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Abstract: Deep learning solutions are being increasingly used in mobile applications. Although
there are many open-source software tools for the development of deep learning solutions, there are
no guidelines in one place in a unified manner for using these tools toward real-time deployment
of these solutions on smartphones. From the variety of available deep learning tools, the most
suited ones are used in this paper to enable real-time deployment of deep learning inference
networks on smartphones. A uniform flow of implementation is devised for both Android and iOS
smartphones. The advantage of using multi-threading to achieve or improve real-time throughputs
is also showcased. A benchmarking framework consisting of accuracy, CPU/GPU consumption,
and real-time throughput is considered for validation purposes. The developed deployment approach
allows deep learning models to be turned into real-time smartphone apps with ease based on publicly
available deep learning and smartphone software tools. This approach is applied to six popular
or representative convolutional neural network models, and the validation results based on the
benchmarking metrics are reported.

Keywords: deployment of deep learning models on smartphones; real-time smartphone apps of
deep learning models; benchmarking deep learning apps on smartphones

1. Introduction

Deep learning has had a dramatic impact on advancing the field of machine learning [1]. It has
pushed the state of the art beyond what conventional approaches have achieved in various applications
such as object detection [2], object localization [3], and speech recognition [4]. The expansion in the use
of deep learning has been fueled by increases in the computational power of processors, in particular
graphics processing units (GPUs), and the availability of large datasets for training.

Deep learning involves deep neural networks (DNNs) consisting of a cascade of non-linear
processing units arranged in layers. An increasing level of data abstraction is enabled at deeper
layers. This is of particular importance in classification and regression tasks due to the fact that raw or
minimally processed data can be processed without the need to perform feature extraction as compared
to conventional approaches that normally require obtaining handcrafted features first. DNNs are able
to learn optimal features themselves for a particular task and have provided state-of-the-art accuracies
in computer vision, speech recognition, and natural language processing applications, among others.

In terms of implementation platforms, smartphones have emerged as a ubiquitous and mobile
computing device, and more than 2.5 billion people worldwide own one [5]. Apart from being
equipped with multi-core CPUs and GPUs, smartphones contain a plethora of sensors that do
not require interfacing hardware as compared to other popular platforms such as Arduino [6] and
Raspberry Pi [7]. In addition, there exist well-developed and supported application programming
interfaces (APIs) for smartphones that have been optimized for performance.
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Smartphones constitute the highest users of deep learning-based solutions spanning various
applications such as voice assistants, automatic text prediction, and augmented reality. Additionally,
they are used as research platforms to run deep learning solutions involving different applications such
as concussion detection [8], jaundice diagnosis [9], schizophrenia recognition [10], and voice activity
detection for hearing studies [11], among others. These solutions either rely on server-side processing
or perform offline simulations on the data that are previously collected using smartphones. Real-time
deployment of such deep learning solutions on smartphones has been fairly limited in the literature.
Manual coding of DNNs to run in real time on smartphones is cumbersome and time-consuming.
This paper makes the process of deployment of deep learning algorithms on smartphones easy by
providing in one place the steps needed to bridge the gap between development and deployment
based on the publicly available software tools.

There have been some works in the literature on the development of deep learning solutions
that are aimed specifically at mobile implementation [12–15]. On-device deep learning engines are
also finding their way into smartphones. For example, Apple has introduced a neural engine as
part of the A11 Bionic chip, and Huawei has introduced the Kirin 970 neural processing unit (NPU).
The smartphone industry is also working toward dedicated processors to speed up on-device deep
learning in contrast to cloud servers in order to cope with real-time implementation issues and
the need for internet connection. In addition, on-device deep learning helps to alleviate security
or privacy concerns due to data storage on servers. Considering that smartphones are equipped
with multi-core CPUs, multithreading is used here to reduce computation time toward achieving
real-time throughputs.

