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Abstract: A Vehicle Make and Model Recognition (VMMR) system can provide great value in terms of
vehicle monitoring and identification based on vehicle appearance in addition to the vehicles’ attached
license plate typical recognition. A real-time VMMR system is an important component of many
applications such as automatic vehicle surveillance, traffic management, driver assistance systems, traffic
behavior analysis, and traffic monitoring, etc. A VMMR system has a unique set of challenges and issues.
Few of the challenges are image acquisition, variations in illuminations and weather, occlusions, shadows,
reflections, large variety of vehicles, inter-class and intra-class similarities, addition/deletion of vehicles’
models over time, etc. In this work, we present a unique and robust real-time VMMR system which
can handle the challenges described above and recognize vehicles with high accuracy. We extract image
features from vehicle images and create feature vectors to represent the dataset. We use two classification
algorithms, Random Forest (RF) and Support Vector Machine (SVM), in our work. We use a realistic
dataset to test and evaluate the proposed VMMR system. The vehicles’ images in the dataset reflect
real-world situations. The proposed VMMR system recognizes vehicles on the basis of make, model, and
generation (manufacturing years) while the existing VMMR systems can only identify the make and
model. Comparison with existing VMMR research demonstrates superior performance of the proposed
system in terms of recognition accuracy and processing speed.
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1. Introduction

Transportation of goods and people is vital activities in the contemporary world. Transportation
contributes to economic prosperity and quality of life. It also has its adverse effects like pollution, resource
consumption, fatigue due to driving and traffic congestions, and personal safety risks due to accidents.
The projection of the global vehicle count is an inexact process, but studies have shown an exponential
increase. The estimated current global vehicle count is over 1.2 billion and, according to studies, this
number will cross 2 billion in 2035 [1] or in 2040 [2]. Due to the increasing number of vehicles, automated
vehicle analysis is an important task in many applications.

The taxonomy of vehicle analysis is depicted in Figure 1. Vehicle analysis starts with the vehicle
detection. Once the vehicle is detected, we can classify it based on its class (car, bus, truck, etc.),
make (Toyota, Honda, Ford, etc.), color (white, black, red, grey, etc.), or make and model (Toyota Corolla,
Hando Accord, Ford Fusion, etc.). Autonomous vehicles and driver assistance, surveillance, traffic
management, and law enforcement are a few of the applications taking benefit from automatic vehicle
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analysis. It is inconceivable for humans to monitor, observe, and analyze the ever-increasing number of
vehicles manually, especially in urban environments. In contrast to the human operator, the computer
vision application can monitor traffic for a longer period of time without any fatigue. The associated cost
of computer applications is less and can be scaled to achieve the desired performance/cost ratio.

Figure 1. Taxonomy of vehicle analysis.

Automatic License Plate Recognition (LPR) systems present common computer vision applications
that are widely deployed across the world. LPR is a well-understood problem with compelling recognition
accuracy rates. LPR systems are installed in many countries for different purposes like law enforcement,
electronic toll collection, crime deterrent, traffic control, etc. LPR systems identify a vehicle based on
attached license plate. However, when two license plates are swapped, the LPR system will still recognize
both license plates but is, inherently, incapable of recognizing the true identity. License plates can be easily
forged, occluded, and damaged. Three examples where it is nearly impossible to recognize the identity of
the vehicle are given in Figure 2. In the absence of an augmenting system that links license plate numbers
to a vehicle make and model, the current LPR systems remain vulnerable to many malicious attacks. In
many police activities like responding to a hit and run accident, an amber alert, or a hot pursuit; the vehicle
make and model are typically available regardless of the lighting conditions. The license plate number
might also be recognized by an eyewitness, but sometimes it is not observed or only partially observed.

Figure 2. Examples of ambiguous, forged, or damaged license plates [3,4].

A Vehicle Make and Model Recognition (VMMR) system provides great value in terms of vehicle
monitoring and identification based on the appearance of the vehicle instead of the attached license plate.
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Authorities can query the VMMR system based on the vehicle’s description or partial number plate to find
all similar vehicles in a specified area during a particular time. Hence, LPR and VMMR systems can be
used to complement each other.

The VMMR problem can be treated as a multi-class image classification problem, where each class
represents a specific make and model. However, more challenging and diverse challenges are associated
with VMMR as compared to other problems. Few of the challenges are listed below [5]:

1. Image acquisition in an outdoor environment.
2. Varying and uncontrolled illumination conditions.
3. Varying and uncontrolled weather conditions.
4. Occlusion, shadows, and reflections in captured images.
5. A wide variety of available vehicle appearances.
6. Visual similarities between different models of different manufacturers.
7. Visual similarities between different models of the same manufacturer.
8. Tiny differences depending on the generation (group of consecutive manufacturing years).

