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Abstract: Causal networks, e.g., gene regulatory networks (GRNs) inferred from gene expression
data, contain a wealth of information but are defying simple, straightforward and low-budget
experimental validations. In this paper, we elaborate on this problem and discuss distinctions
between biological and clinical validations. As a result, validation differences for GRNs reflect known
differences between basic biological and clinical research questions making the validations context
specific. Hence, the meaning of biologically and clinically meaningful GRNs can be very different.
For a concerted approach to a problem of this size, we suggest the establishment of the HUMAN
GENE REGULATORY NETWORK PROJECT which provides the information required for biological
and clinical validations alike.
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1. Introduction

In recent years, there have been many new developments in machine learning and artificial
intelligence [1–3]. One of these is in the causal inference of gene regulatory networks [4,5].
This approach is based on large-scale, high-throughput genomics data [6–8]. Gene regulatory networks
(GRNs) provide a framework for representing condition and disease-specific interactions. For this
reason, such networks are playing an increasingly important role in biology and medicine and
translational applications derived from these [9–18]. Despite the importance of gene regulatory
networks and their ample application opportunities, there are still many questions that are either
unanswered or misunderstood that present serious obstacles to basic and translational research.

For instance, it is generally recognized that the validation of GRNs from high-throughput
molecular data is a formidable challenge. Still, so far, it has received little attention from publications
in the literature. Notable contributions to this topic were from Dougherty [19,20], who discussed
the general theoretical aspects of this problem by assuming a reference network for comparison is
available. However, particular biological measurements or the clinical utility of GRNs is not addressed.
Another contribution was given by the paper of Walhout [21] that focuses on biological, but not clinical,
aspects and the validation of individual interactions. Hence, it presents a reductionist approach
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without embedding the discussion in a wider holistic context, omitting, in this way, problems we
encounter during this transition to genome-scale GRNs. Yet, other types of validations are discussed
for simulated data, for which the true but artificial network is known by construction [22,23], skipping
experimental validations entirely. This allows a standard statistical validation.

In this paper, we focus on a question that can be easily asked, but turns out to be difficult to
answer practically. Specifically, we take a detailed look at the experimental validation of gene regulatory
networks inferred from gene expression data. In order to clearly state the problem, we first discuss the
size of such networks in terms of the number of inferred interactions and then describe the means for
validating them experimentally. This leads us directly to the need to re-assess our approaches to deal
with GRNs.

Before we start with our discussion, we would like to emphasize that here we consider gene
regulatory networks to be causal networks [24–26]. That means whenever there is an interaction in a GRN
between two genes, this is supposed to correspond to a biochemical interaction, e.g., a transcription
regulation, a protein interaction, or a signaling event between gene products that can be experimentally
validated. Hence, a gene regulatory network can, in principle, be fully experimentally validated. This is
a strong requirement and goes far beyond the mere utility of gene regulatory networks, because it
is possible to infer a network structure from gene expression data, and such a network may not
correspond to a causal network in the above sense, but nevertheless, it can be a sensible biological
auxiliary model [27]. In this paper, we make the assumption that gene regulatory networks are causal
networks, and the following discussions are based on this and bound by this assumption.

2. How Large Are Gene Regulatory Networks?

In order to get a better appreciation for the validation problem of GRNs, we show, in Table 1, an
overview of some inferred GRNs from the literature and the number of interactions they contain. It is
clear that the size of a GRN depends on the number of genes in an organism and on the physiological
and disease stages but also on the quality of the data. For this reason, the GRNs for E. coli and
S. cerevisiae are smaller than those for human cancer networks. However, even for E. coli, we have a
network with over 20,000 interactions. As an additional reference, we also added information about
the size of transcriptional regulatory networks (TRN) and protein interaction networks (PIN) from
S. cerevisiae and humans to Table 1 .

Table 1. Overview of gene regulatory networks (GRN), transcriptional regulatory networks (TRN),
and protein interaction networks (PIN) for various organisms and phenotype states.