Furthermore, the open-source deep learning software tools have reached a maturation point in
terms of libraries for on-device deep learning deployment. However, there exists a steep learning curve
associated with the deployment of these software tools and an absence of benchmarking guidelines
for smartphones. Although previous works have addressed efficient processing techniques for the
purpose of running DNN models on smartphones, thus far no step-by-step guidelines or benchmarks
have been provided regarding the real-time deployment of DNN models on smartphones. This paper
aims at bringing such information into one place or under one umbrella, thus providing a unified
approach to easily deploy trained deep learning models as apps on Android and iOS smartphones
with a focus on their real-time operation. This work enables smartphones to be used as a portable
research platform for deep learning studies.

Toward this objective, the rest of the paper is organized as follows: Section 2 describes the most
suited deep learning libraries for smartphone deployment at the time of this writing, deployment steps
based on the smartphone operating system, the software tools used to build deep learning apps, and the
smartphone devices used to showcase a number of representative deep learning models. In Section 3,
the DNN models and the benchmarking criteria used for validation are discussed. The use of multi-core
CPUs on the smartphones to achieve or improve real-time throughputs through multi-threading is
also discussed in this section. Section 4 provides the validation results and their discussion. Finally,
the paper is concluded in Section 5.

2. Deployment of DNN Models on Smartphones

This section discusses how to deploy DNN models on smartphones using publicly and freely
available software tools. The steps discussed is aimed at turning DNN models into apps for both
Android and iOS smartphones in a unified manner.

2.1. Deep Learning Software Tools

The rise of deep learning has been accelerated by the introduction of various publicly and
freely available libraries. The main libraries that are widely used include Caffe [16] (developed by
Berkeley AI Research), TensorFlow [17] (developed by Google), PyTorch [18] (developed by Facebook),
and CNTK [19] (developed by Microsoft). These libraries support Python for the purpose of training
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and prototyping models. Even though such a wide collection of prototyping tools is available to train
and develop deep learning models, researchers often wonder where to begin. Here, three publicly
available libraries most suited for the task under consideration are selected from the available deep
learning libraries. These libraries are selected based on (i) their easy portability to mobile devices
and (ii) active support by their developers. In what follows, these libraries and their frameworks are
briefly described.

TensorFlow is a dataflow programming library. It expresses computations as stateful dataflow
graphs, enabling users to define a neural network as a graph of operations that can be executed on
input data streams. Data are represented as multidimensional arrays or “tensors,” hence the name
TensorFlow. The underlying benefit of defining a neural network as a graph is that the computations
and memory usage are highly optimized and they can be parallelized using multiple CPUs and GPUs
and implemented across a variety of hardware platforms. As TensorFlow and Android are both
developed by Google, TensorFlow models can be integrated into the Android software environment
with ease by adding the “TensorFlow for Mobile” library module as a dependency. A similar tool
named “TensorFlow Lite” is also available, but currently it remains experimental and does not support
as many operations as TensorFlow for Mobile. Furthermore, it is worth noting that the deployment
flow for TensorFlow Lite is similar to TensorFlow for Mobile.

Another widely used library is called Keras [20], which is a higher-level library written in Python
where TensorFlow or CNTK can be used as its backend. Keras makes development of models easier
and faster by providing the building blocks for common-use DNN layers, a simple coding syntax,
and tools to easily preprocess data. As Keras can use TensorFlow as its backend, the model trained
using Keras is essentially a TensorFlow model which can be extracted and used in Android apps.

CoreML [21] is a software framework developed by Apple to run machine learning models on
iOS devices. It has a Python-based tool called CoreMLTools [22] which allows one to translate existing
machine learning models into CoreML supported models. This conversion capability allows the
conversion of Keras models into CoreML models which can then be implemented as an app on iOS
devices or iPhones. A converter developed by TensorFlow (tf-coreml) [23] also allows converting
TensorFlow models into CoreML models.

The latest version of CoreMLTools at the time of this writing is 0.8, which supports Keras version
2.1.3 and TensorFlow version 1.5. These versions are utilized here for the results reported in the paper.

2.2. Deployment Steps

The steps that are needed for deployment of deep learning models on smartphones are showcased
in Figure 1. Keras can be considered to be the primary prototyping library as it can be easily converted
to CoreML models for iOS and the underlying TensorFlow backend model can be extracted from
it for Android. In case of TensorFlow models, a secondary path (marked in red in Figure 1) is also
provided by using the converter tf-coreml to convert the models into CoreML for implementation
on iOS smartphones. In case of models trained using different libraries, several publicly available
converter tools [24] are available to convert them to Keras or TensorFlow. CoreML also provides
conversion tools for models trained by the deep-learning libraries other than Keras.

