates of the raw
p-value pi,b are obtained for the same permutations obtained in Step 1.

Algorithm 4: Westfall-Young step-down maxT procedure.

Input: |ts1 | ≥ |ts) | · · · ≥ |tsm |, and the data matrix X

1 for b ∈ {1, . . . , B} do
2 Step 1. Permute the columns of the data matrix X
3 Step 2: Calculate the test statistics ti,b for i ∈ {1, . . . , m}
4 Step 3: Estimate ui,b for i ∈ {1, . . . , m} by

um,b = |tsm ,b|
ui,b = max

{
ui+1,b, |tsi ,b|

}
for i ∈ {m− 1, . . . , 1}

5 Estimate the adjusted p-values by

p̂∗si
=

#{b : ui,b ≥ |t(i)|}
B

for i ∈ {1, . . . , m} (64)

Finally, monotonicit is enforced by

p̂s1 = p̂∗s1

p̂si = max
{

p̂si−1 , p̂∗si

}
for i ∈ {2, . . . , m}
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Algorithm 5: Westfall-Young step-down minP procedure.
Input: p(1) ≤ p(2) · · · ≤ p(m), and the data matrix X

1 for b ∈ {1, . . . , B} do
2 Step 1. Permute the columns of the data matrix X
3 Step 2: Estimate the raw p-values pi,b for i ∈ {1, . . . , m}
4 Step 3: Estimate qi,b for i ∈ {1, . . . , m} by

qm,b = prm ,b

qi,b = min
{

qi+1,b, pri ,b
}

for i ∈ {m− 1, . . . , 1}

5 Estimate the adjusted p-values by

p̂∗ri
=

#{b : qi,b ≤ pri}
B

for i ∈ {1, . . . , m} (65)

Finally, monotonicit is enforced by

p̂r1 = p̂∗r1

p̂ri = max
{

p̂ri−1 , p̂∗ri

}
for i ∈ {2, . . . , m}

6. Controlling the FDR

Now we come to a second type of correction methods. In contrast to the methods discussed so
far controlling the FWER, the methods we are discussing in the next sections are controlling the FDR.
That means these methods have a different optimization goal. In Section 8 we present a summary of
the underlying assumptions the procedures rely on.

6.1. Benjamini-Hochberg Procedure

The first method from this category we discuss controlling the FDR is called the
Benjamini-Hochberg (BH) procedure [19]. The BH procedure can be considered a breakthrough
method because it introduced a novel way of thinking to the community. The procedure assumes
ordered p-values as in Equation (44). Then it identifies by a SU procedure the largest index k for which

p(i) ≤ i
α

m
(66)

holds and rejects the null hypotheses H(1), H(2), . . . , H(k). Compactly, this can be formulated by

k = max
{

i ∈ {1, . . . , m}|p(i) ≤ i
α

m
}

. (67)

If no such index exists then no hypothesis is rejected.
Conceptually, the BH procedure uses Simes inequality [37], see Section 2.1. In algorithmic form,

the BH procedure can be formulated as shown in Algorithm 6.

Algorithm 6: SU Benjamini-Hochberg procedure
Input: p(1) ≤ p(2) · · · ≤ p(m)

1 k = 0
2 while p(k+1) ≤ ((k + 1)α)/m do
3 k = k + 1

4 Reject H(1), H(1), . . . H(k)
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The adjusted p-values of the BH procedure are given by [49]

padj
(i) = min

j∈{1,...,m}

{mp(j)

j
, 1
}

. (68)

In general, the BH procedure makes a good trade-off between false positives and false negatives
and works well for independent test statistics or positive regression dependencies (denoted by PRDS)
which is a weaker assumption than independence [25,57,65]. Generally, it is also more powerful than
procedures controlling the FWER. The correlation assumptions imply that in the presence of negative
correlations the control of the FDR is not always achieved. Also, the BH procedure can suffer from
a weak power, especially when testing a relatively small number of hypotheses because in such a
situation it is similar to a Bonferroni correction, see Figure 5B.

6.1.1. Example

In Figure 5 we show a numerical example for the BH procedure. In Figure 5A we show m = 100
rank ordered p-values. The dashed red line corresponds to a significance level of α = 0.05 and the
dashed green line corresponds to the testing condition in Equation (66).