The vehicle images used in our work reflect real world situations as they are captured in diverse
weather conditions, with different lighting exposures, having partial occlusion (e.g., pedestrians), and from
different viewing angles. The underlying goal is to discover the ability of supervised learning to resolve
the applied computer vision problem of identifying the make, model, and manufacturing year of vehicles
given the stringent limitation of the problem environment. The proposed VMMR system classifies vehicles
images based on make, model, and manufacturing year while the existing VMMR systems can only
identify the make and model. Vehicle models typically keep the same design shape for about five years
before it is modified. We are using the term generation to describe the vehicle model having the same
physical appearance but manufactured over one or more years. This article is organized as follows: Section
2 discusses the related work. The detailed system design along with feature extraction, machine learning
techniques and VMMR datasets are discussed in Section 3. The efficiency and performance of the proposed
VMMR is discussed in Section 4. Section 5 concludes the paper and provides direction for future work.

2. Literature Review

2.1. Vehicle Detection

Vehicle detection is the basis for vehicle classification problems. Vehicle detection confirms the
presence of a vehicle in an image and extracts the region of interest to eliminate the background scene. In
some cases, it is not effective to use the complete vehicle as input to the classifier and only the desired
region (taillights, front lights, bumper, license plate, etc.) is extracted and used. The elimination of
background and unwanted vehicle’s portion enhance the vehicle classification performance. Huang et
al. use background subtraction to extract the moving objects and apply image processing to discard
unwanted image regions [6]. Huang et al. train the system using a deep belief network to detect the
vehicles. Lu et al. use YCbCr color space for modeling the background frame and Choquet Integral to fuse
the texture features with color features [7]. An adaptive selective background maintenance model is used
to solve the complex conditions and variations. Faro et al. use luminosity sensors to detect the sudden
variations in illuminations without affecting the time performance; background subtraction technique is
used to differentiate the vehicles from the background and segmentation scheme is applied to eliminate
the occlusion [8]. Chen et al. compute Speed-Up Robust Features (SURF) for original and mirrored image
and compute similarities between SURF features to find the horizontal symmetry [9]. A center line is
determined; every set of symmetrical SURF points and centerline represents a possible vehicle candidate.
The shadow region is used to filter out weak candidates. A comprehensive survey of wide range of vehicle
detection techniques can be found in [10].
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2.2. Vehicle Type Recognition

Vehicle Type Recognition (VTR) classifies the vehicles into broad categories like car, bus, van, truck,
bike, etc.; the exact make and model of the vehicle is not identified in VTR. An automated VTR system is
helpful in applications like urban traffic studies and analysis, electronic toll collection, etc. Wang et al. use
the geometrical information to construct features and adopt simple Euclidean distance-based matching to
categorize the vehicle into three types [11]. Dong et al. propose a two-level semi-supervised Convolution
Neural Network (CNN) to learn local and global features and utilize softmax regression to categorize the
vehicles in six classes [12]. Fu et al. propose a VTR system based on hierarchical multi-SVMs and can
handle complex traffic scenes and partial occlusion [13]. Irhebhude et al. combine a local binary pattern
histogram, Histogram of Oriented Gradient (HOG) and region features and use correlation-based feature
selection to select discriminative features [14]. They use a support vector machine (SVM) to classify the
vehicles into four categories.

2.3. Vehicle Make and Model Recognition

Classical VMMR research classifies vehicles based on make and model only. Classical systems use
local features to represent the vehicle’s region of interest and require these features to be converted into
global features’ representation in some cases. Scale Invariant Feature Transform (SIFT) [15], SURF [16]
and HOG [17] feature extraction techniques are used by many researchers. Nearest Neighbors Classifier
(NNC), Artificial Neural Networks (ANN), and Support Vector Machine (SVM) are the most widely used
classifiers for VMMR systems.

Boukerch et al. presented a real-time VMMR system and evaluated it in [18]. SVM is used as single
multiclass classifier and ensemble of the multi-class classifier. In this approach, the authors describe SURF
features dictionary for global representation. They evaluate two dictionary building approaches; single
dictionary and modular dictionary and report an accuracy rate of 94.5% with a processing speed of 7.4
images per second. Noppakun Boonsim and Simant Prakoonwit propose a one-class classifier-based
approach under limited lighting [19]. The proposed approach uses one-class SVM, decision tree, and
K-Mean Nearest Neighbor (KNN) for classification and a majority vote of three is used for final prediction.
They use rear view images to evaluate their proposed system. A grid-based method is used for shape
features and aspect ratios of different attributes of taillight and license plate are used to represent
geographical features. A genetic algorithm is used for feature subset selection which improves the
accuracy slightly from 93.4% to 93.8%.

Edges based features are explored in [20–24]. In these approaches, dependence on edges can lead
to failure of the system due to occlusion. Petrovic et al. concatenate the raw pixels, Sobel edges,
edge orientation, Harris corner response, normalized gradient and other image features to build feature
vector and apply principal component analysis to reduce the dimensionality of the feature vector [20]. The
Nearest Neighbors method is used to classify the vehicle make and models. Pearce et al. use KNN and
Naïve Bayes for classification and use canny edges, Harris corners and Square Mapped Gradient (SMG)
to construct the feature vector [21]. They propose to concatenate Locally Normalized Harris Strengths
(LNHS) or SMG for global representation. The authors use the small and simplistic dataset to evaluate
the proposed system. Vajas et al. [22] also use concatenated SMG for global representation and Clady et
al. [23] use concatenated oriented contour points from Sobel edges. Both Vajas and Clady use Nearest
Neighbors as a classifier for their proposed VMMR system. Munroe et al. use canny edges and classify
using several techniques like KNN, ANN, C4.5, and decision trees [24].