Models are stored as inference only and all training related layers are removed to allow only the
feed-forward path of a network model to execute. Since layers are stored as computational graphs,
this allows their optimization for the platform they are going to run on. The flowcharts provided in
Figures 2 and 3 depict the steps needed to convert a trained Keras or TensorFlow model to a model for
deployment on Android and iOS smartphones. The flowcharts appearing in Figure 4 show the steps
needed to create an Android or iOS app from a converted model.
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Figure 2. Flowchart depicting the steps needed to convert a Keras model into a smartphone 
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Figure 4. Flowcharts depicting the steps needed for creating (a) an Android app and (b) an iOS app
from a converted model.

2.2.1. Model Generation—iOS

To create a CoreML model, a Keras model needs to be trained first or a pre-trained model needs
to be considered first. Keras models are usually saved as an .h5 file that denotes the Hierarchical Data
Format (HDF). This allows using the same trained model across different backends. This file format
stores the architecture of the graph and the weights of the graph tensors as numerical arrays.

After the model is loaded into Python, the CoreMLTools python library can be used to convert the
Keras model to a CoreML model. The converter provides the option to specify the input as an image or
as a multi-dimensional array. In case of image inputs, the converter provides the option to define the
pre-processing parameters used for that model. As the pre-processing varies across different models,
this option is highly useful since it allows a model to be used on raw images and easy switching
without explicitly implementing pre-processing for each different model.

The converted CoreML model is stored as an .mlmodel file. This file encapsulates an MLModel
class that can be directly instantiated, allowing the model to be used as a plug-and-play model.
The CoreML API handles all the underlying DNN computation removing the overhead required for
coding a neural network from scratch. As a result, the user can focus on deploying and testing the
model rather than implementing the neural network.

2.2.2. Model Generation—Android

TensorFlow for Mobile provides a Gradle build dependency [25]. This allows using predefined
functions for inference via just a trained model. A TensorFlow model gets stored as a .pb file that
denotes the Protocol Buffer file format. Similar to HDF, this format also stores the architecture of
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a model and its trained weights. The TensorFlow for Mobile inference interface creates a model based
on a .pb file which can then be executed on Android smartphones using the predefined functions
included in the dependency.

To extract a TensorFlow model from a Keras model, first the variables in the model need to be
converted to constants. Variable tensors are only required for training as they are updated based on the
back-propagation input. For inference only models, these tensors need to be constant. This can be done
by the graph utility sub-module (graph_util) in TensorFlow. To convert a graph, first the underlying
TensorFlow session created by Keras needs to be accessed. This can be achieved by using the backend
module in Keras. The session graph can then be input to the graph_util constant converter function
to obtain the graph with constant weights. This constant graph can be saved as a .pb file using the
graph input/output sub-module (graph_io), which can be imported into an Android app using the
TensorFlow inference interface. This interface creates a session similar to the TensorFlow session in
Python and handles all the required DNN computations. The input image or data can then be fed into
the session to extract the output of the model from the session. Compared with CoreML, one needs to
explicitly pre-process the image in this method. However, an advantage that TensorFlow for Mobile
has is that the output of any of the intermediate layers can be extracted, whereas in CoreML only the
output of the model can be extracted. Unlike CoreML, one needs to manually set up the model by
explicitly feeding the .pb file, the input and output node names, and the size of the input.

Treating TensorFlow as the primary framework for DNN development, the converter tf-coreml
can be used to convert a .pb model into an .mlmodel file. This converter tool provides a reduced set of
computations and this set can be seen on the GitHub page of the converter for the purpose of altering
the model if any unsupported computations are seen.

2.3. Smartphone Software Tools

To demonstrate on-device deep learning inference, both Android and iOS smartphones are
considered in this work to form a unified approach. These two operating systems have a combined
market share of 96% of smartphones worldwide [26]. Additionally, the developer tools for both of
these smartphones operating systems are available online for free and are well maintained by their
respective organizations.