Organism (Network Type) # of Interactions References

E. coli (GRN) 21,820 [28]
S. cerevisiae (GRN) 27,493 [4]

B-cell lymphoma (GRN) 129,000; 57,905 [29,30]
Breast cancer (GRN) 180,171 [31]
Colon cancer (GRN) 135,194 [32]

S. cerevisiae (TRN) 12,873 [28]
S. cerevisiae (PIN) 112,562 [28]

Human (TRN) 51,871 [30]
Human (PIN) 185,433 [30]

Although the true number of interactions in particular gene regulatory networks is largely
unknown, from the comparison of the different types of networks in Table 1, it is not implausible
to assume that the typical GRNs of humans contain more than 50,000 interactions. In the following
discussion, the exact number is not crucial, but is only in the order of magnitude of interactions in
a GRN.
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3. Biological Validation of GRNs

Now, we turn to the important question of how the interactions, predicted by an inferred GRN,
can be biologically validated. Specifically, by biologically validated, we mean experimental molecular
biology techniques that provide us with direct measurements of the biochemical binding between gene
products. In other words, these measurements provide us with information if a predicted interaction
(X) is a true positive (TP) or a false positive (FP), e.g., TP53 binding to PFN1. In addition, depending
on the experimental technique, biological validation will also obtain information about the types of
interactions (see Table 2; second column).

Here, it is crucial to emphasize the important differences between the gene expression data used
to infer a GRN and the validation experiments. Whereas gene expression data provide only indirect
measurements of the potential binding or interactions between gene products, because they measure
only the concentration of mRNAs, biological validation experiments need to be direct measurements
of such binding events (see below). From an epistemological point of view, this means that a GRN is
obtained in a data-driven manner, whereas the validation experiments are hypothesis-driven [33,34];
see also Figure 1.
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Figure 1. The figure illustrates the process of biological validation of an inferred gene regulatory
network. Due to the size of a GRN,here, arbitrarily but realistically chosen to contain 50,000 interactions,
single follow-up wet lab experiments tested only a tiny fraction of all statistically significant interactions.
For this reason, the whole network could only iteratively be validated.

Obviously, due to the inclusive nature of GRNs, the interactions between connected genes on such
networks can occur at multiple levels. For the biological validation of such interactions, a number of
basic laboratory techniques should help to decipher the biological processes involved. These include
real-time polymerase chain reaction (PCR) and Western blot analyses following specific knockdown of
nodal genes (using approaches such as short interfering RNAs) to verify if peripheral genes represent
the transcriptional targets of GRN nodal genes. Publically available ChIP-seq information from sources
such as ENCODE (Encyclopedia of DNA Elements) may help to confirm whether nodal genes have
previously been localised to the genomic loci of putative target genes and may also provide valuable
information about the likely site(s) of interaction within promoters or enhancer regions. ChIP analyses
using DNA primers based on this information may then be used to confirm the localization to specific
target loci as well to quantify the intensity of such interactions.

Co-immunoprecipitation (Co-IP) experiments are the logical first steps in the identification
of protein–protein interactions. Other techniques, such as pull-down assays, Crosslinking Protein
Interaction Analysis, Luminex and MALDI-TOF mass spectrometry, Label Transfer Protein Interaction



Mach. Learn. Knowl. Extr. 2018, 1 141

Analysis, Far-Western Blot Analysis, and Bimolecular Fluorescence Complementation can also
be used. Briefly, Crosslinking Protein Interaction Analysis enables transient protein interactions
to be frozen in place while weakly interacting molecules can be localized in a complex that is
stable enough for isolation and characterization [35]. Label Transfer Protein Interaction Analysis
can be used to investigate the interface of an interacting protein of interest [36]. Far-Western Blot
Analysis has been used to determine receptor–ligand interactions and screen libraries for interacting
proteins [37]. Bimolecular fluorescence complementation (BiFC) enables the direct visualization of
protein interactions in living cells [38]. Again, all of these techniques allow us to measure direct
(biochemical) interactions.

