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Abstract: Recently, we have witnessed an explosive growth in both the quantity and dimension
of data generated, which aggravates the high dimensionality challenge in tasks such as predictive
modeling and decision support. Up to now, a large amount of unsupervised dimension reduction
methods have been proposed and studied. However, there is no specific review focusing on the
supervised dimension reduction problem. Most studies performed classification or regression after
unsupervised dimension reduction methods. However, we recognize the following advantages if
learning the low-dimensional representation and the classification/regression model simultaneously:
high accuracy and effective representation. Considering classification or regression as being the main
goal of dimension reduction, the purpose of this paper is to summarize and organize the current
developments in the field into three main classes: PCA-based, Non-negative Matrix Factorization
(NMF)-based, and manifold-based supervised dimension reduction methods, as well as provide
elaborated discussions on their advantages and disadvantages. Moreover, we outline a dozen open
problems that can be further explored to advance the development of this topic.

Keywords: supervised learning; dimension reduction; representation learning; principal component
analysis; nonnegative matrix factorization; manifold learning

1. Introduction

Currently, high-dimensional data are very common in the real world. For example, with the
advance of the next generation sequencing technique, millions of SNPs (Single Nucleotide
Polymorphisms) can be obtained in the Human Genome Project (HGP). Another example is digital
images: a 1024 × 1024 image amounts to a 1,048,576-dimensional vector when concatenating rows or
columns. In fact, high dimensionality frequently appears in time series data, medical data, and sensor
data. Although the data dimension is high, often, only a small amount of key factors are important
for a particular modeling task. For instance, often, up to a few hundred SNPs are implicated in a
certain disease phenotype, yet the majority of the millions of other SNPs have little association with
that disease [1–3]. How to identify the important variables or features and help further analysis is a
fundamental problem in machine learning and many other application fields. Dimension reduction
is the main topic related to this problem, and it refers to the transformation of high-dimensional
data to a low-dimensional representation. Feature selection and feature extraction are two popular
techniques to implement dimension reduction. Feature selection aims to select an effective subset
of the existing variables [4,5], while feature extraction learns a low-dimensional combination of the
existing variables [6]. Feature selection is very important in some applications such as identifying a
few disease-associated SNPs across the genome. The Least Absolute Shrinkage and Selection Operator
(LASSO) is a typical example of a feature selection technique. Compared with feature selection, feature
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extraction has attracted more attention in the past several decades, and numerous branches have
seen extensive development, including Principal Component Analysis (PCA), Linear Discriminant
Analysis (LDA), Non-negative Matrix Factorization (NMF), the Laplacian Eigenmap (LE), Locally
Linear Embedding (LLE), etc.

Most of the general dimension reduction methods belong to the unsupervised learning category
because no label information is used. The other two traditional machine learning categories are
supervised learning and semi-supervised learning, which use all or a part of the label information.
In most real applications, dimension reduction is just an intermediate step toward the final goals,
like classification or regression. Separating the dimension reduction and model learning may not be
optimal for classification or regression. For example, in the task of document classification, feature
selection or feature extraction methods are used first to get a low-dimensional text representation,
and then, a classifier is trained to make a prediction [7,8]. Lacking supervision, some important words
may be filtered before training the classifier, which affects the final performance [9]. To tackle this
problem, supervised dimension reduction methods have emerged and attracted growing attention.

Based on the underlying techniques adopted, we categorize the supervised dimension reduction
methods into three classes: PCA-based, NMF-based, and manifold-based dimension reduction
methods. Among them, most of PCA-based and NMF-based methods are linear methods, while
most of manifold-based methods are non-linear methods. By analyzing the means of exploiting
the label information, we find that there are two main ways: LDA and directly integrating the loss
function for classification or regression. LDA minimizes the distance within class and maximizes
the distance between classes. To integrate the loss function directly for classification or regression,
the commonly-used loss functions (e.g., L2 loss, L1 loss, and hinge loss) are mainly adopted in logistic
regression, Support Vector Machine (SVM), linear regression, polynomial regression, etc. We will
elaborate on them in the subsequent sections.

In the past few decades, dimension reduction had been extensively explored, and several
reviews [10–17] on dimension reduction already exist. However, different from those that mainly
reviewed existing unsupervised dimension reduction methods, our review focuses on the supervised
dimension reduction. To the best of our knowledge, this is the first review to target this direction.
We provide a taxonomy to systematically categorize the methods and list important open problems
to guide the further development of this topic. Due to the greater popularity of feature extraction
compared with feature selection, in our paper, we mainly focus on feature extraction for supervised
learning. With regard to feature selection for supervised learning, we refer the reader to [18].