α = 0.05
0.00

0.25

0.50

0.75

1.00

0 20 40 60 80 100
Rank

p−
va

lu
es

α = 0.05

Bonferroni

BH

0.00

0.01

0.02

0.03

0.04

0.05

0 10 20 30
Rank

p−
va

lu
es

A.

B.

Figure 5. Example for the BH procedure. The dashed green line corresponds to the critical values given
by Equation (66). (A) Results for m = 100. (B) Zooming into the first 30 p-values.
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In Figure 5B we zoom into the first 30 p-values. Here we also added a Bonferroni correction as
dashed orange line at a value of α/m = 5e− 04. One can see that the BH correction corresponds to a
straight line that is always above the Bonferroni correction. Hence, a BH is always less conservative
than a Bonferroni correction. As a result, for the shown p-values we obtain 18 significant values for the
BH correction but only 3 significant values for the Bonferroni correction. One can also see that using
the uncorrected p-values with α = 0.05 gives additional significant values in an uncontrolled manner
beyond rank 18.

6.2. Adaptive Benjamini-Hochberg Procedure

In [56] a modified version of the BH procedure has been introduced which estimates the proportion
of null hypothesis, π0 from data whereas the proportion of true null hypotheses is given by π0 = m0/m.
For this reason, this procedure is called adaptive Benjamini-Hochberg procedure (adaptive BH).

The adaptive BH procedure modifies Equation (66) by substituting α with α/π0 which gives

p(i) ≤= i
α

π0m
= i

α

m0
. (69)

The procedure itself searches in a SU manner the larges index k for which

k = max
{

i ∈ {1, . . . , m}|p(i) ≤ i
α

π0m
}

(70)

holds. If no such index exists then no hypothesis is rejected, otherwise reject the null hypotheses
H(1), H(2), . . . , H(k).

The estimator for π0 is found as a result from an iterative search based on [66]

π̂BH
0 (k) =

m− k + 1
(1− p(k))m

. (71)

Specifically, the optimal index k is found from

k = min
{

i ∈ {2, . . . , m}|π̂BH
0 (i) > π̂BH

0 (i− 1)
}

. (72)

The importance of this study does not lie in its practical usage but in the inspiration it provided
for many follow-up approaches that introduced new estimators for π0. In this paper, we will provide
some examples for this, e.g., when discussing the BR-2S procedure and in the summary Section 8.

6.3. Benjamini-Yekutieli Procedure

To improve the BH procedure that can deal with a dependency structure, in [25] a modification
has been introduced, called the Benjamini-Yekutieli (BY) procedure. The BY procedure assumes also
ordered p-values as in Equation (44) and then it identifies in a stepwise procedure the largest index k
for which

p(k) ≤ k
α

m f (m)
(73)

holds and rejects the null hypotheses H(1)
0 , H(2)

0 , . . . , H(k)
0 . It is important to note that here the factor

f (m) = ∑m
i=1 1/i is introduced which depends on the total number of hypotheses. Compactly, this can

be formulated by

k = max
{

i ∈ {1, . . . , m}|p(i) ≤ i
α

m f (m)

}
. (74)

If no such index exists then no hypothesis is rejected.
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Since f (m) > 1 for all m, the product m f (m) can be seen as an effective increase in the number of
hypotheses to m′ with m′ = m f (m). Hence, the BY procedure is very conservative and it can be even
more conservative than a Bonferroni correction. For instance, for m ∈ {100, 1000, 10, 000, 100, 000} we
obtain f (m) = {5.8, 7.5, 9.8, 12.1}. The adjusted p-values of the BY procedure are given by [49]

padj
(i) = min

k∈{i,...,m}

{m f (m)p(k)
k

, 1
}

. (75)

It has been proven that the BY procedure controls the FDR in the strong sense by

FDR ≤ m0

m
α = π0α (76)

for any type of dependent data [25]. Since it is always m0 ≤ m, the FDR is either controlled at level α

(for m0 = m) or even below that level. A disadvantage of the BY procedure is that it is less powerful
than BH.