To develop Android apps, the Android Studio IDE [27] is used which is available for all operating
systems. The language of choice for Android development is Java, which is used here to develop
apps to run DNN models on Android smartphones. Android apps can also be packaged as executable
Android Application Package (APK) files for deployment on any Android smartphone.

iOS apps can be developed and deployed on an iOS device or iPhone only via a macOS machine
running the Xcode IDE [28]. iOS apps are developed using the Swift or Objective-C programming
language. To deploy iOS apps on an iPhone, one needs to be registered as an Apple Developer.

2.4. Smartphone Processors

For running DNN models, two modern smartphones of Pixel 2 and iPhone 8 are used in this work
as sample Android and iOS smartphones, respectively. For iOS, iPhone 8 is considered as it allows the
use of GPUs during inference for DNN models. For Android, Pixel 2 is considered as it runs the stock
Android operating system allowing the guidelines to be applied to any smartphone running Android.

Pixel 2 possesses a Qualcomm Snapdragon 835 64-bit ARM-based octa-core system on a chip (SoC).
Its CPU clock speed varies between 1.9 and 2.35 GHz depending on the core being used. The internal
memory of this smartphone is 4 GB LPDDR4x RAM. It also possesses an Adreno 540 GPU. Note that
TensorFlow for Mobile does not utilize this GPU. The Pixel 2 smartphone used here runs the latest
Android version 8.1.0 at the time of this writing.

On the iOS side, iPhone 8 incorporates the Apple A11 Bionic 64-bit ARM-based hexa-core SoC
with a maximum CPU clock rate of 2.39 GHz. The internal memory of iPhone 8 is 2 GB of LPDDR4x
RAM. The A11 chip also contains a dedicated neural engine which can be used to run machine learning
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models more efficiently than using plain GPU. The neural engine is capable of performing up to
6000 billion operations per second. The iPhone 8 smartphone used here runs the latest iOS version
11.4 at the time of this writing.

3. DNN Smartphone Apps and Benchmarking Metrics

3.1. DNN Models

In this section, the steps involved in turning DNN models to smartphone apps are applied to
six popular convolutional neural networks (CNNs) and a benchmarking framework of these models
is discussed. CNNs are a class of DNNs where the primary computation involves convolution.
The convolution layers (CONV) in CNNs are able to provide a higher level of abstraction by creating
feature extraction kernels similar to those used in image processing. By stacking convolution layers,
a CNN model is able to extract unique information related to a particular image or matrix input.
CNN models currently provide state-of-the-art solutions in many image processing, computer vision,
speech and audio processing applications. In this paper, six popular or representative CNNs are
benchmarked based on the Modified National Institute of Standards and Technology database
(MNIST) [29] dataset, which is considered to be a gateway dataset for exploring deep learning,
and the widely used ImageNet Large Scale Visual Recognition Competition (ILSVRC) [30] dataset.
These networks are briefly described below for the sake of completeness.

LeNet was introduced in [31] for digit classification trained on the MNIST dataset. The summary
of the model is provided in Table 1. It is designed to classify grayscale images of dimensions 28 × 28
into single digits using 2 CONV layers followed by 3 fully connected (FC) layers. To reduce the
dimensions of the intermediate feature maps, 2 × 2 average pooling is utilized. The activation function
used in LeNet is sigmoid.

ResNet [32] or Residual Network is a CNN model that includes so-called “skip” or “shortcut”
connections which allow bypassing the weight layers using identity mappings. The output of the
weight layers and the identity mapping are then added together. The skip connections of ResNet are
critical in preventing the gradient from vanishing in deep layers, as the identity mapping prevents
the backpropagation error from shrinking. The weight layers in ResNet usually consist of two 3 × 3
CONV layers. To reduce the number of parameters in each weight layer, ResNet also uses so-called
“bottleneck” layers by using 1 × 1 filters. The bottleneck layers replace the two layers with three layers
of 1 × 1, 3 × 3, and 1 × 1 filters. The 1 × 1 filters are used to decrease and then increase the number of
weights. ResNet-152 was selected as the winner of the ILSVRC 2015 challenge, surpassing human level
accuracy with a top-5 accuracy of 3.57% on the test set provided. Here, the ResNet-50 model is used;
it has 1% less accuracy than ResNet-152, but 2.5 times fewer parameters (approximately 25.6 million).
It consists of a CONV layer followed by 16 bottleneck layers and an FC layer.
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Table 1. Summary of the LeNet model trained on the MNIST dataset.