In the rest of this paper, we provide a formal definition and the taxonomy of supervised dimension
reduction in Section 2. In Section 3, we describe supervised dimension reduction methods and their
three classes in more detail. Section 4 reviews the real-world applications in which supervised
dimension reduction methods are used. In Section 5, several promising future directions that need
further exploration are unfolded. Finally, we conclude in Section 6.

2. Definition and Taxonomy

Given the data matrix XN×D and label vector Y N , where N indicates the number of data points
and D indicates the dimension of the data, general dimension reduction seeks for a representation
UN×d where d << D, to keep as much information as possible. It is worth noting that different general
dimension reduction methods retain the information under different assumptions. For example,
PCA tries to keep the information by maximizing the variance, while LE aims to keep the manifold
information. For supervised dimension reduction, the final result is still the low-dimensional
representation UN×d, but this representation will be guided to predict the label Y N by using the
label information during the dimension reduction process. Using the label information Y N is the main
difference between supervised dimension reduction and unsupervised dimension reduction methods.

To obtain a whole picture of the existing supervised dimension reduction methods, we provide
Figure 1 to show the taxonomy of supervised and semi-supervised dimension reduction techniques.
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For simplicity, afterwards, we will just use supervised dimension reduction to include supervised and
semi-supervised dimension reduction. We categorize the existing supervised dimension reduction
methods into three classes: PCA-based, NMF-based, and manifold-based methods. For NMF-based
supervised dimension reduction methods, we further divide them into two subclasses based on the
way of using label information.

Figure 1. The taxonomy of supervised dimension reduction methods.

3. Supervised Dimension Reduction

3.1. PCA-Based Supervised Dimension Reduction

PCA can be considered as the most popular dimension reduction technique. It tries to learn
the orthogonal projection of the original data onto a lower dimensional linear space, known as the
principal subspace, such that the variance of the projected data is maximized [19].

To help understanding, consider the projection to a one-dimensional space (d = 1).
For convenience, the projection vector is defined as u1 with the constraint uT

1 u1 = 1. The mean
of the projected data is uT

1 x̄, where the sample mean is defined by:

x̄ =
1
N

N

∑
i=1

xi. (1)

The variance of the projected data is given by 1
N ∑N

i=1(u
T
1 xi − uT

1 x̄)2 = uT
1 Su1, where S is the data

covariance matrix defined by:

S =
1
N

N

∑
i=1

(xi − x̄)(xi − x̄)T = Cov(X). (2)

Now, PCA can be formulated as an optimization problem as follows:{
max

u1
uT

1 Su1

uT
1 u1 = 1.

(3)

By introducing Lagrange multiplier λ1 and setting the derivative of the Lagrange function with
respect to u1 equal to zero, we obtain:

Su1 = λ1u1, (4)

which shows that u1 is the eigenvector of S. Left multiply the above equation by u1
T , and use the

constraint uT
1 u1 = 1; the variance becomes:

uT
1 Su1 = λ1. (5)
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Therefore, when u1 is set to the eigenvector corresponding to the largest eigenvalue, the variance
of the data will be maximized, and this eigenvector is known as the first principal component.
The subsequent principal components will be obtained by choosing a new direction that maximizes
the projected variance among all possible directions orthogonal to those already considered. If d
dimensional projection space is considered, the d eigenvectors u1, · · · , ud of the data covariance
matrix S corresponding to the d largest eigenvalues λ1, · · · , λd are the projection matrices we seek.
Let U = [u1, · · · , ud]; XU will be the low-dimensional representation. Note that in PCA-related
methods, U represents the projection matrix and is not the low-dimensional representation.

One heuristic to perform supervised PCA is to first select a subset of the original features based
on their correlation with the label information and then apply the conventional PCA to the subset
of the features to conduct dimension reduction [20]. In [21], an independence criterion named the
Hilbert–Schmidt independence criterion [22] in Reproducing Kernel Hilbert Space (RKHS) is used to
measure the dependence between the two variables X and Y by computing the Hilbert–Schmidt norm
of the cross-covariance operator associated with their RKHSs.

Define two separable RKHSs F and G containing all continuous, bounded, and real-valued
functions of x from X to R and y from Y to R, respectively. Then, the cross-covariance between
elements of F and G is Cov( f (x), g(y)) = Ex,y[ f (x)g(y)]− Ex[ f (x)]Ey[g(y)]. There is a unique linear
operator Cx,y : G → F mapping elements of G to the elements of F such that < f , Cx,yg >=

Cov( f (x), g(y)) ∀ f ∈ F , ∀g ∈ G. According to [23], this operator can be defined as Cx,y =

Ex,y[(φ(x)− Ex[φ(x)])⊗ (ψ(y)− Ey[ψ(y)])], where × indicates the tensor product and φ and ψ are
the associated feature maps of F and G, respectively.