6.3.1. Example

In Figure 6 we show a numerical example for the BY procedure. Here the BY correction
corresponds to the dashed red line which is always below the BH correction (dashed green line)
indicating that it is more conservative.
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Figure 6. Example for the Benjamini-Yekutieli procedure for m = 100. Both figures show only a subset
of the results up to rank 30 respectively 10 to see the effect of a BY correction.

Interestingly, the line for the BY correction intersects with the Bonferroni correction (dashed orange
line) at rank 5 (see inlay). That means below this value the BY correction is more conservative and after
the intersection less conservative. For the p-values in this example, the BY gives no significant results.
This indicates the potential problem with the BY procedure in practice because its conservativeness
can lead to no significant results at all.

6.4. Benjamini-Krieger-Yekutieli Procedure

Yet another modification of the BH procedure has been introduced in [26]. This MTP is an adaptive
two-stage linear SU method, called BKY (Benjamini-Krieger-Yekutieli). Here ’adaptive’ means that the
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procedure estimates the number of null hypothesis from the data and uses this information to improve
the power. This approach is motivated by Equation (76) and the dependency of the control on m0.

Step 1: Use a BH procedure with α′ = α/(1 − α). Let r be the number of hypotheses rejected.
If r = 0, no hypothesis is rejected. If r = m reject all m hypotheses. In both cases, the
procedure stops. Otherwise proceed.

Step 2: Estimate the number of null hypotheses by m̂0 = m− r.
Step 3: Use a BH procedure with α′′ = mα′/(m̂0) = α′/π̂0.

The BKY procedure uses the BH procedure twice. In the first stage to estimate the number of null
hypotheses m̂0 and in the second to declare significance.

The BKY procedure controls the FDR exactly at level α when tests are independent. In [26] it has
been shown that this procedure has higher power than BH.

6.5. Blanchard-Roquain Procedure

A generalization of the BY procedure has been introduced by Blanchard & Roquain [67].

6.5.1. BR-1S Procedure

The first procedure introduced in [67] is a one-state adaptive SU procedure, called BR-1S,
independently proposed in [57]. Formally, the BR-1S procedure [67], first, defines an adaptive
threshold by

t(i) = min
{

λ,
iα(1− λ)

m− i + 1

}
(77)

for λ ∈ (0, 1) and for all i ∈ {1, . . . , m}. Then the largest index k is determined for which holds

k = max
{

i ∈ {1, . . . , m}|p(i) ≤ t(i)
}

. (78)

If no such index exists then no hypothesis is rejected otherwise all null hypotheses with p-values
with p(i) ≤ t(k) are rejected.

For the BR-1S procedure it has been proven that the FDR is controlled by

FDR ≤ min
{

λ, α(1− λ)m
}

. (79)

A brief calculation shows that both arguments of the above Equation are equal for

λ(m) =
αm

1 + αm
. (80)

A further calculation shows that Equation (80) is monotonously increasing for increasing values
of m and for m ≥ 2 we find λ(m) > α. That means one needs to choose λ values smaller than the value
on the right-hand side in Equation (80) to be able to control the FDR [67]. Hence, a common choice for
λ in Equation (79) is λ = α because this controls the FDR on the α level, i.e., FDR ≤ α.

For λ = α the adaptive threshold simplifies and becomes

t(i) = α min
{

1,
i(1− α)

m− i + 1

}
. (81)

Furthermore, for i ≤ (m + 1)/2 the adaptive threshold simplifies even further to

t(i) = α
i(1− α)

m− i + 1
. (82)
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6.5.2. BR-2S Procedure

The second procedure introduced in [67] is a two-state adaptive plug-in procedure, called BR-2S,
given by:

Stage 1: Estimate R(λ1) = m0 by BR-1S(λ1).
Stage 2: Use α′ = α/π̂0 with

π̂BR
0 =

m− R(λ1) + 1
(1− λ2)m

for λ2 ∈ (0, 1) (83)

in the SU procedure given by Equation (70). That means the estimate for the proportion of
null hypotheses is used to find the larges index k for which

k = max
{

i ∈ {1, . . . , m}|p(i) ≤ i
α

π̂BR
0 m

}
(84)

holds. If no such index exists then no hypothesis is rejected, otherwise reject the null
hypotheses H(1), H(2), . . . , H(k).

