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Abstract: This paper develops a thermoelectric (TE)–piezoelectric (PE) hybrid structure with the PE
layer acting as both a support membrane and a sensor for the TE film for microelectronics applications.
The TE and PE layers are assumed to be perfectly bonded mechanically and thermally but electrically
shielded and insulated with each other. The thermo-electro-mechanical responses of the hybrid
bilayer under the TE generator operation conditions are obtained, and the influence of the PE layer
on the TE energy conversion efficiency is investigated. The numerical results for a Bi2Te3/PZT-5H
bilayer structure show that large compressive stresses develop in both the PE and TE layers. With a
decrease in the PE layer thickness, the magnitude of the maximum compressive stress in the PE layer
increases whereas the maximum magnitude of the stress in the TE layer decreases. The numerical
result of the TE energy conversion efficiency shows that increasing the PE layer thickness leads to
lower energy conversion efficiencies. A nearly 40% reduction in the peak efficiency is observed with
a PE layer of the same thickness as that of the TE layer. These results suggest that design of TE films
with supporting/sensing membranes must consider both aspects of energy conversion efficiency and
the thermomechanical reliability of both the TE and PE layers.

Keywords: piezoelectricity; thermoelectricity; laminate; thermo-electro-mechanical responses; energy
conversion efficiency

1. Introduction

Thermoelectric (TE) thin films have been developed for microelectronics applica-
tions; see for example, Rowe et al. [1], Volklein et al. [2], Venkatasubramanian et al. [3],
Chen et al. [4], Kogo et al. [5], Corbett et al. [6], Nandihalli [7], and Mele et al. [8]. These
TE films can be used to convert the waste heat (for example, the heat generated by the
computer processors) into electric power. TE films have also been investigated to harvest
human body heat in wearable electronics applications [8,9]. TE films when subjected to
the temperature differential applied at the two ends of the film may be susceptible to
mechanical instability due to their small thicknesses. Normally, TE films are deposited on a
support membrane to increase its mechanical stability [2].

Thermal stresses in a TE film as well as in the supporting membrane are of impor-
tance in assessing the thermomechanical reliability of the TE device. Huang et al. [10,11]
investigated the thermal stresses in a four-layer TE structure consisting of two TE films,
a supporting layer and an insulation layer using both a one-dimensional (1D) analytical
solution and a two-dimensional (2D) finite element method. Jin [12] calculated the thermal
stresses in a four-layer TE structure using a laminated composites theory. Jin and Yang [13]
analyzed a three-layer piezothermoelectric laminated structure consisting of an n-type
piezothermoelectric film sandwiched between two support membranes. They considered
the effects of carrier diffusion on the thermomechanical responses of the laminate.

In addition to the analytical and numerical solutions of the stress and deformation
states in a TE structure that can be used to predict the mechanical failure, structural health
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monitoring tools can also be used to evaluate the deformation and damage development in
a TE structure. Piezoelectric sensors have widely been used to obtain the real-time informa-
tion of the stress and deformation states in materials and structures [14–16]. Although both
piezoelectric fibers and films may be used to detect damage development in engineering
structures, piezoelectric membranes are a preferred geometrical configuration for moni-
toring TE films with microscopic thicknesses. Use of piezoelectric fibers and membranes,
however, may negatively influence the energy conversion efficiency of the TE device. We
point out that using piezoelectric sensors for structural health monitoring of TE devices has
not been studied to the best knowledge of the authors.

This work aims to explore a concept of using a piezoelectric (PE) layer as both a
supporting membrane and a sensing film. By replacing the regular support membrane for
thin TE legs with a PE membrane, the structural health of the TE film can be monitored
and the film can still maintain its mechanical stability. In the meantime, no additional
energy conversion efficiency reduction will be incurred. We will analyze the thermo-
electro-mechanical responses of the hybrid TE-PE layered structure and examine the effect
of lamination on the TE energy conversion efficiency. The remainder of this paper is
organized as follows. Section 2 presents the basic equations of thermoelectricity and
piezoelectricity and the governing equations for the TE-PE laminate. The temperature,
deformation, stress, and electric field in the TE-PE laminate are obtained in Sections 3 and 4,
respectively. The equation to compute the energy conversion efficiency is presented in
Section 5. In Section 6, numerical examples are presented for the temperature, deformation,
stress, electric field, and energy conversion efficiency for a Bi2Te3/PZT-5H bilayer structure.
Finally, conclusions are provided in Section 7.