Now, the Hilbert–Schmidt (HS) norm of this operator C : G → F is defined as ‖C‖2
HS = ∑i,j <

Cwi, hj >
2
F where wi and hj are orthogonal bases of F and G, respectively. Assume PX ,Y is the joint

distribution of variables X and Y . HSIC, the square of the HS norm of the cross-covariance operator,
can be expressed in terms of kernel functions as:

HSIC(PX ,Y ) = Ex,x′ ,y,y′ [k(x, x′)l(y, y′)] + Ex,x′ [k(x, x′)]Ey,y′ [l(y, y′)]− 2Ex,y[E′x[k(x, x′)]E′y[l(y, y′)]], (6)

where k and l are the associated kernel functions of F and G, respectively. Ex,x′ ,y,y′ indicates the
expectation over independent pairs of (x, y) and (x′, y′) drawn from PX ,Y . In real applications, we will
use an empirical estimate of HSIC. Suppose data Z = (x1, y1), · · · , (xN , yN) ⊂ X ×Y are drawn
independently from PX ,Y . The empirical estimate of HSIC is given by:

HSIC(Z ,F ,G) = (N − 1)2tr(KHLH), (7)

where H, K, L ∈ Rn×n, Kij = k(xi, xj), Lij = l(yi, yj) and H = I − N−1eeT is the centering matrix.
After introducing HSIC, we will introduce the supervised PCA method using HSIC. The problem

is to seek for the subspace UTXT such that the dependence between the projected data UTXT and the
label matrix Y is maximized. It can be formulated as:{

max
U

tr(KHLH) = tr(XUUTXT HLH) = tr(UTXT HLHXU)

s.t. UTU = I.
(8)

Obviously, this optimization problem has a closed-form solution. The eigenvectors u1, · · · , ud
corresponding to the d largest eigenvalues λ1, · · · , λd of the symmetric matrix XT HLHX form the
optimal solution U = [u1, · · · , ud]. It is noted that when L = I, supervised PCA [21] degenerates to
the traditional PCA.

Bin et al. [24] compared the supervised PCA with four traditional regression methods and
illustrated the superiority of supervised PCA. Roberts and Martin [25] applied supervised PCA
proposed in [20] to assess multiple pollutant effects. Yu et al. [26] proposed a supervised probabilistic
PCA that possesses good interpretability and can handle missing values.
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3.2. NMF-Based Supervised Dimension Reduction

NMF [27] aims to factorize the data matrix X into two nonnegative matrices: one is the
representation (coefficient) matrix UN×d and the other one is the basis matrix V d×D. The general NMF
is formulated as: {

min
U,V

X = UV

U ≥ 0 V ≥ 0.
(9)

NMF can be considered as approximating the true data matrix X with data matrix Z, which
exactly equals UV . Two main loss functions are adopted to measure the divergence between X
and Z; one is the Frobenius loss function, and the other one is the generalized Kullback–Leibler
divergence (I-divergence [28]) function. Corresponding to these two loss functions, two NMF versions
are formulated as: 

min
U,V
‖X − Z‖2

F

Z = UV
U ≥ 0 V ≥ 0,

(10)

and: 
min
U,V

D(X||Z)

Z = UV
U ≥ 0 V ≥ 0,

(11)

where D(X||Z) = ∑ij

(
Xijlog

Xij
Zij

+ Xij − Zij

)
.

In [27], the authors approximated the data matrix X that concatenates the pixel vectors from
human face images. Each row of basis matrix V d×D can be considered as a basis image, which
represents part of the human image, while each row of representation matrix UN×d is the coefficient we
can use to reconstruct the original human face images. Normally, d << D indicates that representation
matrix UN×d is the desirable low-dimensional representation. To deal with outliers, Kong et al. [29]

provided a robust NMF by enforcing the `2,1 norm ‖X −UV‖2,1 = ∑N
i=1

√
∑D

j=1(X −UV)2
j,i, which is

not squared, and thus, the large errors due to outliers do not dominate the objective function. There are
many algorithms to solve this problem, like the classical multiplicative updates [30], projected
gradient descent [31], coordinate descent [32], and the Alternating Direction Method of Multipliers
(ADMM) [33].

Based on the above NMF, two groups of supervised NMF methods are proposed according to the
means of using the label information. The first group introduced the loss function involving the label
information into the objective function, while the second group borrowed the idea of LDA to improve
the prediction ability of the obtained low-dimensional representation. We call them direct supervised
NMF and discriminative NMF, respectively.

3.2.1. Direct Supervised NMF

In supervised learning like classification and regression, the label information is exploited in
loss functions. Common loss functions for regression include quadratic loss, mean absolute error,
and Huber loss, while common loss functions for classification include logistic loss, hinge loss,
and KL divergence.