Layer Information LeNet

Input-Size 28 × 28 × 1

Convolution (CONV) Layer
# of CONV Layers 2

Depth 2
Kernel Size 5

Strides 1
# of Channels 1, 16

# of Filters 16, 32

Fully Connected (FC) Layer
# of FC Layers 3
# of Channels 128–3200

# of Filters 10–256

Parameters 866 K
Floating-Point Operations (FLOPs) 28 M

Model Storage Memory 3.5 MB
Accuracy 99.43

InceptionV3 [33] is the extension of GoogLeNet [34] that was selected as the winner of the ILSVRC
2014 challenge. GoogLeNet is based on the inception module which consists of four parallel CONV
layers of 1 × 1 CONV, 3 × 3 and 1 × 1 CONV, 5 × 5 and 1 × 1 CONV, and 1 × 1 CONV followed by
3 × 3 max-pooling. GoogLeNet achieved a top-5 error of 6.65% on the ILSVRC challenge test set.
InceptionV3 includes the following three new inception modules: (i) In the first module, the 5 × 5
CONV is replaced with two 3 × 3 CONV to reduce the number of parameters in the module. (ii) In
the second module, the n × n CONV layer is replaced with an n × 1 CONV followed by a 1 × n.
This reduces the number of weights and thus the computational cost. For the results reported in the
next section, n is considered to be 7. (iii) The third module separates the initial 3 × 3 CONV in the first
inception module into two parallel 3 × 1 and 1 × 3 CONV layers. This module is used to promote high
dimensional sparse representations and is placed last after the other two modules.

InceptionV3 consists of 6 CONV layers followed by three of the first modified inception modules,
five of the second modified inception modules, two of the third modified inception modules, and an FC
layer. It also contains an auxiliary classifier [34], which is an inception module on the output of
the second modified inception module with a batch-normalized [35] FC layer to increase accuracy.
InceptionV3 achieves a top-5 accuracy similar to ResNet-152 while having only 23.8 million parameters
(similar to ResNet-50).

SqueezeNet [36] is a CNN model designed for limited-memory systems. It provides the accuracy
of AlexNet [2]. This model was selected as the winner of the ILSVRC challenge 2012 with a top-5 error
of 9.8% with 50 times fewer parameters. SqueezeNet is built using “fire” modules that consist of two
stacked layers: a squeeze layer and an expand layer. The squeeze layer is composed exclusively of
1 × 1 filters, which reduce the number of channels of the input to the module. The expand layer is
a mix of 1 × 1 and 3 × 3 filters, the outputs of which are concatenated after activation and fed into
the next module. The sparing use of 1 × 1 reduces the number of parameters of the CNN model
considerably, while still maintaining the baseline accuracy. SqueezeNet has been compressed even
further using deep compression [15], with the reduction in size of SqueezeNet being 510 times that
of AlexNet with no loss in accuracy. The downside to this is that the compressed model cannot be
used with the existing deep learning software tools. SqueezeNet consists of a CONV layer followed by
eight so-called fire modules and a CONV layer in the end. FC layers are not used as they have a much
higher number of parameters as compared to CONV layers.

MobileNet [14] is a CNN model that has been specifically designed for mobile and embedded
vision applications. MobileNet modules reduce computations and memory by dividing a normal
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CONV layer into two parts: depthwise convolution and pointwise convolution. These two parts
together are called depthwise separable convolution. In depthwise convolution, the channel width of
the filter is kept as 1. The pointwise convolution uses 1 × 1 filters to expand the channels of the output
of the depthwise convolution. MobileNets can be modified by using width and resolution multipliers,
called model shrinking hyperparameters. The width multiplier is used to reduce the channels of
the network uniformly at each layer, thereby reducing the overall number of parameters of the layer.
The resolution multiplier is implicitly set by changing the input resolution of the model, which reduces
the computational cost of the model. Here, MobileNet is considered with a width multiplier of 1.0
and an input resolution of 224 × 224. It consists of a CONV layer followed by 13 depthwise separable
convolution layers and an FC layer.