SIFT based VMMR systems are proposed in [25–28]. Psyllos et al. use a two-step approach [28].
They use phase congruency to identify the vehicle logo and then SIFT features to identify the specific
model. Probabilistic Neural Networks are used for classification. The authors test the proposed approach
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against simple and non-occluded images. Different viewpoints and variation in illumination are also not
considered. Even then a low accuracy rate of 54% is reported. Dlagnek use SIFT and a brute force matching
algorithm in his work [25]. Exhaustive matching, used in this work, is a very time-consuming process.
Baran et al. use SIFT, SURF and HOG features and define dictionaries for global feature representation
[26]. Baran use multi-class SVM with very large dictionaries to represent the input images. Fraz et al.
extract SIFT features and form a lexicon comprising of all the features from training dataset as words
[27]. Fisher encoded representation is used to compute the lexicon for image features, SIFT. The Fisher
encoded scheme is computationally expensive and the authors report the processing time of about 0.4 s
for every image. Jang et al. use SURF features and bag-of-words model for global feature representation
[29]. The authors have created a dataset using multiple toy cars and a structured matching technique for
classification.

A global feature representation based on a grid pattern is proposed in [9,30]. Hsieh et al. divide
input image into a grid and compute SURF and HOG for each block independently [30]. The authors train
ensemble of SVM and combine the results to determine the final decision. Chen et al. [9] compute HOG
features for the grid-based pattern and concatenate HOG features for global representation. By testing our
system with their dataset, we show that our system performs well in terms of recognition accuracy and
processing speed. The grid-based schemes assume a fixed camera and are prone to failures in cases where
the camera height, pitch or yaw may change, resulting in vehicle views which the system might not be
trained for.

3. Materials and Methods

3.1. Dataset

Pearce and Pears [21] create a dataset having 177 images from 21 vehicle classes; each vehicle class
consists of five or more images. Eighty-five more images are added from other uncommon vehicle classes
(53 classes); each class having one or two images. Testing dataset is created by applying ‘leave-one-out’
scheme over 177 images. Jang and Turk [29] use 20 toy cars to create the dataset. They capture images from
16 different viewpoints for each toy car. The training dataset is created with 2650 images and the proposed
VMMR is tested with 801 images. Psyllose et al. [28] create a training dataset with 10 classes, each class
having five images. An unknown class with five images is also added to training dataset. Testing dataset
is created with the same pattern except each class contains 10 images. Jonathan Boyle and James Ferryman
[31] create a dataset for side view vehicle images. The side view vehicles dataset is comprised of more than
10,000 images with 86 make/model categories. The authors use 50% of images of each class with an upper
limit of 200 images for the training purposes while the rest of the images are used for testing. Baran et al.
[26] create the dataset by downloading images from the internet or capturing images outdoor. The training
dataset has 17 vehicle classes and 80 images for each class; thus, 1360 images are available for the training
process. The testing dataset consists of 2499 images. The testing dataset has images with degraded quality
and lesser resolution as compared to the training dataset. There is no occlusion in images.

We adopt a realistic and publicly available dataset—the National Taiwan Ocean University-Make
and Model Recognition (NTOU-MMR) dataset [9]. The NTOU-MMR dataset is used in multiple studies
like [9,18]. Chen et al. [9] propose a VMMR system using symmetrical SURF and created a dataset under
Vision Based Intelligent Environment (VBIE) project [32] in 2014 and named it the NTOU-MMR dataset.
The dataset can be accessed at [33]. Jabbar et al. [18] use the NTOU-MMR dataset in their work. Hence, we
can compare our VMMR performance with Chen et al. [9] and Jabbar et al. [18]. The dataset is divided
into a testing and training dataset and vehicles are divided into twenty-nine different classes based on
make and model. Vehicles belonging to six manufacturers are available in NTOU-MMR dataset; the
manufacturers are Toyota, Ford, Mitsubishi, Honda, Suzuki, and Nissan. Few of the sample images
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are shown in Figure 3 to illustrate the variability of the dataset. The NTOU-MMR dataset provides the
following characteristics which motivated us to use it to train and evaluate our VMMR system. We believe
the five listed characteristics bring the NTOU-MMR dataset closer to real-life situations compared to other
datasets available:

• The dataset contains images of stationary and moving vehicles with a speed up to 65 km/h.
• The dataset images contain vehicles with several viewing angles ranging from +20 degrees to −20

degrees relative to a scene directly from the front of a vehicle.
• The dataset images are captured throughout daytime and nighttime.
• The dataset is created with varying weather conditions between sunny, rainy and cloudy.
• Some of the vehicles are partially occluded by an irrelevant object like a pedestrian.