The BR-2S procedure depends on two parameters denoted by λ1 and λ2. The first parameter is
for BR-1S in stage one, whereas the second enters the estimate of the proportion of null hypotheses
in stage two. It has been proven [67] that for setting λ1 = α/(1 + α + 1/m) in Step 1 of the BR-2S
procedure one obtains FDR= λ. This suggests setting λ = α in Step 2. The BR-1S and BR-2S procedure
are proven to control the FDR for arbitrary dependence.

7. Computational Complexity

When performing MTCs for high-dimensional data the computation time required by a procedure
can have an influence on its selection. For this reason, we present in this section a comparison of the
computation time for different methods in dependence on the dimensionality of the data.

In the following, we apply the eight MTPs of Bonferroni, Holm, Hochberg, Hommel, BH, BY,
Benjamini-Krieger-Yekutieli and Blanchard-Roquain to p-values of varying size m ∈ {100, 1000, 10,000,
100,000}. In Table 2 we show the mean computation times averaged over 10 independent runs.

Table 2. Average computation times for eight MTPs. The time unit is either seconds (s) or minutes (min).
The Hommel algorithm indicated by * is a fast algorithm by [44].

Method Error Control m = 1000 m = 10,000 m = 20,000 m = 50,000

Bonferroni FWER 9.360× 10−5 s 0.000389 s 0.001163 s 0.002932 s
Holm FWER 1.801× 10−4 s 0.001569 s 0.002897 s 0.012100 s
Hochberg FWER 1.716× 10−4 s 0.001430 s 0.003673 s 0.010471 s
Hommel FWER 5.394× 10−2 s 4.556661 s 23.389805 s 2.6053 min
Hommel * FWER 7.607× 10−4 s 0.001618 s 0.003035 s 0.008737 s
Benjamini-Hochberg FDR 2.955× 10−4 s 0.001260 s 0.003132 s 0.011276 s
Benjamini-Yekutieli FDR 2.264× 10−4 s 0.001168 s 0.004412 s 0.014482 s
Benjamini-Krieger-Yekutieli FDR 3.023× 10−3 s 0.025884 s 0.057175 s 0.147631 s
Blanchard-Roquain FDR 1.885× 10−3 s 0.024531 s 0.048221 s 0.126420 s

One can see that there are large differences in the computation times. By far the slowest method
is Hommel. For instance, correcting m = 20,000 p-values takes over 20,000 times longer than for a
Bonferroni correction. This method has also the worst scaling which means practical applications
need to take this into consideration. This computational complexity could already be anticipated from
our discussion in Section 5.5 because the Hommel correction is much more involved than all other
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procedures. However, the new algorithm by [44] (indicated by *) leads to an astonishing improvement
in the computational complexity for this method.

Furthermore, from Table 2 one can see that we find essentially three groups of computational
times. In the group of the fastest methods are Bonferroni, Holm, Hochberg, BH, and BY. In the medium
fast group are Benjamini-Krieger-Yekutieli and Blanchard-Roquain and in the group of the slowest
methods is only Hommel. Overall, the computation times of all methods in group one and two are
very fast although the procedures by Benjamini-Krieger-Yekutieli and Blanchard-Roquain are ten times
slower than the ones in group one.

8. Summary

In this paper, we reviewed MTPs for controlling either the FWER or the FDR. We emphasized
their principal approach allowing categorization of them as (1) single-step vs. stepwise approaches,
(2) adaptive vs. NA approaches, and (3) marginal vs. joint MTPs.

When it comes to the practical application of an MTP one needs to realize that to select a method
there is more than the control of an error measure. Specifically, while a given MTP may guarantee
the control of an error measure, e.g., the FWER or the FDR, this does not inform us about the Type 2
error/power of the procedure. In particular, the latter is for practical applications important because if
one cannot reject any null hypothesis there is usually nothing to report or explore.

To find the optimal procedure for a given problem, the best approach is to conduct simulation
studies comparing different MTPs. Specifically, for a given data set, one can diagnose its characteristics,
e.g., by estimating the presence and the structure of correlations, and then simulate data following
these characteristics. This ensure the simulations are problem-specific and adapt as close as possible to
the characteristics of the data.