Lee et al. [34] integrated the quadratic loss into general NMF to form a semi-supervised NMF as:{
min
U,V
‖W � (X −UV)‖2 + α ‖W � (Y −US)‖2

U ≥ 0 V ≥ 0,
(12)
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where α indicates the trade-off parameter. Assuming the number of classes is C, Y ∈ RN×C denotes
the label matrix. W is the indicator matrix that indicates whether Yij is observed, i.e.,

Wij =

{
1 Yij is observed
0 Yij is missing.

(13)

Based on [34], ref. [35] enforced an additional regularization to retain the difference of data points
between different classes and formed their supervised NMF as:{

min
U,V
‖X −UV‖2 + α ‖X −US‖2 + βtr(UTΘU)

U ≥ 0, V ≥ 0, Θ ≥ 0,
(14)

where Θ is an N × N matrix with each entry Θij equaling one if yi = yj or zero otherwise,
for i, j = 1, · · · , N. β is the trade-off parameter. The introduction of the third item is to make the
low-dimensional representations of data points in different classes differ greatly.

In order to combine NMF and the Support Vector Machine (SVM) classifier, Gupta and Xiao [36]
proposed the general formulation for this problem as follows: min

U,V ,w
‖X −UV‖2 +

(
‖w| ‖2 + C ∑N

i=1 L(yi, wTui + w0)
)

s.t. U ∈ RN×d
+ , V ∈ Rd×D

+ , w ∈ Rd×1, yi ∈ {+1,−1}∀i, w0 ∈ R
(15)

where (X, Y) are the original data matrix and label vector. Y is composed of yi, i = 1, · · · , N. V is
the basis matrix. U is the coefficient matrix. ui is each row of U. L(·, ·) is the loss function for the
classifier. w and w0 are the weight parameters and bias of the classifier, respectively. This type of
supervised NMF can be considered as transforming the classification task from domain (X, Y) to (U, Y).
Gupta and Xiao [36] adopted the loss function L(y, t) = max(0, 1− yt)p, and p is a hyperparameter.
It can be seen that when the margin yt is larger than one, there is no loss; this is a max-margin classifier.
An alternative optimization strategy is then adopted to solve this problem.

Shu et al. [37] introduced multinomial loss into the framework (15) to deal with the multi-class
classification problem. Chao et al. [38] integrated logistic loss and NMF into the unified framework
explicitly and solved it with a projected gradient descent algorithm. They showed improved
performance in predicting ICU 30-day mortality, compared with its unsupervised counterpart [39].

Mairal et al. [40,41] proposed a task-driven dictionary learning, which would become supervised
NMF when requiring the dictionary and coefficient parameter to be nonnegative. Its main idea is
integrating the dictionary learning and training of the classifier into a joint optimization problem,
which is similar to that in [36]. Based on [41], Zhang et al. [42] enforced `1 regularization to make
the new method robust to noises. To solve the acoustic separation problem, Bisot et al. [43] and
Sprechmann et al. [44] made a modification by classifying the mean of the projections to adapt to the
specific task.

3.2.2. Discriminative NMF

LDA aims to find a transformation to maximize the between-class distance and minimize the
within-class distance. It is obviously a way to utilize the label information, and this idea was firstly
reflected in [45] to conduct supervised NMF.

Let Sw and Sb measure the within-class and between-class scatter, respectively. Suppose there are
C classes, and let ni denote the number of vectors in the ith class.

Sw =
1
C

C

∑
i=1

1
ni

ni

∑
j=1

(uj −mi)
T(uj −mi) (16)
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Sb =
1

C(C− 1)

C

∑
i,j=1

ni

∑
j=1

(mi −mj)
T(mi −mj) (17)

where mi =
1
ni

∑ni
j=1 uj indicates the mean vector of class i in U.

Based on the above concepts, Fisher (LDA is also called Fisher LDA) NMF [45] is formulated as:
min
U,V

D(X||Z) + αSw − αSb

Z = UV
U ≥ 0 V ≥ 0,

(18)

where α is the trade-off parameter. It can be noted that when α = 0, it becomes the unsupervised NMF.
With the same idea, Zafeiriou et al. [46] and Kotsia et al. [47] provided another approach by

setting different weights to the between-class and within-class scatter items instead of the same
weight like α in Equation (18). Guan et al. [48] and Lu et al. [49] added more desirable properties
such as smooth or discriminative in the basis matrix to discriminant NMF. Vilamala et al. [50] and
Lee et al. [51] successfully applied discriminative NMF to human brain tumor classification and
emotion classification.