2. Basic Equations

Consider a TE film deposited on a PE membrane as shown in Figure 1. The TE and PE
layers have thicknesses t1 and t2, respectively, and the length of the bilayer structure in the
thermal gradient direction is denoted by L. The hybrid bilayer structure is mechanically
fixed at the two ends and is subjected to a hot side temperature Θh at z = L and cold
side temperature Θc at z = 0. We begin with the basic equations of thermoelectricity
and piezoelectricity. The constitutive relations for isotropic thermoelectric materials are
given by

Ji = σEi − σSΘ,i
hi = −kΘ,i + SΘJi

Tij = 2GSij +
2Gν

1 − 2ν
Skkδij − Kα(Θ − Θc)δij

(1)

where Θ is the temperature field, Ei is the electric field vector, Ji is the electric current
density vector, hi is the heat flux vector, Tij is the stress tensor, Sij is the strain tensor,
δij is the Kronecker delta, σ is the electrical conductivity, S the Seebeck coefficient, k the
thermal conductivity, G the shear modulus, ν the Poisson’s ratio, α the coefficient of thermal
expansion, and K the bulk modulus. It is noted that S without the indices denotes the
Seebeck coefficient but not the strain tensor.
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The constitutive equations of piezoelectric materials are

Tij = cijklSkl − ekijEk − λij(Θ − Θc)
Di = eiklSkl + εikEk + pi(Θ − Θc)
hi = −kijΘ,j

(2)

where Di is the electric displacement vector, kij the thermal conductivity tensor, cijkl the
elastic stiffness, eijk the piezoelectric constants, εij the dielectric constants, λij the stress–
temperature coefficients, and pi the pyroelectric constants. In the above equations, the
indices i, j, k, l have the range of 1 to 3, repeated indices imply summation over the range
of the index, and a comma followed by index i implies partial derivative with respect to
coordinate xi.

The energy and charge balance equations in thermoelectricity under steady state
conditions include

hi,i = JjEj
Ji,i = 0

(3)

The charge equation of electrostatics of piezoelectricity is

Di,i = 0 (4)

The equilibrium equations satisfied by the stresses, the strain–displacement relations, and
the electric field-potential relations are given by

Tij,j = 0 (5)

Sij = (ui,j + uj,i)/2 (6)

Ei = −φ,i (7)

where ui is the displacement vector and φ is the electric potential.
We assume that the TE and PE layers are perfectly bonded mechanically and the

two layers are in local thermal equilibrium. That is, the TE and PE layers have the same
displacement and temperature distributions in the in-plane directions. Moreover, the two
layers are assumed to be shielded and insulated electrically. That is, the electric fields in the
two layers will not interfere with each other. This may be achieved by coating the PE layer
with a nanoscale electrically insulating and shielding flexible film [17]. The out-of-plane
stresses can be neglected because the thickness of the bilayer structure is much smaller than
its length L. The normal strain in the width direction can also be ignored if the width is
much larger than the length L. The TE-PE problem thus can be treated as a one-dimensional
(1D) problem with heat and current flowing in the z-, i.e., x3-direction. In this paper, we
use a 1D strength of materials model to investigate the thermomechanical responses of the
TE-PE bilayer structure. The 1D models may be used to determine the temperature, thermal
stress, and deformation in the preliminary design of microelectronic structures [2,10–13].
Bending can occur in the bilayer structure due to the difference in the thermal expansion
between the PE and TE layers. The effect of bending on the deformation is secondary and
may be ignored when the thermal expansion difference in the TE leg direction is small,
which is the case in this study. Now, the constitutive equations in Equation (1) for the TE
layer reduce to

J3 = σE(1)
3 − σS

dΘ
dz

(8)

h(1)3 = −k(1)
dΘ
dz

+ SΘJ3 (9)

T(1)
33 =

2G
1 − ν

S33 −
2G(1 + ν)α(1)

1 − ν
(Θ − Θc) (10)
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where the superscript (1) denotes the quantities in the TE layer. The charge balance in
Equation (3) under the 1D conditions means that the current density J3 is a constant in the
TE film.