The advantage of this approach is that the selection of an MTP is not based on generic results
from the literature but tailored to your problem. The disadvantage is the effort it takes to estimate,
simulate, and compare the different procedures with each other.

If such a simulation approach is not feasible one needs to revert to results from the literature.
In Table 3 (and Figure 7 discussed below) we show a summary of MTPs and some important
characteristics. Furthermore, from a multitude of simulation studies the following results have
been found independently:

• Positive correlations (simulated data): BR is more powerful than BKY [67].
• General correlations (real data): BY has a higher PPV than BH [68].
• Positive correlations (simulated data): BKY is more powerful than BH [26].
• Positive correlations (simulated data): Hochberg, Holm and Hommel do not control the PFER for

high correlations [69].
• General correlations (real data): SS MaxT has higher power than SS minP [49,70,71].
• General correlations (real data): SS MaxT and SD MaxT can be more powerful than Bonferroni,

Holm and Hochberg [49].
• Random correlations (simulated data): SD minP is more powerful than SD maxT [71].

The above-mentioned simulation studies considered all the correlation structure in the data
because this is of practical relevance. Since there is not just one type of a correlation structure that
one needs to consider, the possible number of different studies is huge exploring all these different
structures. Specifically, one can assume homogenous or heterogeneous correlations. The former
assumes that pairwise correlations are equal throughout the different pairs whereas the latter assumes
inequality. For heterogeneous correlation structures one can further assume a random structure or a
particular structure. For instance, a particular structure can be imposed from an underlying network,
e.g., a regulatory network among genes [72]. Hence, for the simulation of such data the covariance
structure needs to be consistent with a structure of the underlying network [40].
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Given all this information, how should one choose an MTP? In general, it is not necessarily
suggested to select the MTP with the highest power. The reason follows from the evaluation of false
positives (Type 1 errors) for a given situation. Whereas procedures controlling the FDR have in general
a higher power than procedures controlling the FWER the latter can nevertheless be preferred when
we need to be conservative in incurring false positives. For instance, in a clinical context such a false
positive could correspond to a lethal outcome for the patient. In such a situation, an MTP with a
smaller power but also a smaller Type 1 error is certainly preferred.

In this context, the study conducted by [69] is of interest because the authors compared MTPs
controlling the FWER with further error measures (including the PFER). Their study underlines the
need to consult always more than one error measure to judge the outcome; see also [73] for a general
discussion of this problem.

In Figure 7 we show summarizing guidelines how to select an MTP. In the pre-selection steps (1–3)
the number of available MTPs should be reduced by domain-specific knowledge. These steps include
(1) the selection of an error measure, (2) the evaluation of the correlation structure of the data and (3)
deciding if a marginal or joint multiple testing procedure is desired. This will lead to a reduced set of
MTPs forming potential candidates. The MTPs within this reduced set are then thoroughly assessed
either (4.A) by a simulation study or (4.B) by using information from the literature. Importantly, Step
(4.A) requires the generation of simulated data with a similar correlation structure as the data to be
analyzed. In addition, these simulated data should consider all relevant properties of the data to
be analyzed. From Step (4.A) follows important information, e.g., about the power of an MTP that
needs to be assessed in a domain-specific manner considering, .e.g., the costs of Type 1 and Type 2
errors. Here the costs do not necessarily refer to financial burdens but and kind of negativity associated
with these errors. This will allow a relevant assessment of the MTPs providing the most detailed
information. If Step (4.A) cannot be carried out, Step (4.B) is applied. However, this step is only an
approximative assessment compared to Step (4.A) because it relies on the availability of literature
studies using data with properties close to the data to be analyzed. Based on this the most appropriate
MTP is selected considering theoretical and domain-specific criteria.

