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Abstract: Natural Language Understanding (NLU) systems are essential components in many
industry conversational artificial intelligence applications. There are strong incentives to develop
a good NLU capability in such systems, both to improve the user experience and in the case of
regulated industries for compliance reasons. We report on a series of experiments comparing the
effects of optimizing word embeddings versus implementing a multi-classifier ensemble approach
and conclude that in our case, only the latter approach leads to significant improvements. The study
provides a high-level primer for developing NLU systems in regulated domains, as well as providing
a specific baseline accuracy for evaluating NLU systems for financial guidance.

Keywords: natural language understanding; dialogue systems; multi-classifier; word embeddings;
domain adaptation; conversational artificial intelligence; financial domain; long short-term memory

1. Introduction

A production dialogue system, or conversational Artificial Intelligence (AI) system, is typically
built around effective machine learning models [1,2] and probabilistic resources derived from
large textual corpora [3,4]. However, domain-specific applications present a challenge for Natural
Language Processing (NLP). On the one hand, general NLP resources and models will tend to omit
or under-represent domain-specific vocabulary and patterns [5]. On the other hand, constructing
domain-specific models and resources without sufficient data is challenging [6,7]. Furthermore,
dialogue systems used in an industry or production context will typically have to handle a much
higher number of intents (a classification scheme for user inputs) than what is used in research [8].
In this paper, we focus specifically on the Natural Language Understanding (NLU) part of building a
dialogue system, i.e., the process of categorising natural language user inputs into actionable intents in
a dialogue system (e.g., “what is AI” for inputs where the user asks what AI is).

A good NLU capability is an important factor in creating a satisfactory user experience in a
production dialogue system. Predicting intents for NLU in dialogue systems can be viewed as a
supervised classification task. Training probabilistic models to predict such intents has been aided in
recent years by combinations of deep neural network models [2,6] and distributed word representations
in the form of word embeddings [3,4]. Despite these improvements, building a system that performs
adequately in a production role remains a substantial challenge, even when we focus on the NLU
component only and leave aside the dialogue state management [9].

Applications of dialogue systems in highly-regulated domains face the potential added challenge
of providing accurate predictions for compliance reasons. An important part of that is to properly
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understand what the user is asking for in the first place, in other words correctly identifying the user
intent. Hence, there is naturally a strong impetus to improve the quality of the NLU continuously.

This challenge can be approached in different ways that are not mutually exclusive: improve the
training data, the word embeddings, the algorithm or the model architecture. In this article, we present
the results of a series of experiments comparing word embedding improvements with an architecture
improvement approach, in the context of a financial guidance NLU system.

The experiments show that with reasonable amounts of high-quality training data, the word
embedding post-processing techniques we tested offer no advantages. Conversely, a top-down selective
Multi-Classifier System (MCS) ensemble model offers a significant improvement over our baseline.

2. Related Work and Motivation

Building an NLU system for conversational AI aimed at a production environment is a much more
complicated task than simply training a supervised, deep learning multi-class classification model,
where each intent corresponds to a class. More realistically, the task entails managing a large number
of variables that might conceivably have an impact on the resulting ability to understand the intent of
the user. These variables include, but are not limited to, the amount of training data, the quality of the
training data, the number of intents relative to the amount of training data, the conceptual overlap
(or distinctness) of intents, the suitability and quality of the word embeddings, the choice of neural
network architecture and its parameters. Each step in the list above comes with its own challenges
and research context. Hence, research related to the task at hand can be found across a number of
sub-fields in NLP research. The present overview does not aim to be an exhaustive review, but is rather
a highlight of some of the salient recent findings in the published literature.

As mentioned above, there are at least two key components in contemporary statistical NLU
systems: the deep neural network model itself (to which we will return) and the word embedding
used to encode the input to the model in a manner that captures broad similarities between similar
words. Due to their ability to represent high-quality word vectors from large amounts of data [3],
word embeddings have become the go-to tool for many NLP tasks. These representations capture both
semantic and syntactic aspects of word representations [10]. The techniques for creating these word
vectors follow the distributional hypothesis [11] by capturing distributional regularities [4], so that the
distributional semantic and syntactic similarities encoded in the word vectors represent the properties
that arise from multiple co-occurrences in a large training corpus. As a result, these representations tend
to treat similarity very broadly, e.g., conflating synonyms and antonyms [12]. Moreover, the generality
or specialization of the representations is a reflection of the data used for training the representation.