3.3. Manifold-Based Supervised Dimension Reduction

Manifold learning assumes that the high-dimensional data points have a low-dimensional
manifold, and the task of manifold learning is to uncover this low-dimensional manifold.
Manifold-based dimension reduction methods exploit the geometric properties of the manifold on
which the data points are supposed to lie. Common manifold-based dimension reduction methods
include Isomap [52], Locally Linear Embedding (LLE) [53], and Laplacian Eigenmap (LE) [54].
We will introduce the above unsupervised manifold-based dimension reduction methods and their
corresponding supervised versions in the following three subsections.

3.3.1. Isomap-Based Supervised Dimension Reduction

An earlier classical dimension reduction method, Multidimensional Scaling (MDS) [55],
just retains the Euclidean distance and does not consider the neighborhood distribution, so it cannot
deal with the case where high-dimensional data points lie on or near a curved manifold, like the
Swiss roll dataset [52]. To overcome this drawback, Isomap attempts to preserve the pairwise geodesic
distance that is measured on the manifold. It can be considered as the extension of MDS. To facilitate
the understanding of supervised Isomap, we display algorithms of MDS and Isomap in Algorithms 1
and 2, respectively.

Algorithm 1 MDS algorithm.

Input: Distance matrix D ∈ RN×N , d
1. Calculate B = − 1

2 HDH, where H = I − 1
N 11T is the centering matrix.

2. Conduct eigenvalue decomposition of B : Bv = λv.
Output: U = VΛ

1
2 ; V indicates the matrix of d eigenvectors, and λ is a diagonal matrix with

diagonal entries as the largest deigenvalues.
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Algorithm 2 Isomap algorithm.

Input: x1, · · · , xN ∈ RD

1. Construct a graph with edge weight Wij =
∣∣|xi − xj

∣∣ | for points xi, xj in the k-nearest

neighborhood or ε-ball.
2. Compute the shortest distances between all pairs of points using Dijkstra’s or Floyd’s algorithm,

and obtain the squares of the distances in matrix D.
Output: MDS(D).

The work in [56] was the first to explore supervised Isomap by combining the Isomap procedure
with the nearest neighbor classifier. Two supervised Isomap methods named WeightedIso and
Iso+Ada, which took into consideration the label information by modifying the transformation
performed by Isomap, were proposed in [56]. By designing the dissimilarity measures to integrate
the label information, Ribeiro et al. [57] proposed an enhanced supervised Isomap. The dissimilarity
measure [58] involved is defined as:

D(xi, xj) =

{
((a− 1)/a)1/2 if ci = cj
a1/2 − d0 if ci 6= cj

(19)

where a = 1/e−d2
ij/σ with dij set to be any distance measure, σ is a smoothing parameter, d0 is a

constant (0 ≤ d0 ≤ 1), and ci, cj are the data class labels. The between-class dissimilarity is larger than
the within-class dissimilarity, conferring a high discriminative power to this method.

Based on the above dissimilarity distance, the enhanced supervised Isomap is summarized in
Algorithm 3.

Algorithm 3 Enhanced supervised Isomap.

Input: x1, · · · , xN ∈ RD, k, ci, i = 1, 2
1. Compute the dissimilarity matrix using label information from Equation (19).
2. Run Isomap in Algorithm 2 to obtain low embedding map U.
3. Learn the embedded mapping D to construct dissimilarity kernels.
4. SVM tests on new points.
Output: D

Li and Guo [59] not only obtained explicit mapping from high-dimensional space to
low-dimensional space during supervised Isomap learning, but also adopted geodesic distance instead
of Euclidean distance to make this Isomap robust to noise. To exploit the labeled and unlabeled data
points, Zhang et al. [60] provided a semi-supervised Isomap by mining the pairwise within-class
distances in the same manifold and maximizing the distances between different manifolds.

3.3.2. LLE-Based Supervised Dimension Reduction

In contrast with Isomap, which retains the global structure property, LLE attempts to preserve the
local structure property. It assumes that each data point in the original space can be represented
as a linear combination of their nearest neighbors, and it tries to look for the low-dimensional
representations of these data points to keep this linear combination property.

Suppose that a data point xi can be written as a linear combination wij of its k nearest neighbors
xj. Note that the k nearest neighbors are identified by ranking the dissimilarity matrix ∆. The LLE can
be formulated as the following optimization problem.
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min
U

∑N
i=1

∥∥∥ui −∑k
j=1 wijuj

∥∥∥2

s.t. 1
N UTU = I.

(20)

where uk indicates the k column of the solution matrix U. The constraint is enforced to avoid the trivial
solution U = 0.

By modifying the dissimilarity, De Ridder and Duin [61] and De Ridder et al. [62] proposed the
supervised LLE. The modified dissimilarity matrix ∆

′
= ∆ + αmax(∆) where 0 ≤ α ≤ 1, max(∆) is the

maximum entry of ∆ and Λij = 1 if xi and xj belong to the same class, and zero otherwise. Obviously,
when α = 0, it becomes unsupervised LLE. When α = 1, it is the fully-supervised LLE, and when
0 < α < 1, it is the semi-supervised LLE. After modifying the dissimilarity matrix, all the subsequent
steps are the same as for LLE.