1. Select Error measure 2. Evaluate correlation of the data 3. Marginal or joint distribution

Assessment of the remaining MTPs

4.A Simulation study for simulated data 
with a close correlation structure

4.B Use information from the literature
for data with close properties

Input:
All available MTPs

Output:
Most appropriate MTP

Relevant assessment Approximative assessment

Pre-selection steps

Assessment criteria for 4.A and 4.B come from:
 - Theory
 - Domain-speci�c information
   (e.g. costs of Type 1 or Type 2 errors 
   in relation to bene�ts from TPs etc)

Figure 7. Assessment process for selecting an MTP. The three pre-selection steps (1–3) reduce the
number of available MTPs to a set of relevant MTPs for a given domain-specific problem. The MTPs
within this reduced set are then assessed either (4.A) by a simulation study or (4.B) by using information
from the literature. Based on this the most appropriate MTP is selected.
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One may wonder why it is necessary to conduct simulation studies for assessing the dependency
of an MTP on the correlation structure in the data when, e.g., from Table 3 the assumed correlation
is available. There are two reasons for this. First, the assumed correlation mentioned in Table 3, e.g.,
PRDS, relates to the correlation among p-values (or test statistics). Such a correlation could only be
estimated from an ensemble of data sets, each independently identically generated. Hence, this is
a theoretical property required for the mathematical proof of the control of an MTP that cannot be
estimated from one data set alone. Second, even if one could estimate this one would not know what
power an MTP achieves for a given data set. That means despite having a proven control of an MTP
there is no information about its power in dependence on the correlation structure of a data set. Hence,
this information needs to be obtained from simulation studies.

Table 3. Summary of MTC procedures. PRDS denotes positive regression dependencies.

Method Error Control Procedure Type Error Control Type Correlation Assumed

Šidák FWER single-step strong non-negative
Šidák FWER step-down strong non-negative
Bonferroni FWER single-step strong any
Holm FWER step-down strong any
Hochberg FWER step-up strong PRDS
Hommel FWER step-down strong PRDS
maxT FWER single-step strong subset pivotality
minP FWER single-step strong subset pivotality
maxT FWER step-down strong subset pivotality
minP FWER step-down strong subset pivotality
Benjamini-Hochberg FDR step-up strong PRDS
Benjamini-Yekutieli FDR step-up strong any
Benjamini-Krieger-Yekutieli FDR step-up strong independence
BR-1S FDR step-up strong any
BR-2S FDR two-stage strong any

Overall, Figure 7 describes a selection process rather than a cookbook recipe. This is a general
characteristics of data science [6] because only in this way ill-informed choices can be avoided.

Finally, we want to mention that from a theoretical perspective, the control of the FDR for SU
procedures of BH type—see Equation (70), as given by

FDR ≤ π0α, (85)

initiated a new subfield that aims at introducing new statistical estimators for π0. The practical
relevance of this is that by setting α′ = α/π̂0 with π̂0 ≈ π0 one guarantees FDR ≤ α. Examples for
this are given by [56,66,67,74,75]:

π̂BH
0 (k) =

m− k + 1
(1− p(k))m

(86)

π̂STS
0 =

m− R(λ) + 1
(1− λ)m

(87)

π̂GBS
0 =

m− R(t) + 1
(1− t)m

(88)

π̂BR
0 =

m− R(λ) + 1
(1− λ)m

(89)

These are very recent developments and more results can be expected, especially for network
dependency structures.
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9. Conclusions

In statistics, the field of multiple comparisons is currently very prolific resulting in a continuous
stream of novel findings [76–79]. Unfortunately, this area is very technical making it difficult for the
non-expert to follow. For this reason, we presented in this paper a review intended for interdisciplinary
data scientists.

Due to the availability of big data in nearly all fields of science and industry there is a need to
adequately analyze those data [80–83]. Since many of those data can be analyzed by application of
statistical hypothesis testing, the high dimensionality of the data makes it necessary to address the
problem of multiple testing in order to minimize Type 1 errors and at the same time maximize the
power [84–87]. The correction procedures presented in this paper can be seen as the current state of
the art in the field and should be considered for such problems.

In [88], Benjamini shared some background information about the publishing process of their
seminal paper in [19]. He mentioned that reviewers criticized their paper because ’no one uses multiple
comparisons for problems with 50 or 100 tested hypotheses’ [88]. It is interesting so see how fast this
changed because presently, e.g., in genomics, up to O(106) tests are conducted. This underlines the
importance of MTPs in the era of big data.
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