The constitutive equations for the PE layer reduce to

h(2)3 = −k(2)3
dΘ
dz

(11)

T(2)
33 = c′(2)33 S33 − e′33E(2)

3 − λ′(2)
3 (Θ − Θc) (12)

D(2)
3 = e′33S33 + ε′33E(2)

3 + p′3(Θ − Θc) (13)

where the superscript (2) stands for the quantities in the PE layer, and the primed constants
are the effective properties given by

c′(2)33 = −c(2)31
c(2)13

c(2)11

+ c(2)33

e′33 = −c(2)31
e31

c(2)11

+ e33

ε′33 = e31
e31

c(2)11

+ ε33

(14)

λ′(2)
3 = −c(2)31

λ
(2)
1

c(2)11

+ λ
(2)
3

p′3 = e31
λ
(2)
1

c(2)11

+ p3

(15)

λ
(2)
3 = c(2)13 α

(2)
1 + c(2)23 α

(2)
2 + c(2)33 α

(2)
3

λ
(2)
1 = c(2)11 α

(2)
1 + c(2)12 α

(2)
2 + c(2)13 α

(2)
3

(16)

In Equation (16), α
(2)
i (i = 1, 2, 3) are the coefficients of thermal expansion of the PE

layer. The charge equation in Equation (4) under the 1D conditions means that the electric
displacement D(2)

3 is a constant in the PE layer.
In general, the properties TE and PE materials are dependent on temperature. In this

work, we conduct a first-order approximation investigation and assume that the material
parameters are constant as in the studies of the classical work of thermoelectrics [18]. The
assumption is reasonable considering the small temperature differential between the cold
and hot ends of the TE film.

We use the following boundary conditions for the temperature field:

Θ = Θc, z = 0
Θ = Θh, z = L

(17)

We also assume no surface charge concentration at the two ends of the PE layer. The
boundary conditions for the electric displacement can thus be written as

D(2)
3 = 0, z = 0, L (18)

Finally, we consider fixed-end mechanical boundary conditions described by

u3 = 0, z = 0, L (19)

3. Temperature, Displacement, and Strain

The governing equations for the temperature and displacement in the hybrid bilayer
structure can be derived by considering energy balance and force equilibrium of a differen-
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tial element of the layered structure in the longitudinal direction (i.e., the z-direction). The
energy balance gives

t1
dh(1)

dz
+ t2

dh(2)

dz
+ 2η(Θ − Θc) = t1 JE(1)

3 (20)

where η is the heat transfer coefficient at the two surfaces of the bilayer, and J = J3 is the
constant current density in the TE leg. Using Equations (8), (9) and (11) in the above
equation yields

k̃
d2(Θ − Θc)

dz2 − 2η

t1
(Θ − Θc) = −ρJ2 (21)

where ρ = 1/σ is the electrical resistivity of the TE film, and k̃ is an effective thermal
conductivity given by

k̃ = k(1) + k(2)3
t2

t1
(22)

The force balance of a longitudinal differential element leads to

dT(1)
33

dz
t1 +

dT(2)
33

dz
t2 = 0 (23)

The electric displacement in the PE layer is zero considering that D(2)
3 is a constant and it

satisfies the homogeneous boundary condition (18). Equation (13) now becomes

e′33S33 + ε′33E(2)
3 + p′3(Θ − Θc) = 0 (24)

Using Equations (10), (12) and (24) in Equation (23) yields

c̃33
d2u3

dz2 − λ̃33
dΘ
dz

= 0 (25)

where the effective properties are given by

c̃33 =
2G

1 − ν

t1

t2
+ c′(2)33 + e′33

e′33

ε′33

λ̃33 =
2G(1 + ν)α

1 − ν

t1

t2
+ λ′(2)

33 − e′33
p′3
ε′33

(26)

The temperature distribution that satisfies Equation (21) and the boundary conditions
in Equation (17) can be obtained as follows

Θ = Θc + A exp(λz) + B exp(−λz) +
t1

2η
ρJ2 (27)

where λ is a parameter given by

λ =

√
2η

k̃t1
(28)

and A and B are constants given by

A =
1

exp(λL)− exp(−λL)

{
∆Θ − [1 − exp(−λL)]

t1

2η
ρJ2

}
B =

1
exp(λL)− exp(−λL)

