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Abstract: In this paper, we present a novel pipelined near real-time speaker recognition architecture
that enhances the performance of speaker recognition by exploiting the advantages of hybrid feature
extraction techniques that contain the features of Gabor Filter (GF), Convolution Neural Networks
(CNN), and statistical parameters as a single matrix set. This architecture has been developed to
enable secure access to a voice-based user interface (UI) by enabling speaker-based authentication
and integration with an existing Natural Language Processing (NLP) system. Gaining secure access to
existing NLP systems also served as motivation. Initially, we identify challenges related to real-time
speaker recognition and highlight the recent research in the field. Further, we analyze the functional
requirements of a speaker recognition system and introduce the mechanisms that can address these
requirements through our novel architecture. Subsequently, the paper discusses the effect of different
techniques such as CNN, GF, and statistical parameters in feature extraction. For the classification,
standard classifiers such as Support Vector Machine (SVM), Random Forest (RF) and Deep Neural
Network (DNN) are investigated. To verify the validity and effectiveness of the proposed architecture,
we compared different parameters including accuracy, sensitivity, and specificity with the standard
AlexNet architecture.

Keywords: classifiers; convolution neural network; architecture; feature extraction; machine learning;
random forest; speaker recognition; voice interface

1. Introduction

Automatic speaker recognition is a challenging task as speakers may have different accents,
pronunciations, styles, word rates, and emotional states. Furthermore, the presence of environmental
noise makes the task even more challenging. Development of a functional speaker recognition
architecture has paved the way for many real-world applications such as speech forensics, robotics,
and home control systems [1]. In several areas, recorded voice has been traditionally used to collect
data through transcription. Healthcare is one such area where the voice is recorded for later reporting.
Moving further towards real-world applications in healthcare, researchers have now been focusing on
point-of-impact technologies. Statistically, medical first responders making a large number of errors
during transfer of care, leading to loss of human lives, is considered as the primary reason for this
shift [2]. It is notable that limited response time, lack of standard technical language/protocol, and
the difference in knowledge of equipment among the caretakers, serve as primary sources of these
errors. It is expected that the use of a speaker recognition system integrated with an existing Natural
Language Processing (NLP) system for voice-activated decision making or synthetic assistance (SA),
might reduce such errors to some extent, and improve the voice-based UI while providing secure access
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to these systems [3,4]. Such systems, involving the use of synthetic assistants (SA) or voice-activated
decision-making, would also require authentication through speaker recognition.

We propose the use of an in-house developed synthetic assistant for such applications to minimize
errors by augmenting a medic’s capabilities through assistance in decision-making. A personalized
voice assistant with custom-built skills would be a great example of an SA for such applications.
However, these commercial off the shelf (COTS) devices and the associated applications are available
to the public and may pose security and privacy challenges if access is not limited. One of the ways to
limit access can be a high-accuracy real-time speaker recognition system. Motivated by the applications
of real-time speaker recognition, we propose a generalized speaker recognition architecture that can
be used in near real-time without compromising accuracy. Furthermore, the proposed architecture
overcomes the issue of recognizing a single speaker when multiple non-overlapping speakers are
present in a noisy environment. The proposed architecture would also make the recognition simpler
and allow further integration with other existing NLP systems.

Classification algorithms and feature extraction techniques are integral components of a speaker
recognition system. Several algorithms for speaker recognition have been proposed over the years
with varying degrees of success. Conventional speaker recognition systems used a Gaussian mixture
model (GMM)-based hidden Markov models (HMMs) [5]. However, it was inefficient for modeling
data that lie on or near a non-linear manifold in the data space. To understand this concept, consider
an example of modeling the set of points that lie closer to the surface of a sphere. Those points would
only require a few parameters using an appropriate model class. On the contrary, it would require a
large number of diagonal Gaussians or full-covariance to model them. Later on, with the development
of various machine learning (ML) algorithms, the research community shifted its focus to algorithms
such as support vector machine (SVM), random forest (RF), Linear Regression, K-Nearest Neighbors,
K-means, and most recently, deep neural network (DNN). Among these, we found that SVM, RF, and
DNN exhibit the best performance in recent works [6].

Researchers identified random forest as the best classifier among 179 classifiers considered in
their study [7]. However, another group of researchers claimed that these results lacked a held-out
test set and excluded trials with errors [8]. Furthermore, the statistical tests in [7] showed that RF did
not have higher percentage accuracy than SVM and artificial neural networks (ANNs). Therefore,
in our work, we explore SVM, RF, and DNN classifiers to determine which one would be the best
for speaker recognition. It is also noteworthy that choosing the correct classifier does not mean that
the speaker recognition problem is solved and care should be taken to ensure that an optimal set of
features are being extracted from the speech sample under consideration. Although features such as
pitch, zero-crossing rate (ZCR), short-time energy (STE), spectral centroid (SC), spectral roll-off (SR),
and spectral flux (SF) have been previously used in speaker recognition, they are more suitable for
background noise detection [9–11]. Similarly, Mel frequency cepstral coefficients (MFCC) have also
been used in speaker recognition, but they tend to give unreliable results in noisy environments [12].