Figure 3. Sample images from dataset (Source: [9]).

Vehicles’ classes are defined based on make and model in this dataset; we added generation to fit the
dataset with our vision. We have divided the dataset into classes based on make, model and generation of
vehicles. Now, the dataset is divided into thirty-five classes. The detailed description of the dataset is given
in Table 1 that lists the number of images available for training and testing process. The NTOU-MMR
dataset has a few problems such as the small number of training images for a few categories. There are
no testing images available for Toyota RAV4 in the original dataset. We use the dataset as it is available
except the change made in the number of classes.
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Table 1. NTOU-MMR dataset description.

Vehicle Year Train Test Vehicle Year Train Test
Toyota Altis 2008–2010 260 504 Nissan Tida 2009 108 139
Honda CRV 2003–2009 224 258 Toyota Altis 2005–2006 216 227
Toyota Camry 2008–2010 117 169 Mits. Zinger 2010 12 13
Honda Civic 2010 79 243 Mits. Outlander 2010 26 50
Honda Fit 2012 34 35 Toyota Wish 2010 68 45
Honda Fit 2009 19 13 Mits. Savrin 2008 36 12
Toyota Camry 2005–2006 109 122 Toyota Wish 2005–2009 107 77
Toyota Camry 1999 21 5 Mits. Lancer 2007 16 61
Nissan March 2007–2008 96 92 Toyota Yaris 2008 155 147
Suzuki Solio 2008 34 84 Ford Liata 2003 9 10
Toyota Vios 2008–2010 242 292 Toyota RAV4 2009 79 0
Nissan Livna 2010 119 128 Ford Excape 2009 50 45
Nissan Teanna 2010 66 29 Toyota Innova 2008 15 29
Nissan Sentra 2003 22 20 Ford Mondeo 2005 38 10
Nissan Sentra 2005 24 15 Toyota Surf 2008 40 30
Nissan Cefiro 1997 67 22 Ford Tierra 2006 34 16
Nissan Cefiro 1990 36 9 Tord Tarcel 2005 110 76
Nissan X-trail 2007 37 89 Total 2725 3110

3.2. Hardware and Software Platform

We have used an Intel R© CoreTM i7 processor (3.4 GHz) with 16 GB of RAM to perform all our
experiments. The VMMR is implemented using MATLAB R© R2012a on a 64-bit Microsoft Windows 7
operating system.

3.3. Methodology

We develop a real-time VMMR system based on machine learning and computer vision techniques.
Computer vision techniques are used to express images in fewer attributes that characterize vehicles.
Machine learning techniques are used to classify the vehicles. The overall architecture of vehicle
classification system is given in Figure 4. The VMMR system is divided into two subsystems: training
subsystem and testing/classification subsystem. The training subsystem is used to train the VMMR engine
using a subset of the available dataset, whereas the classification subsystem recognizes make and model
of vehicles in new images never used for training. Vehicle detection, Region of Interest (ROI) Extraction
and feature extraction are common for both training and testing tasks. Global feature representation and
classification components are different in the training process than in the testing process. The global
feature representation module may generate a model for the encoding of images’ features depending on
the applied technique. Similarly, the classifier module produces a model as a result of the training process
that is then used by the testing module to predict the outcome for the newly examined images. Hence, the
arrows from the training process to the testing process represent the usage of models in testing process
created during the training process. The proposed system works without the global feature representation
component. The extracted features are directly fed into the classifier. The omission of the global feature
representation component improves the processing speed of the VMMR without degrading the recognition
accuracy.



Mach. Learn. Knowl. Extr. 2019, 1 618

Figure 4. VMMR system architecture.

The input to the system can be either images or videos. In case of videos, frames can be extracted at
regular intervals. The vehicle detection module verifies the existence of a vehicle in the current image and
the vehicle detection process also localizes the vehicle within the image. If a vehicle exists in the image, it is
further processed; otherwise, the image is discarded. We define the ROI to represent the part of the vehicle
in the image that provides the discriminative and prominent features. The discriminative and prominent
features are easily distinguishable between different vehicles. We have the frontal vehicle images in our
work to design the VMMR and used bumper, front lights, and bonnet area as ROI in our work as shown
in Figure 3. The ROI extraction module removes the background as well as part of the vehicle from any
given image that is not helpful during classification and can degrade the classification performance. We
use a vehicle detection technique proposed by Chen et al. [9] for vehicle detection and ROI extraction.

The next step is to extract features from the input image. Features provide an image representation
method that is more suitable for computer models such as machine learning and pattern recognition
applications. The features are used to represent a scene or the uniqueness of an object. Once the prominent
interest points are determined, feature descriptors are computed for the interest points. The feature
descriptor provides a robust and invariant representation for the interest points. Various feature extraction
and descriptors are available in the literature. We use HOG and GIST image features in this work. Feature
extraction techniques may extract a variable number of features in an image. Global feature representation
is the process to combine all the extracted feature points to represent an entire image feature. Global
feature representation generates an image feature vector which represents all images with the same
dimensionality and the same pattern. Lastly, the VMMR uses a supervised learning to enforce the image
classification on the learning engine. The classifier is trained using image feature vectors generated for
the training dataset and new incoming observations are then categorized using the trained classifier. The
classifier’s performance can be measured in terms of correctly identified, incorrectly identified and missed
observations. The testing dataset contains the new unseen observations which are used to determine
classifier’s performance in terms of a successful recognition rate.