Thus, a highly pertinent topic in the context of constructing an NLU system is, as mentioned
above, collecting sufficient data. Authors of previous work discussed some of the issues with collecting
sufficient training data in an industry context, specifically how to collect good-quality crowd-sourced
data [8]. They distinguished between scenario-based and paraphrase-based crowd-sourcing collection
jobs, where the former consists of a described scenario to the crowd-source worker and the latter
consists of an instruction to paraphrase an input, and concluded that both result in data of similar
quality. In line with their recommendations, we collected training data from Amazon’s Mechanical
Turk (AMT), using a mixture of scenario and paraphrasing prompts.

For the NLU application we consider here, the role of training data is potentially two-fold:

1. Train a supervised classifier.
2. Train a word embedding.

Both tasks can be data intensive, and previous work discussed some of the challenges with
developing domain-specific word embeddings, specifically in the bio-medical domain [13]. Somewhat
surprisingly, the authors found that a larger training corpus does not automatically result in a better
word embedding. With a corpus of 20,000 sentences, they found that corpus quality, pre-processing,
choice of embedding architecture and hyper-parameters all played a role in the quality of the final
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embedding. However, that was nevertheless still a larger corpus than what was available in our project.
Furthermore, although we wanted word embeddings that would perform well in the domain-specific
task at hand, we also wanted a good general coverage. The reason for this is the nature of the task:
an NLU system should be able to handle (at least at a very general level) generic or out of domain
inputs, as well as domain-specific ones. An alternative is to adapt an existing, out of domain word
embedding for the domain in question [7]. The authors showed that adapting an existing word
embedding, by fine-tuning it with in-domain training data, provides very good results. For these
reasons, we chose to use an available pre-trained word embedding based on Twitter data [4], since that
provides a good approximation to general English for an informal, digital communication channel.

Regarding the choice of neural network architecture, we chose a Long Short-Term Memory
(LSTM) architecture. LSTM was a natural choice since these models have become increasingly popular
in NLP research [14]. That does not, however, imply that the LSTM architecture is intrinsically
better suited to NLP tasks than other architectures such as Convolutional Neural Networks (CNNs).
In fact, neural network architectures have generally a very similar performance on NLP tasks, all else
being equal [15]. Our own, internal preliminary exploration of model architectures reached the same
conclusion, with no accuracy score being significantly better than others. A broad overview of the field
describes CNN architectures as “promising” for NLP applications that are relevant to our task, whereas
recurrent architectures are described as displaying “very strong” results for language modelling [2].
Based on these considerations, we chose the LSTM architecture. We kept the model architecture
and hyper-parameters constant, so that we would be able to better compare the model performance,
with respect to the effect of the word embeddings themselves, and the overall model architecture, i.e.,
single model vs. multi-classifier ensemble models.

The question of improving word embeddings is a pertinent one, since in recent years a number
of light-weight post-processing techniques for improving the quality of the word embeddings have
been presented. In general, these light-weight post-processing methods apply existing linguistic
resources, such as FrameNet [16] or WordNet [17], to fine-tune the word vector weights found
in the word embeddings based on the information in the lexical resources. This approach has
been shown to improve performance in NLP tasks that are based on word embeddings, such as
detecting synonyms [18]. In our case, the aim is not to use the word embeddings directly to solve
a task, but rather to employ them for encoding inputs for the input layer of an LSTM classifier.
Such post-processing techniques can also be used to improve performance in down-stream tasks that
use word embeddings [12]. The general idea is also an attractive one from an applied perspective:
if a light-weight post-processing technique, injecting knowledge from a lexical or linguistic resource,
can improve general word embeddings for a domain-specific task, then that would help solve some
of the problems related to data scarcity in domain-specific applications [6,7]. In principle, this might
extend more generally to any application area of word embeddings for NLP tasks where data are
scarce, for example historical linguistics [19,20], although the historical application scenario is outside
the scope of the present article, and further research would be required to test this hypothesis.