This paper contributes to the area of speech processing by proposing a voice authentication
based access to an NLP system. Voice authentication is accomplished by developing a generic and
robust speaker recognition architecture that could be integrated with an existing cloud-based NLP.
The paper also gives insights into the essential features of speech signals that are vital to training
popular ML algorithms for speaker recognition. Insight into features was achieved through a detailed
performance analysis of different ML algorithms using the standard ELSDSR and in-house generated
dataset. The proposed novel architecture uses GF, CNN, and statistical parameters separately for
feature extraction. Also, we briefly discuss ML algorithm-based classifiers such as RF, SVM, and DNN
and present results related to their behavior when used with different datasets. Finally, we compare
our architecture performance to the standard AlexNet architecture [13].

The rest of the paper is organized into six sections. Section 2 discusses the most relevant related
work in speaker recognition. Section 3 presents our proposed high-speed pipelined architecture.
Section 4 details the pre-processing and feature extraction modules of the proposed architecture.
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Section 5 presents a detailed discussion on ML-based algorithms that have been used in speaker
recognition applications. Section 6 presents our experimental results and related discussion. Finally,
we conclude the paper with comments on possible future work directions along with limitations.

2. Related Work

In this section, we discuss existing architectures including the authentication process, and
techniques that have been used for speaker recognition. After a detailed literature survey, we found
that very few architectures for speaker recognition or related areas have been proposed to date. We
found that it was difficult to ascertain if one of the most recent attempts to address multilingual speech
recognition architecture can be used for speaker recognition [14]. On top of that, the authors also
did not mention if this architecture is compatible with cloud-based NLP applications. On a positive
note, this architecture is well-defined and is expected to be useful for real-time applications. Other
popular architectures in literature are simple in design and use old classification algorithms and feature
extraction techniques [1,15,16]. These architectures also lack real-time applicability.

One of the most recently proposed (2019) fully supervised speaker diarization framework [17]
proposes an “online system with offline quality.” This work proposes the use of unbounded
interleaved-state RNN (UIS-RNN) which is a trainable model and outperforms the spectral offline
clustering algorithm on the NIST SRE 2000 CALLHOME benchmark [18]. Another recent work
proposes a speaker verification framework using CNN with a focus on demonstrating the use of
effective pair selection for verification [19]. This work primarily leverages the protocol proposed by
authors of Voxceleb database [20]. In related authors published part 2 of the work where Voxceleb
data is used in speaker recognition using CNN models. The paper examines the depth of network
with performance and results conclude substantial performance improvement with performance
improves with greater network depth [21]. Another Deep CNN and LSTMs were used for ASR
acoustic modeling [22] with accuracies ranging between 69–83% for various scenarios, using the
TIMIT database [23]. A 2018 work also proposes a text-independent ASR using LSTM which
creates match and non-match pairs for ASR through learning the speaker as well as the background
sound [24]. Similar to [18], this model uses overlaps in signal windows during feature extraction to
capture temporal variations and suggests that LSTM fails to capture long dependencies in speaker
characteristics. In another CNN and Gaussian mixture model (GMM) speaker recognition model
authors used spectrograms to recognize the speaker to recognize short utterances and results presented
are promising [25]. The recent LSTM based works further conclude that LSTM has not been successful
in capturing long dependencies among speaker characteristics while trying to capture temporal speech
variation [18,26].

Few researchers have also focused on authenticating along with recognizing an individual’s voice
by comparing the collected voice template for training and testing [27,28]. However, architecture
performance was not reported for noisy or real-time environments. Similarly, another work focused on
building a secure real-time android-based speaker recognition system to identify the technician’s voice
in the laboratory [29]. In this work, the authors state that the authentication process is complicated
in noisy environments. Moreover, the authors did not report any performance-related results of the
proposed system. Similarly, different classification and feature extraction techniques have been used
in automatic speech recognition (ASR), which can be used for speaker recognition as well with some
improvements. DNN and CNN have both been successfully applied to ASR with cepstral coefficient
features as input to these networks. These researchers found CNN to perform better than DNN and
both of these to perform better than GMM/HMM [30,31]. However, some researchers have just applied
the CNN model for both feature extraction and classification [32]; and reported the error rate reduction
compared to DNN. Researchers have also used CNN as a feature extractor and linear classifiers as
a classifier and reported better performance compared to the CNN alone as a feature extractor and
classifier [33].
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Similarly, another work employed Gabor filter (GF)-based features for ASR [34]. The generated
features were classified using different classifiers. This work claims that the GF-based feature extraction
method gave better recognition than those of MFCC, perceptual linear predictive (PLP) and LPC.
In the past, features generated from GF have been used as inputs to DNN to generate Gabor-DNN
features and to CNN for improved speech recognition [12,35,36]. One such research incorporated GF
into convolution filter kernels where a variety of Gabor features served as the feature maps of the
convolution layer [12]. The authors achieved a better result compared to when Gabor features were
used without CNN. It was then concluded that the CNN or DNN features alone are not enough and
better speaker recognition is achieved when Gabor features are also incorporated. Similarly, in another
recent work, the authors reported a method where specific weight kernels of a CNN are replaced with
GF to reduce the training complexity of CNN [37]. This work claims that a better performance in
terms of time and energy was achieved compared to CNN because the convolutional layers use the
GF as fixed weight kernels that extract intrinsic features with regular trainable weight kernels. This
implementation used the MNIST, FaceDet and TICH datasets. These findings motivated our research
towards the development of a novel architecture design that uses GF, CNN, and statistical parameters
separately for feature extraction.