{
−∆Θ − [exp(λL)− 1]

t1

2η
ρJ2

} (29)

in which ∆Θ = Θh − Θc is the temperature differential between the hot and cold ends of
the TE film.
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The displacement in the laminate can be obtained by solving Equation (25) under the
boundary conditions in Equation (19) as follows

u3 =
λ̃33

c̃33

(
A
λ

eλz − B
λ

e−λz +
t1

2η
ρJ2z + C1z + C2

)
(30)

where
C1 = − A

λL
eλL +

B
λL

e−λL − t1

2η
ρJ2 − B − A

λL

C2 =
B − A

λ

(31)

The strain is then obtained as

S33 =
du3

dz
=

λ̃33

c̃33

(
Aeλz + Be−λz +

t1

2η
ρJ2 + C1

)
(32)

4. Electric Fields and Stresses

The electric displacement in the PE layer is zero considering that D3 is a constant and
it satisfies the homogeneous boundary condition (18). The electric field in the PE layer is
thus obtained from Equations (24), (27) and (32) as follows

E(2)
3 = − e′33

ε′33

λ̃33

c̃33

(
Aeλz + Be−λz +

t1

2η
ρJ2 + C1

)
−

p′3
ε′33

[
A exp(λz) + B exp(−λz) +

t1

2η
ρJ2

] (33)

Substituting Equation (33) into Equation (12) yields the stress in the PE layer

T(2)
33 =

(
c′(2)33 + e′33

e′33

ε′33

)
λ̃33

c̃33

(
Aeλz + Be−λz +

t1

2η
ρJ2 + C1

)
−
(

λ′(2)
3 − e′33

p′3
ε′33

)[
A exp(λz) + B exp(−λz) +

t1

2η
ρJ2

] (34)

The electric field in the TE layer is obtained from Equations (8) and (27) as follows

E(1)
3 = ρJ + Sλ[A exp(λz)− B exp(−λz)] (35)

Finally, the stress in the TE layer can be obtained from Equations (10), (27) and (32)
as follows

T(1)
33 =

2G
1 − ν

λ̃33

c̃33

(
Aeλz + Be−λz +

t1

2η
ρJ2 + C1

)
−2G(1 + ν)α(1)

1 − ν

[
A exp(λz) + B exp(−λz) +

t1

2η
ρJ2

] (36)

5. Thermoelectric Energy Conversion Efficiency

The energy conversion efficiency of the TE film is calculated by

η =
t1

h(1)3 (L)t1 + h(2)3 (L)t2

L∫
0

JE(1)
3 dz (37)

where
L∫

0

JE(1)
3 dz = ρJ2L + JS(Θh − Θc) (38)
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and
h(1)3 (L) = −k(1)λ[A exp(λL)− B exp(−λL)]

+JS
[

Θc + A exp(λL) + B exp(−λL) +
t1

2η
ρJ2

]
(39)

h(2)3 (L) = −k(2)3 λ[A exp(λL)− B exp(−λL)] (40)

6. Numerical Results and Discussion

In the numerical calculations, the TE material is a Bi2Te3 with the properties listed in
Table 1. The thermoelectric properties are taken from Lan et al. [19]. The elastic modulus and
coefficient of thermal expansion are from Tsai et al. [20] and Chen et al. [21], respectively.
The piezoelectric material is PZT-5H with the properties listed in Table 2 [22–24]. The
temperatures at the cold and hot ends of the hybrid structure are Θc = 290 K and Θh = 330 K,
respectively. The composite length is assumed to be L = 500 µm and the TE layer has a
thickness of 5 µm in the numerical examples. The heat transfer coefficient at the two
surfaces of the bilayer is assumed as η = 20 W/(m2K).

Table 1. Material properties of the TE layer.

Young’s modulus (GPa) E = 110

Poisson’s ratio ν = 0.30

Coefficient of thermal expansion
(10−6 K−1) α = 15

Thermal conductivity (W/(m-K)) k = 1.2

Electrical resistivity (Ω-m) ρ = 0.82 × 10−5

Seebeck coefficient (µV/K) S = 191

Table 2. Material properties of the PZT-5H layer.