Zhang [63] and Liu et al. [64] adopted the same idea that the between-class dissimilarity is
larger than within-class dissimilarity to conduct supervised LLE. Moreover, Liu et al. [64] extended
supervised LLE in tensor space to handle high order data to retain their structure information in each
order. We can sum up that all these supervised LLE methods reflect the LDA idea.

3.3.3. LE-Based Supervised Dimension Reduction

LE [54] attempts to preserve the local neighborhood structure by using the Laplacian of the

graph. The similarity matrix can be constructed by using Gaussian function Wij = exp(−||xi−xj||2
β )

where i, j = 1, · · · , N, β is a scale parameter that is usually set to the average of squared distances
between all pairs. LE tries to seek the low-dimensional representation ui, i = 1, · · · , N by minimizing
− 1

2 ∑i,j
∣∣|xi − xj

∣∣ |2Wi,j = tr(UT LU). Therefore, LE can be formulated as:
min

U
tr(UT LU)

s.t. UT DU = I,
UT Le = 0.

(21)

where I is the identity matrix and e = (1, · · · , 1)T , D is the diagonal matrix whose entries are column
or row sums of similarity matrix W , L = D−W is the Laplacian matrix, and U is the low-dimensional
matrix we seek. The two constraints in Equation (21) are used to avoid the trivial solutions U = 0
and U = e. Applying the Lagrange multiplier method and using the fact Le = 0, the solutions of
Equation (21) can be obtained by forming a matrix by the eigenvectors corresponding to the smallest
deigenvalues (excluding zero) of the generalized eigenvector problem as:

Lu = λDu. (22)

In order to adapt LE for the classification task, borrowing the idea of LDA, Raducanu and
Dornaika [65] proposed a supervised LE. By minimizing the margin between homogeneous data
points and maximizing the margin between heterogeneous data points, supervised LE [65] exploited
the label information well and learned the supervised low-dimensional representation finally. To define
the margin, for each data point xi, they defined two sets Nw(xi) and Nb(xi) to indicate the within-class
neighbors and between-class neighbors with a similarity higher than the average one, respectively.

Nw(xi) = {xj|yj = yi, exp(−
∣∣|xi − xj

∣∣ |2
β

) > AS(xi)} (23)

Nw(xi) = {xj|yj 6=i, exp(−
∣∣|xi − xj

∣∣ |2
β

) > AS(xi)} (24)
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where AS(xi) =
1
N ∑N

k=1 exp(−||xi−xj||2
β ) indicates the average similarity of the sample xi to all the rest

of the data points.
With these two sets defined, two weight matrices corresponding to Equations (23) and (24) are

defined as:

Ww,ij =

{
exp(−||xi−xj||2

β ) if xj ∈ Nw(xi) or xi ∈ Nw(xj)

0 otherwise
(25)

Ww,ij =

{
1 if xj ∈ Nb(xi) or xi ∈ Nb(xj)

0 otherwise
(26)

To get the low-dimensional representation U, two objective functions can be optimized as follows:

min
1
2 ∑

i,j

∣∣|ui − uj
∣∣ |2Ww,ij = tr(UT LwU) (27)

max
1
2 ∑

i,j

∣∣|ui − uj
∣∣ |2Wb,ij = tr(UT LbU) (28)

where Lw = Dw −Ww and Lb = Db −Wb indicate the corresponding Laplacians.
By merging the above two objective functions, the final optimization problem is formulated as:{

max
U

tr(UT LbU) + (1− γ)tr(UT LwU)

s.t. UT DwU = I.
(29)

By defining matrix B = γLb + (1− γ)Ww, the above problem can be transformed as:{
max

U
tr(UT BU)

s.t. UT DwU = I.
(30)

This formulation is easy to solve by the generalized eigenvalue problem.
Besides the above popular supervised LE method, Zheng et al. [66] explored another way to

integrate the label information by optimizing the weight matrix using the labels after constructing the
similarity matrix from local neighborhood relation. Wu et al. [67] proposed a deep learning-based
supervised LE method whose deep architecture consists of multiple stacked layers and computes an
intermediate representation that is fed to a nearest-neighbor classifier. Jiang and Jia [68] integrated the
label information into the process of constructing the dissimilarity matrix, and the other steps are the
same as for the general LE.