3.4. Feature Extraction and Representation

We divide image features into two categories for VMMR problems: local features and global features.
A local feature is defined on the basis of a prominent point/patch of the image. An image can have a
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variable number of features. A global feature is either computed based on the entire image or on every
part of the image. Every image in the dataset has the same number of global features. Global feature
representation techniques are applied to combine local features to construct image feature vector with the
same dimensionality and pattern for every image. In case of global features, all the features are simply
concatenated to create an image feature vector. Local features based VMMR system are reported in our
previous works [5,34]. There is no significant performance gain (recognition rate and processing speed)
of using only local features. Our experimentation with global feature representation (required for local
features) reveals that it decreases the processing speed. In this work, we use HOG and GIST features
which utilize entire images not just the prominent local points.

3.4.1. Histogram of Oriented Gradients

The HOG feature introduced by Dalal and Triggs [17] for robust human detection has been seen
widely used for object recognition. Every object or shape in an image is composed of a collection of lines
(edges), thus we can describe objects within an image by using the distribution of gradient orientations
(directions). HOG divides the image into small connected and overlapped regions known as cells; the
gradient directions are computed for every pixel in the region and a histogram is created for the gradient
directions. Every cell’s histogram is concatenated to generate the final HOG descriptor. Normalization of
feature vector results in better invariance to changes in the illumination and shadowing. The histogram
representation lessens the impact of noise. We use different window sizes to create a HOG feature
descriptor in our work. We do not combine multiple windows to construct a bigger overlapping block. We
create a HOG descriptor with the smaller size as compared to the standard HOG descriptor which results
in improved the processing speed. The standard HOG creates a feature descriptor with a size of 3780
elements for a 128 × 64 image, but the size of an HOG descriptor without overlapping is 1152 elements for
the same image and same configurations. All the images in the NTOU-MMR dataset do not have the same
dimensions; instead of fix sized cells, we divide every image into an equal number of cells. This technique
helps us create an image feature vector using simple concatenation and without applying a global feature
representation technique.

3.4.2. Gist Feature Descriptor

Humans are capable of classifying an object or scene with a glance without considering the details
present in an image. For example, after viewing an image of tall buildings or trees or ocean, we can
instantly recognize the scene without thinking of the details or existence of other objects. The GIST
of a scene [35] refers to the information contents gathered in a glance. The GIST feature descriptor is
“a low dimensional representation of the scene, which does not require any form of segmentation” [36].
The GIST descriptor was initially proposed for scene classification. SIFT and SURF focus on individual
prominent points and the HOG feature descriptor is computed based on individual windows (patches)
and concatenated later, whereas the GIST descriptor focuses on the shape of an entire image as a single
object and calculates the feature vector. The GIST descriptor ignores the presence of local objects and their
relationships. Therefore, GIST provides a holistic representation of a scene. We create GIST descriptor
with four scales and eight orientation creating thirty-two transformed images. Gabor transform is applied
on these thirty-two images to create feature maps and the feature maps are divided into the 4 × 4 grid or
16 blocks, which generates a 512-dimensional feature vector (16 averaged values × 32 feature maps).

3.5. Classification

Designing VMMR requires the identification of the specific vehicle in terms of its manufacturer,
model, and generation. After feature extraction and image feature vector construction, the next step is
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to train the classifier which is used to recognize the new incoming observations. During the training
phase, classifiers learn the intra-class similarities (multiple vehicles belonging to the same category) and
inter-class differences (vehicles belonging to different categories) and build up a model that is used later
for recognizing the unseen vehicles. Among the multiple available classifiers, none was found to perform
optimally at all different types of applications [37]. Data scaling, the presence of outliers and noise,
redundant attributes, overfitting, and underfitting are a few of the factors that affect most classifiers’
performance. We use SVM and Random Forest (RF) classification techniques in this work and comment on
the effect of image imperfections.

3.5.1. Support Vector Machine

The SVM [38,39] is a supervised learning method and efficient binary classifier. The SVM uses a subset
of training data observations, known as Support Vectors (SVs), to represent the optimal separation between
two classes. SVM is robust to overfitting especially for a dataset with higher dimensions (features). SVM
can perform efficiently in case of nonlinear separable data by using nonlinear kernel functions. Cover’s
theorem [40] states that a nonlinear kernel function is more likely to generate a linearly separable data
points in higher dimensional space when it is applied on a linearly inseparable data. More details on the
characteristics of kernel functions and their construction can be found in [41]. SVM is a memory intensive
algorithm and the selection of kernel can be trickier.