3. High Speed Pipelined Architecture

The proposed high-speed pipelined architecture depicted in Figure 1 comprises the following
blocks: pre-processing, feature extraction, feature selection, classification, trained model, and the
speech signal controller block (SSCB). This architecture was designed with the aim to make it simple,
highly accurate, and reliable in a noisy environment with the capability to recognize non-overlapping
multiple speakers. It was also considered necessary for the architecture to be compatible with
cloud-based applications such as popular NLP systems. The proposed architecture consists of different
modules, and each of them has been discussed in detail in the paper. In the following paragraphs, we
present details of the operation of the proposed architecture.
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Figure 1. Proposed speaker recognition architecture.

Suppose that there are six individuals - A, B, C, D, E, and F, all of whom are talking and trying
to access the NLP. Let us also assume that the system has been trained to only detect the user B.
The proposed high-speed pipelined architecture will recognize only B as the correct person and send
B’s voice to the NLP system. Later, if the system designer decides to give access to C as well, then the
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feature database will be updated with the features of C’s voice. Next, an updated trained model will be
generated based on the new feature database. Now, using the generated trained model as a reference,
SSCB will start accepting and transferring the voice of both users B and C to the NLP system.

As shown in Figure 1, after the acquisition of a real-time speech signal, the pre-processing block
performs noise reduction and file conversion to a suitable format. Next, the feature extraction block
extracts features from the provided voice sample including statistical features, Gabor features, and
CNN-generated features. After that, the feature selection block uses the univariate feature selection
technique that selects the best features from the extracted features based on univariate statistical test
and sends them to the feature database.

Using the feature database the classification block employs the best ML algorithm and builds
a trained model. The proposed architecture uses several ML algorithms, and for each new user, the
SSCB will train them and then select one of the algorithm mentioned above based on the highest
accuracy. A separate set of experiments were performed (discussed in Section 6) to study the best
classifier where we compared three ML-based classifiers. These ML-based classifiers include SVM,
RF, and DNN. The classifier that gave the result with the highest accuracy within a given time was
selected as the best classifier to build a trained model. The trained model is then stored in the SSCB for
comparison with the real-time test voice signals.

Finally, the SSCB uses the extracted features from the test speech signal, tests it against the
trained model and makes the decision of sending the captured real-time speech signal to the NLP
system. This block will reject the captured real-time speech signal if it fails to pass the test against the
trained model. In essence, the SSCB acts as a final switch in the proposed architecture and recognizes
individuals for whom the classification algorithm has already been trained while samples from new
unauthorized users will not be recognized. This systematic approach in our proposed architecture
operation results in a robust speaker recognition process. In the subsequent sections, we will discuss
the submodules of the proposed architecture in more detail.

4. Preprocessing and Feature Extraction

The preprocessing consists of a series of steps including noise separation and file conversion. First,
the Additive White Gaussian Noise (AWGN) corrupting the input audio signal is filtered. We used
the Recursive Least Squares (RLS) adaptive filtering method for the noise cancellation [38]. Since the
feature extraction technique for our proposed architecture requires the input to be an image [33], we
represent the received audio file as a spectrogram. Spectrograms are 2D images representing sequences
of spectra with time and frequency along each axis with brightness or color intensity representing
the strength of a frequency component at each timeframe [39]. A spectrogram is limited in the sense
that it can only show one channel at a time because of its 2D nature. To overcome this limitation, we
averaged two channels of the received audio signal before converting it to a spectrogram.

Extraction of a set of features from the voice signal is an essential step for the classification of
speakers. We extracted features using statistical parameters, GF, and CNN from the spectrograms
generated using the raw voice signals. The feature selection on each of these parameter set was
performed to obtain the best feature set.