DenseNet [37], a densely connected network, is a CNN that extends the residual learning
framework introduced by ResNet. In a DenseNet block, every layer is connected to all the subsequent
layers of equal feature map dimensions. Instead of additions, as done in ResNet, the input is
concatenated. The CONV architecture used in DenseNet is similar to the bottleneck architecture
in ResNet, where a 1 × 1 filter is used to reduce the number of the channels of the input before
feeding it into the 3 × 3 CONV layer. Between every DenseNet block, a compression/transition
layer is used to reduce the number of feature maps into the next DenseNet block. DenseNet requires
considerably fewer number of parameters than ResNet to achieve similar accuracy. Here, DenseNet-121
is used, which gives 1% less accuracy than ResNet50 with three times fewer parameters. It consists of
a CONV layer followed by four DenseNet Blocks with three transition layers between them followed
by an FC layer.

Table 2 shows a summary of the CNN models trained on the ILSVRC challenge dataset.
A comparison of the models based on their top-5 accuracy, model-size, and floating-point operations
(FLOPs) is displayed in Figure 5. The depth and total number of CONV layers for SqueezeNet and
Inception are different, as they consist of parallel CONV layers in their modules. The number of
FLOPs represents how computationally expensive a CNN model is. The FLOPs of the model are
computed using the TensorFlow built-in profiler. The top-5 accuracy is computed using the pre-trained
models in Keras with the ILSVRC-2012 validation set, which consists of 50,000 images. The accuracy
reported here is taken based on a single crop of the images. Accuracies reported in the literature
usually use multiple-crops. However, for real-time operation, a single crop accuracy is regarded as
more realistic. One can see that, even though InceptionV3 has a fewer parameters compared to ResNet,
the number of FLOPs for the network is higher due to a greater number of CONV layers. All of
these models are available pre-trained via Keras and can be extended to various applications using
transfer-learning [38].

Table 2. Summary of popular convolutional neural networks (CNNs) trained on the ImageNet Large
Scale Visual Recognition Competition (ILSVRC) challenge dataset.

Layer Information ResNet50 InceptionV3 SqueezeNet MobileNet DenseNet

Input-Size 224 × 224 × 3 299 × 299 × 3 227 × 227 × 3 224 × 224 × 3 224 × 224 × 3

CONV Layer
# of CONV Layers 49 95 26 27 120

Depth 49 46 18 27 120
Kernel Size 1,3,7 1,3,5,7 1,3 1,3 1,3,7

Strides 1,2 1,2 1,2 1,2 1,2
# of Channels 3–2048 3–2048 3–1000 3–1024 3–1024

# of Filters 64–2048 32–2048 16–1000 32–1024 32–1024

FC Layer
# of FC Layers 1 1 0 1 1
# of Channels 2048 2048 0 1024 1024

# of Filters 1000 1000 0 1000 1000

Parameters 25.6 M 23.8 M 1.2 M 4.3 M 8 M
FLOPs 7.7 B 11.5 B 714 M 1.1 B 5.7 B

Model Storage Memory 102 MB 96 MB 5 MB 17 MB 33 MB
Top-5 Accuracy (Single Crop) 92.1% 93.8% 78.4% 86.2% 91.8%
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3.2. Multithreading

DNNs are computationally very expensive. For real-time operation on smartphones, executing
the model on the main thread causes delay in the capturing of frames and thus reduces the app
throughput. This would also lead to a reduced number of FPS (frames per second). For applications
where a DNN model can operate at a slower rate than the frame rate of the app, multithreading needs
to be adopted. Noting that multi-core processors are used in modern smartphones, a DNN model can
be run on a secondary thread to create the needed computational bandwidth on the main thread to
run the app at a desired FPS. This technique was used previously in [11] to allow a DNN model to
run on a parallel thread by removing the computation burden from the main audio thread and thus
preventing any audio frames from being skipped.