An ensemble of binary classifiers is used to create multi-class SVM classifier. One-versus-rest [42]
and one-versus-one [43] are two approaches used for multi-class SVM classification. The results of the
binary SVMs can be combined in different ways for classification, such as majority voting, least square
error weighted outputs, and double layer hierarchical combination. We used one-versus-one approach in
our work. Hsu and Lin have compared both approaches in [44] and concluded that both approaches have
comparable performance except one-versus-one require lesser training time as compared to one-versus-rest
approach.

3.5.2. Random Forest

The RF classification is ensemble learning approach proposed by Leo Breiman [45]. Weak binary
decision trees are used to create an ensemble in RF Classification. RF constructs a multitude of decision
trees during the training process and the final class is determined using a mode (majority voting) during
the testing process. Ho [46] initially introduced the idea of the RF by using Random Subspace method
[47]. Brieman combined the creation of random subsets of training data named as bagging with Ho’s
idea of randomly subsampling of training features to build the decision trees. The observations in the
datasets often have missing values; the features may have unavailable, corrupt or invalid values. RF
classifiers produce good results on missing data [48]. RF classification does not require tree pruning and
can overcome the decision trees’ problem of overfitting [48]. The increase in the number of decision trees’
results in a reduction in an overfitting problem, but, on the other hand, also results in an increase in
training and testing time. RF classification is easily scalable and can model nonlinear decision boundary
naturally due to their hierarchical structure.

4. Results and Discussion

VMMR uses two machine learning approaches: SVM and RF. Both image features, HOG and GIST, are
used with each classifier making it four combinations. The experiments are performed multiple times and
the averaged results are presented here. We discuss the computational time required for feature extraction.
Then, we discuss VMMR results for each machine learning approach and feature extraction combination
in terms of recognition rate and processing speed. Lastly, we compare our results with other VMMR
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research. The recognition rates are only computed for VMMR. The performance of vehicle detection and
ROI extraction is not accumulated in the recognition rates.

The computational time is an important factor for any real-time application. The measured
computational times for GIST and HOG (with different configuration) are provided in Table 2. The total
time required for computing each configuration is provided in seconds per 100 images. As we increase the
number of blocks in HOG the computational time increases. The training and testing datasets undergo
through the same process in case of HOG and GIST features; hence, the computational time required is the
same for the training and testing phases.

Table 2. Computation time for feature extraction per 100 images.

Method Configuration Time (s)

HOG

24 × 6 2.41
30 × 6 2.74
33 × 6 2.79
24 × 9 2.85
33 × 9 3.28
45 × 9 3.91
36 × 12 4.04
45 × 12 4.56

GIST 8.91

The RF is trained with configuration of 100, 150, 200, 250, 300, and 350 decision trees. We use the term
RF-VMMR to refer the VMMR system with RF classification. The other two important parameters used in
RF training are the number of randomly selected (with replacement) samples used to grow each decision
tree and the number of randomly selected attributes to consider for each decision tree; we select the values
of these two parameters based on experimental analysis. The same parameters are used during the testing
phase. We observe that the recognition rate decreases if we reduce the size of training subset for RF. Hence,
we use all the training dataset to grow the decision trees. Similarly, we observe that RF performs better
with the number of selected attributes equal to the square root of the total number of attributes for our
RF-VMMR system. The RF-VMMR recognition rates are shown in Figure 5a,b. The vertical axis of both
figures represents the RF-VMMR recognition rate in percentage. The horizontal axis shows the number of
decision trees used for RF training for GIST features in Figure 5a and number of blocks used to construct
HOG image features in Figure 5b. The recognition rate (vehicles correctly recognized) for different RF
configurations (number of decision trees) are shown using different styled lines for HOG in Figure 5b. The
confusion matrices for RF-VMMR are shown in Figure 6a,b.
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(a) GIST (b) HOG

Figure 5. Recognition rate for RF-VMMR.

As depicted in Figure 5a,b, the increase in the number of decision trees in the RF algorithm increases
the recognition rate initially, but, after certain thresholds, further increase in the number of decision trees
negatively affects the recognition performance. Although this threshold is not fixed for all of the variations
of dataset representations, in our dataset, the recognition rate decreased after 300 decision trees in most of
the cases. The behavioral pattern whereby there is an increase in the recognition rate followed by decrease
as the number of decision trees increases can be seen for every feature extraction technique and variation.
Although there are small variations, the overall recognition rate follows the same behavioral pattern.

(a) GIST (b) HOG

Figure 6. Confusion matrix for RF-VMMR.

We use a linear kernel in this work. A linear kernel is a good option when the numbers of features
are greater than the number of observations [49]. When applying the VMMR system to the NTOU-MMR
dataset, we use 2750 training observations where the number of features varied from 512 to 5000 for
each observation depending on the feature extraction technique and configuration employed. Hsu et al.
reported that the mapping of data into a higher dimensional space does not improve the performance in
the case of a large number of features [49]. The linear kernel also results in faster training as compared
to other kernels [49]. The regularization parameter C is used to control the margin of the hyperplane
separating two data classes. A larger value for C means a smaller margin between the two classes. We
train the SVM algorithm with C = 2, 4, 6, 8, 10, and 12. We use the term SVM-VMMR to represent the
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VMMR system with SVM classification. The recognition rates for the SVM-VMMR system are shown in
Figure 7a,b. The vertical axis of both figures represents the SVM-VMMR recognition rate in percentage.
The horizontal axis shows the size of margin used for SVM training for GIST features in Figure 7a and
number of blocks used to construct HOG image features in Figure 7b. The recognition rate for each SVM
configurations (size of margin) is shown using different styled lines for HOG in Figure 7b. The confusion
matrices for RF-VMMR are shown in Figure 8a,b.