We would like to note that there are many more experimental methods to detect molecular
interactions. For instance, the INTACT database [39] contains information about interactions from
dozens of different experimental methods, separated into nine subcategories: biochemical, biophysical,
genetic interference, phenotype-based detection assay, imaging technique, post transcriptional
interference, and protein complementation assay.

Table 2. Overview of experimental techniques to biologically validate molecular interactions by
measuring direct interactions.

Experimental Technique Type of Interaction Reference

ChIP-chip/ ChIP-seq protein–DNA interaction [40,41]
Co-immunoprecipitation protein–protein interaction [42]

Yeast two-hybrid protein–protein interaction [43]
Crosslinking Protein Interaction Analysis protein–protein interaction [35]

Label Transfer Chemistry protein–protein interaction [36]
Far-Western Blot Analysis protein–protein interaction [37]

BiFC assays protein–protein interaction [38]
iCLIP protein–RNA interaction [44]

From this discussion, one can see that the validation of a GRN with 50,000 or more interactions
is a new, large-scale experiment rather than a single small-scale experiment. To bring the order of
magnitude of the number of interactions into a practical context, consider the following. Assuming
(very optimistically) that, on average, a postdoc can validate 50 interactions in 3 years in the laboratory.
Then, we need 1000 postdocs to validate 50,000 interactions in 3 years for one GRN.

If one places this discussion in a more general context, one sees that our problem is actually
even bigger. Specifically, for humans, we distinguish between about 200 different cell types and over
1200 disorders [45]. That means there are at least 1400 different gene regulatory networks. However,
it is likely that the number of different diseases will increase further in the near future when more and
more genomic information becomes available and will be used to sub-classify disorders, as has been
done, e.g., for breast cancer [46,47].

Specifically, in their seminal work, Perou and colleagues identified up to five molecular
subtypes [48,49]. However, subsequently, it has been shown that a simple three-gene model can
robustly classify breast tumors into four subtypes—including luminal A, luminal B, HER2-enriched,
and basal-like tumors—calling into question the existence of the normal-like category [50].
More recently Curtis et al. jointly analyzed copy number alteration and gene expression profiles from
the largest breast cancer dataset to date (2000 tumors; referred to as METABRIC) and discovered that
they have distinct clinical outcomes [47]. These results indicate that as our molecular understanding
of diseases improves, we are likely to refine the disease classification with increasing numbers of
molecular subtypes.

Overall, this means, in order to biologically validate 1400 different GRNs, each with
50,000 interactions, 1000 postdocs would need over 4000 years. A heroic endeavor of this magnitude
could well be named the HUMAN GENE REGULATORY NETWORK PROJECT in analogy to its
(little) brother, the Human Genome Project [51].
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3.1. Enhancing Experimental Assays by Perturbing the System

In the above discussion, we focused entirely on the experimental techniques, neglecting the
experimental design for their application. However, to infer “causal interactions”, it is known that
observational data are problematic, and for this reason, experimental or interventional data need to be
generated. In the following, we briefly describe a recently developed validation framework that is
based on gene perturbations (gene knockdown [KD] or overexpression) in human cancer cell lines [52].

Our framework is based on the generation of independent, single-gene KD experiments that
target a collection of genes in a network or pathway. For these, gene expression data are measured
before and after the knockdowns. Based on this data, the performance of a network inference methods
was assessed as follows:

Given a GRN inferred from data,

1. A single gene knockdown experiment was selected from the collection that included all replicates
as a validation set.

2. The genes whose expressions are significantly affected by the perturbation were identified.
3. The capacity of the network model to predict which genes are affected by the perturbation by

focusing on connections local to the gene being perturbed was assessed.
4. Steps 1–3 were repeated to assess the predictive power of the network model until all

perturbations had been tested.