Conversely, Multi-Classifier Systems (MCS) offer an alternative way to improve the performance
of intelligent systems [21]. With complex and high-dimensional data, combining multiple
heterogeneous or homogeneous classifiers into an ensemble of classifiers can improve results by
smoothing out classification errors related to small training sets, overcoming problems related to local
optima, or by providing a broader set of hypotheses regarding the optimal classification decision than
what can be represented in a single classifier ([21], p. 5). However, an MCS approach will often lead to
increased complexity in terms of architecture and evaluation [21]. This, in turn, can lead to a significant
amount of hidden technical debt in the form of data and resource dependencies and configuration
issues [22], which is an important practical trade-off consideration for any production implementation
of an NLU system.
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3. Experiments

Our starting point was an LSTM deep neural network multi-class classifier, combined with generic
word embeddings and a crowd-sourced, manually-verified set of sentences, on the order of magnitude
of 10,000–20,000. From this starting point, we tested a number of approaches and compared them
in terms of accuracy and macro F1 score. Specifically, we tested different ways of post-processing
the word embedding and compared it to an MCS approach. Twenty percent of the annotated data
were randomly selected and set aside for testing. The remaining 80% used as a training set were
over-sampled to account for different numbers of training sentences for different intent labels. Table 1
shows a short dialogue illustrating four domain-specific user inputs from the training data, along with
their intents.

Table 1. Training data examples of domain-specific user inputs along with corresponding intents.

Input Intent

Hi greeting
Tell me about ISAs what_is_isa
Can you help me open an account? open_saving_account
How much do I need to save for my retirement? calculate_ideal_pension_contribution

3.1. The Models

All the LSTM models were implemented in Python 3 with the Keras library [23], running
TensorFlow as a backend [24]. The models were all deep neural networks with an embedding layer as
input, two hidden layers, two drop-out layers and an output layer using a softmax activation function.
Following previous work [15], model parameters and structure were kept the same for all models.
Although this means that some scope for optimization was lost, it also makes it easier to compare
results across models.

3.2. The Baseline

The model setup described in Section 3.1 corresponds to the one deployed as the core of a
production NLU system at the time. We chose to use the accuracy from this model as our baseline,
since our aim was to provide results that were not only statistically significant, but also of practical
business value. The baseline accuracy of the model was 0.929 (95% confidence interval: [0.92, 0.94]).

3.3. Retrofitting

Word embeddings are special cases of vector space representations for words, learned from
the distributional information about words in large corpora. At a theoretical level, this approach is
inspired by the so-called distributional hypothesis in linguistics [11], where the meaning or relatedness
of words is considered an empirical property derived from usage, specifically from a word’s typical
context of co-occurrence with other words. At a practical level, the idea is attractive since it allows us
to estimate relatively easily word similarity at scale, so that a machine learning algorithm can learn
that the words dog and cat are similar (both refer to domestic animals), without an explicit manual
encoding of this relationship.

The alternative, manual approach, is found in various lexical resources where hand-crafted
ontologies encode this type of information. For example, the WordNet lexical database [17], as available
in the NLTK Python package [25], holds information explicitly specifying that the words for dogs and
domestic cats are related via a hierarchical graph structure, since both are hyponyms of the category
“domestic animal”. The FrameNet database [16] extends this idea to consider also the context words
with which they typically appear.

Already from the examples above, we can see a difference between the manual approach and
the distributional approach. For instance, a distributional resource such as a word embedding might
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indicate that cat is in fact more similar to dog than dog is to puppy. Conversely, WordNet will correctly
indicate that the word dog is actually conceptually more similar to puppy than it is to cat. The reason is
simply that in a training corpus, the word puppy might be used in a slightly different context compared
to cat and dog, and the word embedding lacks the real-world knowledge that a puppy is in fact a type
of dog.