(a) GIST (b) HOG

Figure 7. Recognition rate for SVM-VMMR.

As depicted in Figure 7a,b, the increase in the number of blocks increases the recognition rate up to a
certain point, and, then, the recognition rate decreases. HOG achieves its best recognition rate of 94.43%
with 33x6 blocks in the case of RF-VMMR (350 Decision Trees) and 97.89% with 33 × 9 blocks in the case of
SVM-VMMR (C = 10). GIST achieves its best recognition rate of 94.53% in case of RF-VMMR (300 decision
trees) and 97.20% in case of SVM-VMMR (C = 10). We can conclude based on the recognition rate that
GIST and HOG perform similarly for RF-VMMR and SVM-VMMR in terms of recognition rate.

All the parameters are determined using the training dataset. However, we have reported all the
results (performed on a testing dataset) to illustrate the effect of variation in other parameters like number
of trees, C, feature extraction configuration.

(a) GIST (b) HOG

Figure 8. Confusion matrix for SVM-VMMR.
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The training of a VMMR system can be performed offline hence it does not put any timing constraint.
The processing speed (images per second) of recognition process for RF-VMMR is provided in Table 3 and
for SVM-VMMR in Table 4. The processing speeds are measured based on the accumulated values of the
feature extraction and representation time and recognition phase. The first column tells about the feature
extraction technique and the second column tells about its configuration. The remaining six columns
provide the processing speed for different RF and SVM configurations.

Table 3. Processing speed (images per second) for RF-VMMR.

Configuration Trees 100 Trees 150 Trees 200 Trees 250 Trees 300 Trees 350

HOG

24 × 6 41.4 41.3 41.3 41.3 41.2 41.2
30 × 6 36.4 36.4 36.4 36.3 36.3 36.4
33 × 6 35.7 35.7 35.7 35.7 35.6 35.8
24 × 9 35.0 35.0 35.0 34.9 34.9 34.9
33 × 9 30.4 30.4 30.4 30.3 30.3 30.4
45 × 9 25.5 25.5 25.5 25.5 25.5 25.5
36 × 12 24.7 24.7 24.7 24.7 24.7 24.7
45 × 12 21.9 21.9 21.9 21.9 21.9 21.9

GIST 11.2 11.2 11.2 11.2 11.2 11.2

The VMMR system performance depends on mainly two elements. The first element is the
representation of dataset which includes the feature extraction techniques and global feature representation
techniques. The second element is the machine learning classification algorithm. Both feature
representation and machine learning algorithm affect the VMMR system. Observing the accuracies
of SVM-VMMR and RF-VMMR, we can see that the SVM-VMMR performs better than RF-VMMR. Both
features’ extraction techniques have similar performance for both classification techniques.

Table 4. Processing speed (images per second) for SVM-VMMR.

Configuration C = 2 C = 4 C = 6 C = 8 C = 10 C = 12

HOG

24 × 6 22.6 22.6 22.6 22.6 22.6 22.7
30 × 6 21.1 21.0 21.0 21.1 21.0 21.1
33 × 6 18.5 18.5 18.5 18.5 18.5 18.5
24 × 9 18.3 18.3 18.3 18.3 18.3 18.3
33 × 9 15.9 15.9 15.9 15.9 15.9 15.9
45 × 9 13.9 13.9 13.9 13.9 13.9 13.9
36 × 12 11.5 11.6 11.6 11.6 11.6 11.6
45 × 12 10.3 10.3 10.3 10.3 10.3 10.3