By using this quantitative validation framework, we showed that the integration of priors can
significantly improve the quality of the inferred GRN [52]. However, there were three limitations.
The first is that we only targeted a small set of eight key genes from the RAS signaling pathway, but
we assessed their effects on other genes from the entire genome. Second, the performed KDs were for
single genes which prevented us from assessing the effects of multiple KDs performed simultaneously.
The third limitation was that we performed the KD experiments on two colorectal cancer cell lines.
However, by extending our validation framework to a larger number of cell lines and by using
additional single and multiple gene KDs, we should be able to further improve the robustness of the
inferred networks. There is, therefore, a direct need to scale this validation framework to genome-scale
networks by using single- and multi-gene perturbations.

3.2. Existing Data Repositories

We do not want to miss mentioning that there are existing data repositories from which
information about interaction levels is available. For instance, the STRING database [53] provides
information about protein–protein interactions. Another good recourse is IntAct [39], which also
provides mainly information about protein interactions from over 275 species. An example of a
database that provides information about transcription regulation is TRRUST [54].

4. General Considerations about Validation

Before we discuss the clinical validation of GRNs in the next section, we insert a general discussion
about validation. This will clarify the need for different validation settings.

There are two important points to emphasize, which we will discuss in the following text in
more detail.

1. A validation is necessary because the entities to be validated are generated by a statistical model
corresponding to its predictions.

2. The entities to be predicted are scientifically meaningful for particular research fields.

Both of the above points hold for any validation and are, for this reason, generic rather than
specific to the topic of our paper. Furthermore, both points are related to each other, and point (2)
is a corollary of (1). However, for reasons of clarity, we separated them. The first point emphasizes
the existence of a statistical model that predicts the entities to be validated. In the above biological
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context, the statistical model is an inference algorithm that infers GRNs, and the predicted entities are
the interactions between gene products. In the clinical context below, the statistical model could be a
classifier that predicts the disease stages of patients related to their survival times. Both predictions,
the interactions between gene products and the disease stage of patients, are scientifically meaningful
in their respective research fields, biology and medicine, but not necessarily beyond. For instance,
the knowledge about the presence of a specific interaction between two proteins is not necessarily useful
for a medical doctor when making a decision regarding the treatment of a patient depending on her/his
disease stage if no additional information about the effect of this interaction on the patient/phenotype
is available. Hence, in the clinical context, the specific validation of ‘interactions between proteins’ does
not directly provide meaningful validation for the ‘disease stage’. This implies that validations are
always context specific making it necessary to distinguish between biological and clinical validations.

5. Clinical Validation of GRNs

The clinical validation of GRNs assesses the utility of such networks in a clinical or biomedical
context. For instance, GRNs have been used as network biomarkers for prognostic and diagnostic
purposes [55,56]. This means that the underlying GRN is quantitatively assessed via its statistical
classification or, in general, prediction abilities that can be brought into contact with clinical outcome
variables, e.g., disease grade, survival time, or therapeutic response. Of course, this is not limited to
GRNs, but also holds for other network types that could serve as structural biomarkers, e.g., [10,57–61].

Abstractly, one can consider this on a different semantic level of which GRNs provide us with
information. Whereas in molecular biology, the unit of interest and biological meaning is the interaction
between gene products, in a clinical context, it is the prediction ability of a network biomarker,
e.g., for diagnostic purposes. Overall, this means that for biological validation, a GRN serves as a
biological interaction map, whereas for a clinical validation, it is a black box statistical model whose
composing components are not directly under scrutiny. Although, it is plausible to assume that a high
quality GRN gives rise to high quality predictions, it is not conclusive to claim that an incomplete GRN
is not capable of high quality clinical predictions. This could mean that certain types of association
networks without a direct causal meaning of its components can also lead to fruitful results in
such applications.

For the latter point, it is important to emphasize that the biological quality of a GRN in a clinical
context can have a severe impact on the further usage of such a GRN, e.g., in pharmacogenomics.
Whereas for networks with good predictive properties but limited causal explanation capabilities,
a downstream application for drug design seems unmotivated, a causal molecular GRN with good
clinical predictive abilities could very well serve as a fruitful starting point for this. Hence, despite
the fact that in clinical validation of a GRN, its biological validation is of secondary interest, for the
subsequent use in pharmacogenomic problems for drug design, it is crucial.