The retrofitting approach [18] combines the two approaches outlined above. Retrofitting is a
post-processing step applied to pre-trained word embeddings in order to improve the quality of the
embedding. Specifically, this is achieved by creating a graph derived from information in a lexical
database, where the vectors for words that are in the vocabulary of the lexical database are adjusted
via an iterative optimisation procedure, so that the output is new word vectors where the weights are
more similar for similar words in the lexical database. The approach is applicable to word embeddings
trained with any algorithm, and the authors have made the Python code available online. The original
retrofitting code was in Python 2. For our experiments, it was converted to Python 3.

Retrofitting has been shown to be a useful post-processing step for improving synonym handling
and semantic relatedness [26,27]. A limitation of the retrofitting algorithm is that from a distributional
perspective synonyms and antonyms are often considered similar by virtue of occurring in similar
contexts. Further work in this area of research has resulted in more complex algorithms that also take
into consideration antonyms from a lexical resource [28], as well as adjustments for words that are not
in the lexicon [12].

In our experiments, we decided to use the original retrofitting algorithm for several reasons.
Retrofitting has been shown to yield good results with respect to producing a specialised word
embedding that is optimised for relatedness. In our case, we are predominantly concerned with the
relatedness in general, rather than the more nuanced synonym-antonym distinction. Finally, from the
perspective of a software startup company working according to agile principles, starting with a simple,
Minimum Viable Product (MVP) approach [29] to validate the basic hypothesis is a natural step.

The sections below briefly outline the approaches followed for retrofitting word embeddings
and training different types of models. We ran a number of experiments involving retrofitting
word embeddings with out-of-the box lexical resources, various types of domain-specific
empirically-constructed resources for related words and, finally, the MCS ensemble approach, where
no retrofitting was involved. The two broad approaches to training a model, viz. enriching a
word embedding and training models solely based on the training data and the word embeddings,
are schematically illustrated in Figures 1 and 2, respectively.

Training dataset Enriched embedding

Trained model Ontology/resource

Word embedding

Figure 1. Model training with retrofitting of word embeddings. The word embeddings are adjusted
based on an ontology or other resource. The result is then combined with training data to train the
final model.

3.3.1. Retrofitting with Out-of-the-Box Resources

As a first step, we trained two models where the word embedding had been post-processed using
FrameNet and WordNet resources. The purpose of this step was to serve as an additional baseline to
compare retrofitting with domain-specific ontologies, and thereby control for any potential differences
arising from how the domain-specific ontology was created.
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Training datasets Word embedding

Trained models

Figure 2. Model training with the Multi-Classifier System (MCS) ensemble approach. No adjustment
takes place. One model is trained per sub-domain, as well as one meta-classifier is trained in
this fashion.

3.3.2. Retrofitting with Bespoke Domain Ontologies

We created two different resources for injecting specialised information into our word embeddings
before the model training stage. We defined “domain ontology” in the following manner:

• A collection of words (tokens),
• that are typical or indicative of an intent label,
• grouped on the basis of intent labels.

A very simple example is shown below for the intent “what is AI”:

" what_is_ai " : [ " d e f i n i t i o n " , " a r t i f i c i a l " , " i n t e l l i g e n c e " , " def ine " , " a i " ]

The logic behind this is that the sentences in the training data already contain information about
similarities with respect to our domain, by virtue of being grouped by intent labels. In practice, this was
achieved by calculating TF-IDF scores [30] for all word tokens in the training data, where we treated
each intent label as a document. For each intent label, we treated all tokens with a TF-IDF score above
the median for that intent as being both related and sufficiently distinctive of the label for our purposes.
The resulting data were saved in a format appropriate for use as input to the retrofitting step. This file
was used directly as input for a retrofitting experiment (“Retrofitted empirical lexicon” in Table 2).

Table 2. Accuracy and macro F1 scores for the different approaches investigated. Accuracy values
statistically significantly improving on the baseline are in bold.