3.3. Benchmarking Metrics

3.3.1. Accuracy

The ILSVRC-2012 validation dataset is used to validate the CNN models. This validation set
consists of 50,000 images of 1000 object categories. The DNN models are validated on the PC and
smartphone platforms using the top-5 accuracy metric on a single crop. It should be noted that the
accuracy reported in the literature involves multiple crops with an ensemble of classifiers that improves
the accuracy. This is not possible for real-time apps running on smartphones. In other words, a single
crop is more appropriate to consider when operating in real time. For LeNet, the MNIST test set is
used for validation. This set consists of 10,000 images of handwritten digits.

3.3.2. CPU/GPU Consumption

For smartphone apps, CPU/GPU consumption is critical as this has a direct impact on battery
utilization. A higher consumption metric has a higher impact on battery utilization. As TensorFlow
for Mobile currently only supports running on the CPU, the CPU consumption of the Android app is
measured here. The CoreML API utilizes the neural engine of iPhone 8, which in turn utilizes the GPU
for the parallel computations of a CNN model. The GPU consumption of the iOS app is measured
here as this is the way the majority of the computation is handled.
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As far as LeNet is concerned, it is benchmarked as a non real-time app, or the CPU/GPU
consumption is not monitored like other real-time models.

3.3.3. Real-Time Throughput

To evaluate the throughput of an app, the number of consecutive frames is displayed and
measured per second on the screen (FPS). This is necessary for video-based apps that demand smooth
visual perception of video data with an FPS of 24 or more.

The number of frames processed per second is also measured. This metric is highly dependent on
the number of FLOPs in a model, as a higher number of FLOPs is directly proportional to a reduced
number of frames processed per second and vice-versa. This metric is important to decipher which
model is efficient to use. A model with a higher number of frames processed per second would be
required for applications where throughput is critical. As can be seen in Figure 5, models with high
FLOPs have a higher accuracy. Therefore, in applications where accuracy is critical, the number of
frames processed per second can be reduced. When the model is run at frame rate, the FPS and frames
processed per second are the same. When using multithreading, the number of frames processed per
second is different than the FPS.

As LeNet is generally not used in real-time, the time taken per image to be classified is considered
here as its throughput metric.

4. Results and Discussion

Initially, LeNet was first implemented as Android and iOS apps using the developed approach.
The accuracy of the validation set on the smartphone platforms was found to be 99.43%, the same
as the PC platform, with a processing time of 5.66 ms and 5.20 ms per image on Pixel 2 and iPhone
8, respectively.

The ILSVRC models were then implemented as Android and iOS apps, and the accuracy for
the validation set consisting of 50,000 images of the ImageNet challenge dataset was examined.
As illustrated in Figure 6, the accuracy for the implemented apps was found to be practically the same,
or within a 0.5% difference. This slight difference is due to the fact that the precision of floating-point
numbers is handled differently in ARM and Intel-based processors.
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Figure 6. Single crop top-5 accuracy of the ILSVRC challenge validation dataset on PC and
smartphone platforms.

Next, to examine the CPU/GPU consumption and throughput, the models were run in real time
on two modern smartphones, one Android (Pixel 2) and one iOS (iPhone 8). For Android, the CPU
consumption was computed using the Android Profiler [39] of the Android Studio IDE and the GPU
consumption for iOS was computed using the Instruments [40] performance analysis tool in the Xcode
IDE. The FPS on Android was measured using the OpenCV camera API [41] and on iOS was measured
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using the Instruments performance analysis tool. The frames processed per second were measured for
the multithreading approach by periodically computing it in the apps.

Figure 7 provides the CPU/GPU consumption results that were obtained by running the apps on
the Pixel 2 (Android) and on the iPhone 8 (iOS) smartphones. From this figure, one can see that the best
processing rate for Android was achieved by SqueezeNet, which ran at 11 FPS. The CPU consumption
of the Android apps was seen to be proportional to the number of FLOPs used by the apps. For iOS,
only SqueezeNet was able to achieve greater than 24 FPS. As can be seen from this figure, the iOS
apps benefited from access to the GPU leading to higher throughputs than their Android counterparts.
The GPU consumption was seen to be proportional to the number of FLOPs used by the apps. It should
be noted that a DNN app with a higher number of FLOPs drained the battery faster due to higher
processor consumption.
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Figure 7. (a) Average FPS (frames per second) values of the DNN Android apps running on the
Pixel 2 smartphone are shown on the primary y-axis (left) and their average CPU consumption on
the secondary y-axis (right). (b) Average FPS values of the DNN iOS apps running on the iPhone
8 smartphone are shown on the primary y-axis (left) and their average GPU consumption on the
secondary y-axis (right). Note the number of frames processed per second is the same as FPS.