GIST 11.0 10.9 10.9 10.9 10.9 10.9

The real-time processing speed of the VMMR system is a key factor in performance. Every driver
maintains a minimum following distance to avoid the collisions which is measured in seconds. On the
highways (under normal conditions), most of the drivers normally observe the minimum following
distance in between 1.5 s to 2.0 s [50]. With this minimum following distance, the number of vehicles
passing through a single lane in an hour is between 1800 to 2400 or 7200 to 9600 for a four-lane highway. A
real-time VMMR system installed on a four-lane highway, covering both sides, is required to process six
vehicles per second approximately in order to analyze entire traffic flow. The proposed VMMR system can
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process 13.9 frames per second (SVM-VMMR). The processing speed reduces to 10.1 frames per second
with the inclusion of computation time of vehicle detection module. The training time is not considered
here as the training process is performed offline and does not impose any temporal constraint over the
final system. The processing speed for GIST is almost the same in case of SVM-VMMR and RF-VMMR,
whereas, for HOG features, the RF-VMMR processing speed is almost twice as fast as SVM-VMMR. The
values for the number of decision trees for RF and the margin C for SVM have very little effect on the
computation time for the testing phase as can be seen in Tables 3 and 4. The difference between the
processing speeds are due to the feature extraction and representation techniques. The processing speed
of the RF-VMMR for the HOG features (33 × 6 blocks) is 35.7 images per second with the recognition
rate of 94.43%, whereas the processing speed of the SVM-VMMR for the HOG features (33 × 9 blocks) is
13.9 images per second with the recognition rate of 97.89%. RF-VMMR and SVM-VMMR systems with
GIST features yield a similar recognition rate for both systems. In addition, the processing speed is lower
with GIST features than with HOG features. The feature extraction step requires more computational time
which can easily be processed in parallel to increase the processing speed of the system. The time required
for feature extraction is very high as compared to the RF testing process so an increase in the number of
decision trees does not affect processing speed much, whereas processing speed is affected by the feature
extraction configuration. The value of C can affect the training time, but, once the system is trained, all the
new coming observations go through the same type of computation. Hence, the processing speed remains
the same for all different values of C for the same feature extraction configuration.

The proposed VMMR systems are compared with nine other VMMR approaches in Table 5 with
respect to the recognition rate and processing speed. Our VMMR systems outperform other VMMR
systems, in terms of both recognition rate and processing speed. The results of our proposed VMMR
systems, given in Table 5, are the best outcomes among all the feature extraction and machine learning
algorithm variations. Chen et al. [9] and Jabbar et al. [18] also use the NTOU-MMR [33] dataset to test
their work. Our SVM-VMMR system outperforms both of their systems in terms of recognition rate and
processing speed. Most previous approaches use local features such as SIFT, SURF, edges, corners, etc. to
represent the images, which may be the reason for their poorer performance.
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Table 5. Comparison of our work with others in terms of recognition rate and processing speed.

Method Feature Classification Dataset Accuracy Speed (fps)

Dlagnekov et al. [25]
(2005)

SIFT Brute-force matching 790 vehicle images 90.52% 2.19

Munroe and Madden
[24] (2005)

Canny edges KNN, ANN, C4.5
decision trees

150 vehicle images
with 5 classes

67.33% 0.93

Pearce and Pears [21]
(2011)

Canny edge, SMG,
Harris corner

KNN and Naïve Bayes Explained in
Section 3.1

85.90% 1.73

Jang and Turk [29]
(2011)

SURF Matching using Lucene
search engine library +
structural verification

Explained in
Section 3.1

92.20% 3.1

Baran et al. [26]
(2015)

SIFT, SURF, edge
histogram Multi-class SVM Explained in

Section 3.1
91.70% 30
97.20% 0.5

Chen et al. [9] (2015) Symmetric SURF Sparse representation
and hamming distance

NTOU-MMR 91.10% 0.46

He et al. [51] (2015) Multi-scale
retinex

ANN 1196 vehicle and 30
classes

92.47% 1

Jabbar et al. [18]
(2016)

SURF Single and ensemble of
multi-class SVM

NTOU-MMR 94.84% 7.4

Tang et al. [52] (2017) Local Gabor
Binary Pattern

Nearest Neighborhood 223 vehicle with 8
classes

91.60% 3.33

Afshin Dehghan et al.
[53] (2017)

Convolutional Neural
Network

44,481 vehicle with
281 classes

95.88%

Jie Fang et al. [54]
(2017)

Convolutional Neural
Network

44,481 vehicle with
281 classes

98.29%

Hyo Jong et al. [55]
(2019)

Residual Squeeze Net 291,602 vehicle
with 766 classes

96.33% 9.1

RF-VMMR (HOG) HOG RF NTOU-MMR 94.53% 35.7

SVM-VMMR (HOG) HOG SVM NTOU-MMR 97.89% 13.9

5. Conclusions and Future Work

This work presents a real-time VMMR system with better performance than existing VMMR systems
in terms of recognition rate and processing speed. A publicly available NTOU-MMR dataset based on
realistic assumptions is used in this work. The dataset is modified to include a vehicle’s generation
information along with make and model. We have used HOG and GIST to represent the images and SVM
and RF to classify the vehicles. We have shown using the experimental analysis that our system is suitable
for real-time applications with a higher recognition rate. The proposed system works well in challenging
situations where vehicles are partially occluded, partially out of the image frame or poorly visible due to
low lighting. This system can provide great value in terms of vehicle monitoring and identification based
on vehicle appearance instead of the vehicles’ attached license plate. The existing VMMR research focuses
on recognizing vehicles sufficiently to report only their make and model. We have included generation as
another parameter. Thus, our VMMR system recognizes a vehicle and provides information about vehicle
make, model and generation.

Although the proposed VMMR system outperforms the previous systems, it can be further enhanced.
Image feature vectors have a large number of features/dimensions. Dimensionality reduction techniques
can be explored to reduce this number. A publicly available better and larger dataset with more vehicle
types will benefit the research in this area. Deep learning techniques can also be explored with a bigger
dataset.
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