To test the proposed architecture in the stages of preprocessing and feature extraction, we used
two data sets. As presented in Table 1, dataset 1 is a standardized dataset called ELSDSR [40] that
generally used speaker recognition. Dataset 2 is an in-house developed dataset with more realistic
conditions and background noises than any scandalized dataset collected in a controlled environment.
One of the reasons to come up with an in-house dataset is that Nationality plays a vital role in the
accent of different speakers. The aim of the new data (i.e., dataset 2) was to be more compatible with
newer NLP systems that can recognize various English accents. If the non-native speaking user decides
to get access to the NLP system, then our proposed architecture should be able to provide proper
authentication to those new users. The primary objective of our architecture was to authenticate speaker
and provide secure access to NLP systems. Typically, speakers from any nation could use existing
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NLP systems. Therefore, with diverse nationality, we aimed to check the robustness and accuracy
of our architecture for various accents. There are several large data sets available for researchers of
voice recognition and authentication used by previous publications example Voxceleb database [20].
The rationale for not using large data sets such as Voxceleb, or Harvard-Haskins is our model targeting
applications of sensitive environments. Our tested architecture should tell who specifically in the
system is instead of who is not in the system. In the real world, application the users going to submit
only one are two user voice sample for authentication in their personal assisting devices, so in most
of the cases, our architecture has to work with a very sparse and small data set. The main aim of
proposing this architecture was to provide secure user access to an existing NLP system. Based on our
application domain, we wanted a limited dataset and therefore, generated in-house data and looked
for similar standard datasets. We found ELSDSR data to be the most appropriate for our application.
The following subsections detail the feature selection process and the features that were considered
during the selection process.

Table 1. Datasets used for training and testing.

Features Dataset 1 (ELSDSR) Dataset 2 (In-house)

MALE Speakers 12 15
Female Speakers 10 11

Age 24–63 21–29
Nationality-wise 3 5

Sampling Frequency 16 KHz 16 KHz

4.1. Statistical Features

The statistical features hold unique value for each pixel in an image and are considered useful for
classification. Furthermore, these features give a good indication of the various image intensity-level
distribution properties such as uniformity, smoothness, flatness, and contrast [41]. The statistical
features include mean (M), median (Md), standard deviation (SD), and interquartile range (IQR).
An example of k-fold cross-validation of statistical values is extracted and shown in Table 2.

Table 2. Example of statistical values with respect to pixels.

Individual Size M Md SD IQR Pixel

A

256 132.4 136 75.63 155 (1,15)
x 140.8 143 8 155 (1,16)

256 132.7 138 76.12 152.7 (1,17)
. . . . . . . . . .. . . . . . . . . . . . . . . . . . . .

B
256 114.6 120 64.84 130.75 (1,17)
x 122.3 127 66.07 133 (1,18)

256 122.6 124 65.16 133 (1,19)

. . . . . . .. . . . ... . . . . . . . . . . ... . . . ... . . . ... . . . ...

4.2. Gabor Filter

GF is a transform-based method for extracting the texture information. The advantage of this
technique is its degree of invariance to scale, rotate, and translate. A GF is a sinusoid function
modulated by a Gaussian and is defined by the following equation [42].

g(x, y) = exp(− (x 2
1 + γ2y2

1/2σ2)) exp (i (2Πx1/λ + ψ)) , (1)

where, x1 = x cosθ + y sinθ

and y1 = −x sinθ + y cosθ
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The input parameter ‘σ’ represents the standard deviation of the Gaussian function, ‘λ’ represents
the wavelength of harmonic function, ‘θ’ is the orientation, ‘γ’ is the spatial aspect ratio with a constant
value of 0.5, and ‘ψ’ represents the phase shift of harmonic function. The spatial frequency bandwidth
is constant and is equal to 1. The output value is the weight of the filter at the (x, y) location. Here,
we used 2D GFs that are equally spaced in orientation (i.e., equal θ) to capture the maximum number
of characteristic textural features [43]. These 24 different GFs were tuned to four orientation values
(θ = 0◦, 45◦, 90◦, and 135◦) and six frequencies (1/λ) (where, λ = 2.82, 5.65, 11.31, 22.62, 45.25, 90.50) as
shown in Figure 2.
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4.3. Convolution Neural Network (CNN)