System Accuracy Avg. Macro F1

Baseline 0.929 0.922
Retrofitted with FrameNet 0.929 0.918
Retrofitted with WordNet 0.922 0.914
Retrofitted empirical lexicon 0.929 0.922
Retrofitted with manually-edited synonyms 0.926 0.915
MCS without grouping 0.910 0.904
MCS with grouping 0.971 0.949

Secondly, we created a manually-edited version of the resource above (“Retrofitted with
manually-edited synonyms” in Table 2). This file was also used directly as input for a
retrofitting experiment.

For each of the domain resources, we created a retrofitted word embedding and used that as the
basis for training a classifier.

3.4. Ensemble Approach

There are two broad paradigms for creating ensemble machine learning models: model choice
and model overproduction [21,31]. In the former approach, a top-level model is used to select the
likely best model for the task at hand. In the latter, several models are invoked, and each produces an
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output that is typically either used as input to a meta-classifier or as input to some voting algorithm.
For the MCS ensemble testing, we settled for testing the simpler, model selection approach, following
the MVP logic outlined above [29].

We tested two types of MCS ensembles based on the logic above. In the first case, we split our
intent labels based on prefix. In our intent system, each intent label had a semantically-meaningful
prefix indicating a sub-domain. For instance, intents dealing with general user inputs (e.g., greetings or
small talk) start with “G”, intents dealing with pensions start with “P”, intents dealing with personal
finance start with “PF”, and so on. For each of these prefixes, we trained a separate, specialised
model that learned to distinguish between the individual intents within the group. Then, we trained
a separate top-level model that learned to associated inputs with the intent group (“MCS without
grouping” in Table 2).

In the second case, we minimized between-group confusion by merging three of the most general
intent groups into a joint group that we labelled “core”. As above, we trained a separate top-level
model that learned to associate inputs with the intent group (“MCS with grouping” in Table 2).

The training data for each sub-model were prepared following a majority bias approach, so that
each sub-model was predominantly trained on data specific to the relevant sub-domain, but with very
small amounts of data for all other intents present. This ensured that each model could produce scores
and outputs for all intents, but with a bias towards those included in the sub-domain.

4. Results and Discussion

The results of the experiments are listed in Table 2, which provides accuracy and F1 scores for
each model. None of the accuracy values for the models using retrofitted word embeddings were
statistically significantly different from the baseline. This was tested with a binomial test, specifically
the binom.test() function in R [32], alpha = 0.05. This holds for both the experiments using the
out-of-the box WordNet and FrameNet resources, as well as the various domain-specific resources
we created, including the manually-edited domain-specific resources. This suggests that the lack of
improvement was not directly caused by the resources per se, but can more likely be attributed to the
retrofitting step itself.

For the MCS experiments, the MCS ensemble without grouping (i.e., using each original intent
prefix as a group with its own sub-model) performed slightly worse than all the other models. In fact,
it is just below the 95% confidence interval of the baseline model. This suggests that simply splitting the
intents into groups in itself leads to a loss of information that outweighs any gains from the clustering.
The only model to beat the baseline was the MCS with grouping, where some of the intent labels
had been grouped in such a manner that they shared a sub-model. This approach proved statistically
significantly better than the baseline. We did not attempt to combine the two approaches, an exercise
we leave for future studies.