Despite this apparent simplicity, GRNs have been scarcely validated in a clinical context compared
to non GRN-based approaches. For instance, recently, 45 cancer genomic tests were reviewed (Table 1
in [62]). Importantly, despite the fact that nearly half of them were recommended for clinical use,
not one was based on a GRN. This mere fact indicates that, first, the structural information of GRNs
might be too overwhelming to be used ’as is’ in the clinical practices and second, there is certainly a
lack of algorithms that could simplify the application of GRNs for diagnostic and prognostic purposes.
Interestingly, Chang et al. [62] also showed that a genomic test takes almost 16 years to be accepted
in clinical practice. In part, this provides further explanation as to why current clinical tests exclude
GRNs, because accurate computational approaches for GRN inference appeared years after the first
gene signatures for diagnostic and prognostic purposes were suggested, e.g., ref. [63].

As a measure to promote the usage of GRNs for clinical problems in translational research,
we suggest the establishment of a public database to provide direct access to inferred GRNs. In
addition, this database needs to be complemented with appropriate open access analysis tools in order
to study relevant clinical questions. Overall, such an infrastructure would allow us to focus on the
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underlying clinical problems without the need to worry about the vast number of intricate details of
every analysis step for inferring and analyzing GRNs before the actual clinical problem can be studied.
This would free a tremendous amount of resources that could be directly dedicated to the investigation
of the clinical validation of GRNs. Here, it is important to emphasize that the database as well as the
analysis tools need to be open access, because this ensures the reproducibility of the obtained results
by other groups. In a biomedical context, the involvement of humans and patients in achieving and
demonstrating reproducibility is highly non trivial in general, and probably even more challenging for
studies involving GRNs due to the additional layers of analysis complexity.

Higher-Level Networks

We want to finish by mentioning that there can be also higher-level networks beyond GRN that are
useful for clinical applications. By higher-level networks, we mean networks where nodes correspond
to a higher organizational unit than a gene. For instance, in [64], pathway networks (PN) were studied
in which nodes correspond to pathways. It has been shown that these pathway networks can be useful
for the in-silico identification of drug targets when utilizing the concept of pathway cross-talk inhibition
(PCI), introduced by ref. [65]. However, the PNs are more abstract than GRNs because they represent
summarized information of groups of genes and their interactions and hence, the question of their
biological validation is different to GRNs.

6. Conclusions

In this paper, we discussed the question of whether it is possible to biologically validate inferred
gene regulatory networks experimentally. As a result we found, in principle, a positive answer;
however, practically, this appears to only be feasible in an iterative manner involving a heroic number
of follow-up experiments rather than a single experiment and hence, requires a significant amount of
time. Furthermore, this presupposes that GRNs need to be stored in public databases that allow easy
access and storage of such follow-up results so that they can be seemingly integrated with each other.

We also discussed the utility of GRNs in clinical applications and argued that the clinical validation
of a GRN is different from its biological validation, demonstrating by this that any validation
step needs to be integrated into a practical context that defines the semantic meaning of a GRN.
Whereas in molecular biology the semantic meaning is already on the level of molecular interactions,
e.g., transcription regulations or protein bindings, in medicine and the clinical practice, it is beyond
this level, at the level of clinical outcome, e.g., survival time. Furthermore, the current lack of
applications of GRNs in the clinical practice similar to genomic tests for gene signatures points to
an urgent developmental need in this direction. This would result in a shifting away from black box
statistical models towards model-based statistical methods which are arguably more problem specific
and additionally, have a meaningful biological interpretation.

We are of the opinion that due to the complexity of gene regulatory networks, and thus the many
perspectives on their applications and interpretations, it is of the utmost importance to maintain a
constant discussion about these aspects to further enhance our understanding. Due to the extend of
this problem, we think this can only be tackled by establishing the HUMAN GENE REGULATORY
NETWORK PROJECT with a meaningful organizational structure for the problem specific categories
required for biological and clinical validation.
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