When deploying multithreading, as illustrated in Figure 8, the FPS remained constant at 30 FPS
for all the Android apps on the Pixel 2 smartphone, but the number of frames processed per second
was different for the apps. Multi-threading allowed running the GUI for a natural visual perception of
30 FPS while running the model in parallel at a lower rate. For the iOS versions of the apps running on
the iPhone 8 smartphone, it can be seen that higher throughputs in both FPS and frames processed
per second were achieved due to the use of the GPU. Obviously, the CPU and GPU consumptions
increased when using multi-threading due to the use of concurrency while obtaining the benefit of
being able to see video streams as they occurred.

A comparison of the apps implementing the DNN models indicates that SqueezeNet provides
high energy efficiency as well as high throughputs on iPhone 8 but is not as accurate as the other
models. It constitutes the model of choice for high throughput applications. MobileNets provide
high accuracy in a multi-threaded setting at the expense of a lower energy efficiency and throughput.
For applications where accuracy is the key requirement, one can use InceptionV3 in a multi-threaded
setting as the model of choice. ResNet50 and DenseNet121 are also good choices, as they provide
relatively higher energy efficiency and throughput at the expense of 1–2% loss in accuracy.

A video clip demo showing the conversion of an example model and its deployment on
an Android and an iOS smartphone can be viewed at www.utdallas.edu/~kehtar/DNN-apps-demo.
mp4.

www.utdallas.edu/~kehtar/DNN-apps-demo.mp4
www.utdallas.edu/~kehtar/DNN-apps-demo.mp4
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Figure 8. (a) Average FPS values and frames processed per second of the DNN Android apps running
on the Pixel 2 smartphone are shown on the primary y-axis (left) and their average CPU consumption
on the secondary y-axis when using multithreading. (b) Average FPS values and frames processed per
second of the DNN iOS apps running on the iPhone 8 smartphone are shown on the primary y-axis
(left) and their average CPU consumption on the secondary y-axis (right) when using multithreading.
Note the number of frames processed per second is different than FPS.

5. Conclusions and Future Extensions

This paper presents in one place the steps needed in order to deploy deep learning inference
networks on Android and iOS smartphones. It has been shown how to use the publicly available
deep learning software tools to turn deep learning models into smartphone apps. In addition, it has
been discussed how to enable real-time operation of such apps on smartphones. A benchmarking
framework involving accuracy, CPU/GPU consumption, and real-time throughput has been devised
to examine these models. The steps discussed have been validated using the benchmarking framework
by considering six popular convolutional neural network models that are extensively used in deep
learning applications. The benchmarking results have shown that the deep learning models are
implemented without any significant loss in accuracy. It has also been shown that the use of
multi-threading leads to achieving real-time throughputs. In summary, this paper has provided
the guidelines and benchmarks for deploying deep learning inference models on smartphones as
real-time apps.

It is worth mentioning here that the step-by-step guidelines provided in this paper can be
extended through ONNX (Open Neural Network Exchange), which is a community project started
by Facebook and Microsoft to provide a unified computational dataflow graph for deep neural
networks. Such an extension would allow a model trained in ONNX-supported frameworks to be
used interchangeably. Currently, converters for CoreML and TensorFlow for other frameworks such as
Caffe2, CNTK, and PyTorch are being developed by ONNX, which would lead to seamless integration
of models from different frameworks into the deployment approach presented in this paper.

Another extension involves the use of neural network compression methods. These methods
involve reducing the size of models and thus the computation time by converting the weights of
a model from floating-point numbers to integers with lower bits (quantization), by performing matrix
decomposition, by pruning connections, etc. Once these methods are fully developed, supported
by the smartphone hardware, and made available in the public domain, they can be incorporated
seamlessly into the deployment approach presented in this paper.
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