The CNN shown in Figure 3 is five layered. Namely, two convolution layers, C1 and C2, and two
pooling layers, P1 and P2, and an output layer [44,45]. The size of the filter used in convolution layers
C1 and C2 was 5 × 5 whereas the filter size used in pooling layers P1 and P2 was 2 × 2. The input
to the CNN was 28 × 28 grayscale images. The output of C1 and C2 give a feature map of 32 sets
for both of them. The outputs of P1 and P2 had the same number of feature map sets as C1 and C2.
The output of the CNN was a column vector of dimension 256 × 1 that was used by the SoftMax
classifier to classify the input images into one of the two output classes. The last two layers of the
CNN classifier, i.e., P2 and the output layer, were fully-connected. The CNN classifier was trained
using the back-propagation algorithm in batch mode, and the architecture was implemented using
the python packages lasagne and nolearn [46–48]. According to the discussion presented in [46–48]
when the training dataset is spectrographic, a 5 × 5 filter has shown better output with 32 pooling
channels and two max-pooling layers. Other models that literature tested include 3 × 3 and 11 × 11
with 16 channels and 64 channels where we retested their models and out test showed no difference
in results compared to the cited research works. The dense layer was also used between P2 and the
output layer to avoid overfitting. Finally, the set of weights and bias parameters obtained after training
the samples were used to extract features from the P2 layer considered as the bottleneck layer.
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This CNN model was trained with both standard data (ELSDSR) [45] and the collected 26 voice
samples that were converted to an image.

4.4. Feature Selection

The feature selection technique is found to be helpful before data modeling as it reduces overfitting,
improves accuracy and reduces the model complexity. Feature selection further makes the model
easier to interpret and reduces training time. In the proposed architecture, to achieve these advantages,
we implemented the univariate feature selection technique. This feature selection technique works
by selecting the best feature based on univariate statistical tests. In particular, the chi-square test was
performed on the samples to obtain the 56 best features from the 286 extracted features. The use
of chi-square test was based on its property of selecting the informative features and removing the
redundant values. Moreover, it helps reduce large feature sets by selecting the highest scoring feature
based on the statistical test. The main objective to use this feature selection technique was to reduce our
extracted feature matrix to a smaller size so that the training time is decreased with no loss of accuracy.
The results of the experiments performed with the univariate feature selection technique are discussed
in Section 6. Based on the univariate statistical test when k = 1, one best feature is selected. Similarly,
for the value of k = 2 and k = 3, two and three best features are selected from four extracted feature.

4.5. Comparative Study

To evaluate the efficacy of the selected feature set, we compared the performance of the proposed
framework with a few features or feature sets that have been popularly used in literature such as
MFCC, ZCR, Pitch, SC, SR, SF, and STE [9–12]. These feature(s) have been widely studied in different
application scenarios where primary training dataset was large with sample size 1000 and above.
The main purpose of the comparative study was to show how the proposed feature extraction technique
performs as compared with popular feature extraction methods when used with standard classifiers.
The results of this study are presented and discussed in Section 6.1. Here is a short description of these
popular features:

• MFCCs are derived from a cepstral representation of the audio clip, which is the amplitude of the
resulting spectrum of the frequency bands that are equally spaced on the mel scale [12].

• ZCR of a speech signal is the sign change along the signal, i.e., the rate at which the signal changes,
and is a good indication of the speech variability [10].

• STE is a good measure of the total energy in a short analysis frame of the voice signal and
calculated by windowing of the speech sequence and summation of energy in that short
window [10].

• SR is the frequency below which 85% of the total spectrum energy is contained and indicates
mean and the variance of the roll-off across timeframes in the texture window [10,11].

• SC of a speech signal is defined as the center of gravity of the frequency components in
the spectrum and is evaluated using Fourier transform [10,11]. Perceptually, it indicates the
“brightness” of a sound.
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• SF is the squared difference between the normalized magnitudes of successive spectral
distributions and is a good measure of how quickly a local spectral, i.e., the power spectrum of a
signal, changes. The mean and the variance of the flux across timeframes are measured through
SF [10,11].

5. Machine Learning-Based Classifiers

The goal of a classifier is to produce a model, which predicts the target value of the test data given
only the test data features. In our architecture, we first compare the results of well-known classifiers
from literature and select the classifier with the highest accuracy. We used Python to implement the
classifiers. The following sub-sections describe the different classifiers considered in the proposed
architecture. Among these classifiers, one with the best classification result was used in the proposed
architecture. The comparison of the performance of classifiers has been discussed in Section 6.2.

5.1. Support Vector Machine

In this work, we treated speaker recognition as a binary classification problem. At each point
during the speaker recognition process, we applied the trained classifier to recognize whether the voice
is a match or not. We used the radial basis function (RBF) kernel in our experiments due to following
reasons: (i) it nonlinearly maps samples into higher dimensional space, (ii) it has less numerical
difficulties, and (iii) it has fewer hyper-parameters than the polynomial kernel. Model selection is the
process of parameter tuning to achieve high classification accuracy. We used the best pair value for C
and γ to train the whole training set. The best pair value was found through a grid search method in
cross-validation where pairs of values were tested with the training set [49,50].