3.4. Discussion

In the three introduced classes of supervised or semi-supervised dimension reduction methods,
supervised NMF has been successfully applied in computer vision and speech recognition, because
NMF has a very good interpretability due to its non-negativity property. PCA-based methods can be
used in all the classification or regression problems, but their performance may not be as competitive
as NMF-based methods in the computer vision and speech recognition fields. Manifold-based methods
assume that the data points are located in a low-dimensional manifold or each data point can be
represented as the linear combination of its neighbors; thus, they are not as general as PCA-based
method, but more general than NMF-based methods. In addition, manifold-based methods are
normally time consuming due to the inverse of the Laplacian matrix. In summary, from the perspective
of generality, the three classes of supervised or semi-supervised methods are ranked as PCA-based
methods, manifold-based methods, and then, NMF-based methods.
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4. Application

Supervised dimension reduction has been successfully applied to a variety of applications
including computer vision, biomedical informatics, speech recognition, visualization, etc.

4.1. Computer Vision

From the inception of NMF [27], it had been successfully applied to face recognition due to its
ability to produce interpretable bases. Naturally, Face recognition becomes the typically successful
application of supervised NMF. Discriminative NMFs [46,47,69] are the earlier successful attempts of
supervised NMF methods at face recognition, and then, many direct NMF methods [35–37,70] also
demonstrated superior performance in this task.

Apart from face recognition, all this object or action recognition also involves the application
of supervised dimension reduction. Wu et al. [67] proposed a supervised Laplacian eigenmap to
recognize visual objects. Kumar [71] adopted supervised dictionary learning to recognize the actions
and locations of the objects in the images. Santiago-Mozos et al. [72] applied supervised PCA to
object detection in infrared images and demonstrated good performance. Recently, Xinfang et al. [73]
proposed a semi-supervised local discriminant analysis by combing the idea of LDA and LLE for
polarimetric SAR image classification.

4.2. Biomedical Informatics

In bioinformatics, especially genetics, due to the large amount of gene markers, it is challenging to
identify the true gene marker that results in a certain disease directly. Two tough goals, high dimension
and classification, should be simultaneously tackled; thus, supervised dimension reduction becomes
the ideal choice. Zhang et al. [74] proposed a semi-supervised projective NMF method for cancer
classification. Gaujoux and Seoighe [75] adopted another semi-supervised NMF method for gene
expression deconvolution. Supervised PCA [76] was successfully applied to gene set analysis, while
supervised categorical PCA [77,78] was successfully applied in genome-wide association analyses.
Moreover, supervised probabilistic PCA [26] performed rather well in gene classification.

In medical informatics, with the fast development of medical devices, a variety of features are
collected in real applications. Inevitably, some noisy, redundant, or useless features are included,
which hinders identifying certain diseases. How to identify the effective features for certain diseases
is challenging, and supervised dimension reduction becomes a good option to solve this problem.
Vilamala et al. [50] designed a discriminative NMF and successfully applied ti to human brain tumor
classification. Chao et al. [38] proposed a supervised NMF by combing NMF and logistic regression
and improved the ICU mortality prediction performance. Fuse et al. [79] combined NMF and SVM
to diagnose Alzheimer’s disease and obtained an improved performance. Supervised PCA [20] has
been successfully used in DNA microarray data analysis and cancer diagnosis. It is noted that the
process of knowledge discovery in biomedical informatics is mostly performed by biomedical domain
experts. This is mostly due to the high complexity of the research domain, which requires deep domain
knowledge. At the same time, these domain experts face major obstacles in handling and analyzing
their high-dimensional, heterogeneous, and complex research data. A recent work [80] outlined that
ontology-centered data infrastructure for scientific research, which actively supports the medical
domain experts in data acquisition, processing, and exploration, can be very beneficial here.

4.3. Speech Recognition

Speech recognition is another successful application of NMF, and thus, supervised NMF
is naturally successfully used in this kind of application. Lee et al. [51] used discriminative
NMF to classify the emotional difference in speech. Bisot et al. [43] applied supervised NMF to
acoustic scene classification and obtained rather good performance. Sprechmann et al. [44] and
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Weninger et al. [81] solved the audio source separation with supervised NMF, while Nakajima et al. [82]
and Kitamura et al. [83] adopted supervised NMF for music signal separation.

Although there exist an amount of successful applications in speech recognition, more attempts
can be made in the future. As we can see that almost all of the existing supervised dimension reduction
methods are NMF-based, both PCA-based and manifold-based methods can be investigated and
compared with the existing methods.