There are several interesting insights to be drawn from these results. Regarding the value of
retrofitting for down-stream NLP tasks, we found that this does not hold for our task. Of course,
this says nothing about the value of retrofitting for tasks that rely on the word embedding directly
(e.g., for similarity or relatedness tasks) or for other down-stream NLP tasks. In the case of using
the retrofitted word embedding as the embedding layer for predicting intents in an NLU scenario,
we could detect no benefits either for accuracy or macro F1. This in turn points to two wider lessons.
First, other researchers have shown that word embeddings themselves can be surprisingly unstable,
even for high-frequency words [33,34]. Secondly, it is possible that the light-touch retrofitting algorithm
is simply too subtle for our purposes and that the effects are ephemeral compared to the process of
training the LSTM classifier with the training data. Lastly, we should consider the effect of the amount
of training data itself. It is possible that we simply had too much training data to benefit from the
retrofitting and that the effect would have made itself felt with a smaller amount of data. This remains
a question for further research.
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Regarding the MCS approach, we found that the best MCS was in fact one in which we explicitly
encoded some information about the domain in the form of a grouping structure and then trained a
series of specialised sub-models. Interestingly, simply taking the original intent groups at face value did
not improve the results. Only when we used human expert judgement to merge some groups did we
see a statistically-significant improvement. Effectively, this meant that the ensemble was constructed
in such a way that the meta-model would restrict choices by selecting a sub-model that was heavily
biased towards the set of intents associated with it. We hypothesize that the success of this approach
can be explained in part by our domain-specific data. Previous exploration of previous models trained
on similar data showed that there was a tendency for between-group errors (i.e., errors between the
different sub-domains). The restricting nature of the selective ensemble model we presented here
might thus have acted to prevent such between-group errors. Hence, the high accuracy reported with
this model is probably a combined function of both the model approach, as well as the domain-specific
nature of the data on which it was trained.

Although this manual intervention might seem like a drawback from the perspective of training
highly-efficient classifiers from data alone, we argue that this is actually an advantage. There is a
growing discussion on the lack of transparency that statistical NLP models represent [35,36], a concern
that is also echoed in machine learning generally [37–40]. As black boxes, such models offer little in
the way of insights as to how language functions. Whether this should be the main concern of NLU
models is debatable. However, from a regulatory perspective, there are clear benefits pertaining to
greater transparency in how NLU models operate, meaning that the linguistic concerns have at least
partially an industry counterpart.

On a theoretical level, it is interesting to note that our best-performing MCS model relies on
understanding sentences on different levels: at a group or macro level, as well as at an intent or
micro level. This seems to us to correspond at least partly to the structuralist linguistic notion of
levels of analysis [41], where language could be understood as composed of a series of discrete levels
(phonological, morphological, syntactic, etc.), each of which could be analysed separately in its own
right, while simultaneously providing the bases for the next, higher level. We suggest that this model
could provide, at least partially, a theoretical linguistic motivation for the MCS model in question.
A similar argument has been put forth by others, who argued that the common “bag of words” model
used in NLP (and criticised by some linguists for being too simple) can in fact be theoretically motivated
in terms of theoretical discourse analysis [42]. We believe that these themes, namely transparency,
explicit modelling of knowledge that we as humans take for granted and models that increasingly
are motivated by linguistic insights, will be important factors in developing more sophisticated NLP
models in the future, both for academic research and for industry applications.

5. Conclusions and Future Work

In this paper, we approached the task of building and optimizing an NLU system from an applied,
industry angle. This involved performing tests with a larger number of NLU intents than what is
often used for academic research [8] and aiming to improve the accuracy and F1 scores in a particular,
regulated domain. Specifically, in light of common constraints such as a lack of large amounts of data,
we compared and evaluated two approaches to improving the scores: post-processing pre-trained
word embeddings using the retrofitting approach [18] versus switching to an MCS approach [21].

By designing a two-level ensemble classifier around the implicit semantic classification of our
intent scheme, we managed to significantly improve the accuracy of our classifier. In contrast,
the various post-processing approaches to the word embeddings produced results that were statistically
indistinguishable from the baseline.

We offered an analysis of the results in terms of the metaphor of levels of linguistic analysis [41]
and argued that by treating the NLU classifier proper as a multi-component (possibly hierarchical)
level, we can move towards the transparency that others have called for in computational linguistics
and NLP applications [35,36].
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In summary, for our task of domain-specific intent label classification, we achieved a substantial
and robust, statistically-significant result by means of an MCS approach that outperformed retrofitting
modifications to the word embeddings for our domain-specific data. This attests to the importance of
taking a holistic view (including considerations of the data themselves), over and above individual
specific improvements to algorithms and resources, when developing domain-specific industry NLU
applications. In addition, we established baseline accuracy and F1 scores for this specific task in the
domain of financial guidance.
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