5.2. Random Forest Classifier

RF is the collection of decision trees that uses both bagging and variable selection for tree building,
which is built on the bootstrap sample of data [51]. During the classification, each tree classifies a new
object based on attributes, i.e., tree votes for that class. Finally, the classifier chooses the class with the
most votes. Two parameters need to be optimized in the RF algorithm: first is the number of variables
that are chosen for splitting at each node, denoted by M, and another is the number of trees to grow or
build, denoted by Ntrees. The selection of M influences the final error rate. So, M is usually taken to be
a square root of the number of input variables, as was the case in our experiment. Ntree can be as many
as possible as the random forest is fast and there is no overfitting, but for our method, we tried several
values using a random function until the prediction error was stabilized.

5.3. Deep Neural Network (DNN) Classifier

DNN is an extension of the ANN with multiple hidden layers between input and output. Extra
hidden layers in DNN enable composition of features from lower layers, thus modeling complex data
with fewer units as compared to a similarly performing ANN [5,52,53]. In our work, we implemented
a DNN with three hidden layers. The hidden units were implemented as Rectified Linear Units (ReLU)
such that the input at level j, which is xj, is mapped to its respective activation value yj. The output
layer is then configured as a logistic function to obtain an output value between 0 and 1. As a loss
function for back propagating gradients in the training stage, we used the cross-entropy function that
incorporates the target probability, L2- a regulation parameter that penalizes complex models, and
a non-negative hyper-parameter that controls the magnitude of the penalty. The process starts with
the initial set of random weight and DNN minimizes the loss function by constantly updating these
weights. After computing the loss, a backward pass propagates from the output layer to the previous
layers, providing the weight of each parameter with an updated value meant to decrease the loss [54].

DNN itself performs feature extraction using a stacked sparse encoder or another feature selection
method. In our work, we fed DNN classifier with the same features that we fed to the SVM and
RF classifier to leverage uniformity in the comparison between these algorithms during feature
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extraction and selection. Further, we used the asynchronous stochastic gradient descent method for
training the DNN. The architecture of the network was 5-layered with 56 input nodes, 3 hidden layers
with 50, 100 and 25 nodes, followed by two output nodes. The DNN classifier was implemented
using the TensorFlow library and Python. Table 3 summarizes the parameters used for DNN in our
proposed architecture.

Table 3. Parameters used in the Deep Neural Network (DNN).

Parameters Specifications

Network type Feed-Forward backpropagation
Number of layers Five layers with three hidden, one input and one output

Activation function Rectified Linear Unit
Training algorithm Gradient Descend

6. Results and Discussion

In this section, we aim to study the perceived performance of the proposed near real-time speaker
recognition system. In our algorithm, features were extracted using MATLAB and Python, whereas
the classification task was done using Python. Evaluation parameters such as sensitivity, specificity,
and accuracy were used to check the performance of ML-based algorithms. Similarly, parameters
such as equal error rate (EER), and Detection Error Tradeoff Curve (DETC) were used to evaluate
the performance of the speaker recognition architecture. The parameters such as accuracy, specificity,
and sensitivity for all the algorithms were calculated using the confusion matrix. The accuracy
was calculated using the sum of true positives (TP) and true negatives (TN) divided by total
samples. Similarly, sensitivity was calculated using (TP/(TP+FN)), and specificity was calculated
using (TN/(TN+FP)) where FP and FN are false positive and false negative respectively.

To validate our architecture, we took standardized data from the English language speech database
for speaker recognition (ELSDSR) [40]. The database contains voice messages from 22 speakers:
12 Males and 10 Females, aged between 24 and 63 from Canada, Denmark, and Iceland. The voice
messages were recorded in a .wav format using Pulse Code Modulation. The sampling frequency was
16 KHz, with a bit rate of 16. For training purposes, seven different sentences were collected from
each of the 22 speakers. Similarly, for testing purposes, each of the 22 speakers was asked to read two
sentences from NOVA Home [55]. NOVA Home is a web site that contains information about the
great pyramid of Egypt. In essence, 154 (7 × 22) utterances were recorded for training, and 44 (2 × 22)
utterances were provided for testing.

To test the aforementioned data on our architecture, we divided the training dataset into two
different classes, namely known and unknown before training them. A similar process was repeated
for testing by classifying them. A comparison of ML-based algorithms based on accuracy, specificity,
and sensitivity for standardized data is shown in Table 4. In the following subsections, we present the
results from different submodules of the proposed architecture.

Table 4. Accuracy, sensitivity & specificity for ELSDSR dataset.

Classifier Accuracy Specificity Sensitivity

SVM 91.66 93.06 90.42
RF 94.87 97.85 92.23

DNN 93.52 94.17 92.93

6.1. Evaluation of Extracted Features

A number of features were extracted and studied for real-time speaker recognition; however, our
experiments showed that not all of those features were relevant or appropriate. For the experiments,
we collected voice samples from 26 speakers, consisting of 15 males and 11 females. Nationality-wise,
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out of the 26 speakers, 12 were from India, 6 from Nepal, 1 from the Kingdom of Saudi Arabia (KSA),
1 from China and 6 from the USA. The experiments conducted on collected samples from 26 speakers
showed that only some features were capable of giving good results.