4.4. Visualization

High-dimensional data are hard to explain. Take the ICU mortality prediction problem [38]
as an example: there are many vital sign features, and it is difficult to interpret them individually
due to the high dimensionality. As far as we know, biomedical experts are increasingly confronted
with complex high-dimensional data. As the number of dimensions is often very large, one needs
to map them to a smaller number of relevant dimensions to be more amenable to expert analysis.
This is because irrelevant, redundant, and conflicting dimensions can negatively affect the effectiveness
and efficiency of the analytic process. This is also the so-called curse of dimensionality problem.
To deal with this problem, dimension reduction is a possible means, but the possible mappings
from high- to low-dimensional spaces are ambiguous. Subspace analysis [84,85] can be used to
seek solutions. Since high-dimensional data are difficult to interpret, a rough picture of the data
is quite helpful; thus, visualization is very important, and it is also an important application
of supervised dimension reduction. Barshan et al. [21] provided a supervised PCA to conduct
visualization, while Vlachos et al. [56] gave another supervised dimension reduction method by
borrowing the LDA idea for visualization. Geng et al. [58] proposed a supervised Isomap to visualize.
Compared with visualization from general unsupervised dimension reduction, visualization from
supervised dimension reduction has clear separability due to its supervised learning property.

Apart from all the above applications, text mining is probably another good application of
supervised dimension reduction. Although there are already many works [86–88] on unsupervised
dimension reduction, there are few works on supervised dimension reduction.

5. Potential Future Research Issues

Although supervised dimension reduction has developed greatly and been successfully applied
to many applications during the last two decades, there are still some challenging problems that need
to be tackled in the future. Below, we unfold some important open problems worth further exploration.

5.1. Scalability

For PCA-based methods, the time complexity of covariance matrix computation is O(D2N), and
that of its eigenvalue decomposition is O(D3). Therefore, the complexity of PCA is O(D2N + D3).
For NMF-based methods, some fast solving methods like the projected gradient descent method [31]
do not work due to the additional objective function items, then the time complexity of its most
time-costly part is O(tNDd); t is the iteration numbers it needs to converge. For manifold-based
methods, the time complexity of constructing the similarity matrix is O(N2D), and the frequently-used
solving strategy is generalized eigenvalue decomposition; the time complexity is O(D3). One of the
main goals of supervised dimension reduction is to solve high-dimensional problems, but when the
feature dimension is high, the time costs of the existing supervised dimension reduction methods
are still high, because some specifically-designed unsupervised dimension reduction methods do not
work due to the appearance of new objective items or constraints on label information. When dataset
is huge in sample size, like in social networks, there are millions of data points, and the time cost for
supervised dimension reduction is still unacceptable. Therefore, some specific algorithms directed at
supervised dimension reduction are urgently in need, especially due to the data explosion in this era.
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5.2. Missing Values

Missing values are a common phenomenon in many applications due to a variety of factors like
the failure of sensors in computer vision and missing certain laboratory test results over time for
some patients in the clinical setting [89]. The existing strategy is imputation with zero, the mean,
or the maximum value, or multiple imputation [90]. In order to tackle missing values, Lee et al. [34]
introduced an auxiliary matrix to indicate whether the entry was missed or not. Obviously, no specific
designs are involved in the supervised dimension reduction process. Some tricks to handle missing
values like the E-M algorithm [91] can be considered to be incorporated into some supervised
dimension reduction methods. In addition, multi-view information of the data has consensus, and they
are complementary to each other [92–94], which can be the other direction to handle the missing value
problem.

5.3. Heterogeneous Types

Data may contain heterogeneous types of features such as numerical, categorical, symbolic,
ordinal features, etc. How to integrate different types of data together to perform supervised dimension
reduction is a challenging problem. A natural way to handle this problem is to convert all of them
to the categorical type. However, much information will be lost during this phase. For instance,
the difference of the continuous values categorized into the same category is ignored [95]. Therefore,
how to exploit the information within mixed data types is worth exploring in the future.

Besides the above three potential research issues, an emerging future research issue that will
become very important in the future is the explanation part, and this will require supervised dimension
reduction to make results from arbitrarily high-dimensional spaces understandable for a human,
who can perceive information only in the lower dimensions. We can refer to the recent work [96] to
learn about this direction. Apart from supervised dimension reduction, it is also intriguing to explore
other ways to explain high-dimensional data well.

6. Conclusions

The field of supervised dimension reduction has seen extensive growth at an increasing rate.
We have outlined the state-of-the-art research in this review by categorizing it into three main
classes: PCA-based, NMF-based, and manifold-based supervised dimension reduction methods.
To understand their characteristics better, we provide a discussion to elaborate their advantages
and disadvantages. To advance the further development of this topic, we also list some open
problems waiting for analytical study in the future. This review will be helpful for researchers
who want to develop advanced supervised dimension reduction methods or who seek methods to
learn low-dimensional representation for certain supervised learning applications. We believe that
supervised dimension reduction will continue to remain an active area of study in the years to come,
owing to an increase in the high-dimensional data and sustained community efforts. In addition,
their tighter integration into specific application systems will continuously shape the emerging
landscape and provide opportunities for researcher contribution.
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