Apart from the features used in our architecture, we also extracted features such as MFCC, ZCR,
pitch, SC, SR, STE, and SF that have been popularly used for speaker recognition as discussed in
Section 4.5 [9–12]. All of these extracted features were investigated for speaker recognition using
different classifiers to see how they perform when compared with the features used in the proposed
framework. A comparison of the accuracy of different classifiers with different features is shown in
Table 5. It can be seen from these results that our proposed feature extraction method provided the
best accuracy for all the classifiers considered in the current work.

Table 5. Accuracy comparison of different feature extraction technique with different machine
learning-based algorithms.

Feature(s) SVM RF DNN

MFCC 92.51 93.37 92.85
ZCR + Pitch + SC + SR + STE + SF 88.29 85.52 89.24

Gabor + Statistical + CNN 98.07 99.41 98.14

Similarly, the feature selection technique was performed on each of the extracted features. This
technique helped us achieve higher accuracy while reducing training time. Table 6 reports the
improvement in accuracy of ML-based algorithms after the use of the proposed feature selection
technique. For this comparison, only a realistic dataset could be used while the dataset 1 (ELSDSR)
may not be a reliable source for this specific evaluation since it is collected in a controlled environment
without any background noise. Dataset 1 was collected in a controlled environment, but dataset 2 was
collected in the real world with all background sounds and uncertainties, which is a requirement for
some of the feature extraction methods. Therefore, we only used dataset 2 for this specific purpose.

Table 6. Effect of feature selection on the accuracy of machine-learning based algorithms.

Dataset Feature Selection SVM RF DNN

Collected Samples Yes 98.07 99.41 98.14
Collected Samples No 93.87 95.78 94.42

6.2. Architecture and ML-based Classifier Performance

To measure the performance of ML classifiers we used voice samples collected from 26 speakers
containing authorized user the need access to NLP. We converted these voice samples to the
spectrogram of size 512 × 512 pixels. These spectrograms were further resized to 256 × 256 pixels
before extracting features using an array of 24 GFs and statistical parameters. However, in the case
of the CNN, for feature extraction, they were resized to 28 × 28 pixels. Next, we used the univariate
feature selection technique on the extracted features. After that, the selected features were stored in a
database where they were scaled and randomized. Then, these features were separated in the ratio of
4:1 for training and testing. Finally, ML-based algorithms were used for classification to compare the
results. The performance was measured using the well-known parameters such as accuracy, sensitivity,
and specificity. The specificity parameter, also known as true positive rate, gives the accuracy of
framework identifying an authorized user as an authorized user while the sensitivity parameter, also
known as true negative rate, gives the accuracy of detecting an unauthorized user as an unauthorized
user by each classifier. This analysis is presented in Table 8. In addition, the ROC curve in Figure 5
also shows that the false positive rate, i.e., detection of unauthorized users as authorized users, was
very low.
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Next, to measure the performance of the speaker-recognition architecture, we used parameters
such as equal error rate (EER) and detection error tradeoff curve (DETC) as shown in Table 7 and
Figure 4, respectively. These parameters are used to show proposed architecture performance
in recognized authorized users or rejecting unauthorized user. Moreover, we also compared our
architecture with pre-trained AlexNet by providing the same collected samples, as shown in Table 8.
We also found that the %EER were 1.92, 0.58, and 1.85 for SVM, RF, and DNN, respectively. The
receiver operating characteristic (ROC) curve, which plots the true acceptance rate versus the false
acceptance rate, shown in Figure 5 demonstrates that the RF algorithm performed better than SVM
and DNN for speaker recognition. %EER for the architecture with different classifiers is also shown in
Figure 4 using the DET curve. A DET curve plots the false acceptance rate versus the false rejection
rate. This curve moves towards the origin as the system performance improves. With regards to how
the performance was measured if the model was trained for A and B, it should be noted that the model
was trained on all 26 speaker samples. While evaluating performance, we used the same model that
was trained using samples of 26 speakers and passed “new” samples of 5 randomly selected speakers
to check if the model can either accept/reject the user as authorized/unauthorized correctly. In other
words, the randomly selected speaker could have been of any category, authorized or unauthorized,
and was still categorized correctly by the framework.

Table 7. Speaker recognition performances evaluation.

Classifier Equal Error Rate (%EER)

SVM 1.92
RF 0.58

DNN 1.85
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For standard data, in terms of accuracy, specificity and sensitivity, we obtained 91.66, 93.06 and
90.42 for SVM, 94.87, 97.85 and 92.23 for RF and 93.52, 94.17 and 92.93 for DNN. Similarly, for the
collected 26 samples, we obtained 98.07, 98.07 and 98.08 for SVM, 99.41, 99.41 and 99.42 for RF and
98.14, 98.14 and 98.15 for DNN in terms of accuracy, specificity, and sensitivity, respectively. These are
listed in Table 7. Finally, %EER for the proposed architecture with ML algorithms SVM, RF and DNN
are 1.92, 0.58 and 1.85, respectively, as shown in Table 8.
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Table 8. Classifier accuracy, specificity and sensitivity for collected 26 Samples compared to pre-trained
AlexNet [13].

Classifier Accuracy Specificity Sensitivity

SVM 98.07 98.07 98.08
RF 99.41 99.41 99.42

DNN 98.14 98.14 98.15
Alex net 91.53 90.56 90.54Mach. Learn. Knowl. Extr. 2019, 1 FOR PEER REVIEW  13 
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6.3. Real-time Performance of the Architecture

With an aim to study the real-time performance of the proposed architecture with the best classifier,
i.e., RF, we randomly chose five speakers out of the samples of 26 speakers from both “known” and
“unknown” classes. All these speakers were asked to speak, and then they were authenticated one by
one using the proposed framework. From these five speakers, test samples lasting for approximately
5–6 s were taken and tested against the trained model. The average processing time for the proposed
architecture, i.e., the time to authenticate after the test sample is received was found to be 0.3456 s,
on an average. To perceive any communication real-time bidirectional delays must be of less than
300 ms whereas in our case it is taking little more than that. The time taken for individual samples and
the average time of processing has been reported in Table 9.

Table 9. Processing time for test samples.

Speakers Time Taken (seconds) Average Time (seconds)

Speaker 1 0.333532

0.3456
Speaker 2 0.327435
Speaker 3 0.375225
Speaker 4 0.342547
Speaker 5 0.349558

With five speakers presented, we were trying to study the average real-time performance of the
architecture that did not change much with the complete set of 26 speakers. Using the sample subject
size gives us an accurate picture of the average of the overall set of 26 speakers. Initially, we planned
to increase the number of speakers if the time taken were not close to each other for different speakers.
However, from Table 9, we can see that those values were quite close to each other, and therefore, we
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concluded that the time taken to authenticate speakers with only five speakers was a good enough
representation of all the speakers in the dataset.

Real-time performance of the architecture enables seamless integration with the cloud-based
NLP system without compromising the performance of the NLP system. To examine the integration
capabilities of the developed speaker recognition architecture to the cloud-based NLPs, we chose
three different NLPs Amazon Alexa [56], Google Now [57], and Microsoft Cortana [58]. All of these
services use APIs that provide access to the respective NLP. The interface can be achieved by a far-field
or hands-free method of integration where a wake word is used to alert the system. In each case,
our developed application will authenticate the speech signal after the wake word. As illustrated in
the testing method of our architecture, feature extraction and selection along with a speech signal
controller would be a deployment package, which is integrated into the respective APIs. Speech signal
controller would be built on a cloud server every time a new speaker’s voice is to be added.

7. Conclusions

In this paper, we presented a novel high-speed pipelined architecture that supports real-time
speaker recognition, allowing NLP systems to accept only selected speech signals in near real-time.
Most commercially available NLP systems, even after training by a single user, are known to exhibit
high false positive rates. The proposed intelligent system attempts to solve this problem by detecting
the authorized user with high accuracy. Moreover, we exploit the advantages of GF, CNN, and
statistical parameters for feature extraction. Based on our experiments, we found the feature extraction
techniques mentioned above and RF to be optimal in speaker recognition for feature extraction and
classification, respectively. Our proposed architecture relies primarily on the feature extraction block
and classification block for achieving high accuracy. Results of rigorous testing with multiple datasets
reveal that RF performed better compared to the other two methods for speaker recognition. While
performance decreased in the order of RF-DNN-SVM, the time taken and complexity showed a
different trend of decrease in the order of DNN-SVM-RF.

Unlike other approaches, the proposed architecture establishes a mechanism to perform speaker
recognition in near real-time. Moreover, we assessed this architecture in terms of both %EER and a
DET curve in a collected database consisting of 26 different speakers, with different native languages,
and speaking the same language—English. Initially, we hypothesized that we need to train more data
points for each accent to be recognized by the model. However, we observed that the model performed
equally well regardless of the accent. We also made a comparative analysis of different algorithms
based on %EER and a DET curve that is more preferred in the case of the speaker verification system.
Finally, the results of the comparison between the proposed and AlexNet architecture show that
the proposed architecture is capable of handling and recognizing the voices of multiple individuals
without significant impact on accuracy with better performance. This work could be extended in
future to identify the voices of multiple individuals talking at the same time, i.e., overlapping voices,
possibly using different languages, in real-time (<300ms) and integrated into an NLP system.
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