Elastic constants (GPa) c33 = 117, c31 = c32 = 84.1,
c11 = 126, c12 = 79.5

Piezoelectric constants (C/m2) e33 = 23.3, e31 = −6.5

Dielectric constant (V-m) ε33 = 1470ε0 = 1.302 × 10−8

Coefficient of thermal expansion
(10−6 K−1)

α1 = −3.3
α2 = −3.3
α3 = 15.8

Thermal conductivity (W/(m-K)) k3 = 1.5

Pyroelectric constant (C/(m2-K)) p3 = −400 × 10−6

Figure 2 shows the temperature distribution in the bilayer structure for various values
of the PE layer thickness. In all cases, the temperature increases from the prescribed cold
side temperature of 290 K to the prescribed hot side temperature of 330 K. At a given axial
location, the temperature slightly increases with an increase in the PE layer thickness; that
is, the temperature is higher when the PE thickness is larger than the TE layer thickness
(t2/t1 = 1.6), whereas the temperature is lower when the PE layer is thinner than the TE
layer (t2/t1 = 0.4). This is because the PE layer has a slightly higher thermal conductivity
than the TE layer and hence the overall heat flux in the bilayer structure becomes higher
with a thicker PE layer.
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Figure 2. Temperature distribution in the TE-PE bilayer (t1 = 5 µm).

Figure 3 shows the displacement distribution in the bilayer structure for various values
of the PE layer thickness. The displacement field slightly deviates from the symmetric
distribution about the midpoint of the structure. The negative displacement means that
the material points move towards the cold end (z = 0) of the structure. i.e., from the higher
temperature region to the lower temperature region. The magnitude of the displacement
gradually increases towards the mid portion of the film. The maximum magnitude of the
displacement of 0.04455 µm occurs at z = 0.263 mm for t2/t1 = 0.4. The magnitude of the dis-
placement increases with a decrease in the PE layer thickness as well as in the overall bilayer
thickness because the TE layer thickness is fixed. The characteristics of the displacement
distribution will be further elaborated in the discussion of the strain distribution.
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Figure 4 shows the strain distribution in the bilayer structure for various values of the
PE layer thickness. The strain is compressive in the cold-side region (z < 0.263 mm) and
becomes tensile in the hot-side region (z > 0.263 mm). The magnitude of the strain at the hot
end z = L is larger than that at the cold end z = 0. These strain distribution characteristics are
due to the fact that the temperature in the hot side of the bilayer is higher than the reference
temperature (the same as the cold-end temperature as assumed), which causes expansion
and therefore positive strain in the region. In the meantime, the integral of the strain over
the bilayer length equals zero (fixed ends) and hence the strain in the cold-side region must
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be negative. The above also explains why the displacement is in the negative z-direction.
The larger strain at the hot end is mostly the result of the difference between the hot-end
temperature and the reference temperature. At a given axial location, the magnitude of the
strain increases with a decrease in the PE layer thickness, which is a result of lower overall
stiffness of the bilayer structure with a thinner PE layer.
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Figure 4. Strain distribution in the TE-PE bilayer (t1 = 5 µm).

Figure 5 shows the stress distribution in the PE layer for various values of the PE layer
thickness. The magnitude of the compressive stress increases with increasing distance from
the hot end z = L. For t2 = t1 = 5 µm, the magnitude of the stress at the hot end z = L is
27.35 MPa and increases to 38.39 MPa at the cold end z = 0. It is seen that with a decrease in
the PE layer thickness, the magnitude of the compressive stress increases near the cold end
z = 0, but decreases in the hot-side region. As indicated by Equation (12), the stress depends
on the strain, the electric field, and the temperature variation from the reference value. The
higher tensile strain in the hot-side region and the lower electric field intensity (as shown
in the following Figure 6) may contribute to the lower magnitude of the compressive stress
near the hot end of the bilayer structure with a thinner PE layer.
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Figure 6. Electric field in the PE layer (t1 = 5 µm).

Figure 6 shows the electric field in the PE layer for various values of the PE layer
thickness. For a given PE thickness, the electric field intensity decreases from the maximum
value at the cold end (z = 0) with increasing distance from the cold end. At a given location,
a lower PE thickness results in a higher electric field near the cold end and lower electric
field in the hot-side region. Corresponding to the electric field, the electrical potential
difference between the two ends of the PE membrane are 298, 307, and 311 V for t2 = 2, 5,
and 8 µm, respectively.

Figure 7 shows the stress distribution in the TE layer for various values of the PE
layer thickness. As indicated by Equation (10), the stress in the TE layer depends on the
strain and the temperature variation from the reference value. Different from the stress
distribution in the PE layer as shown in Figure 5, now the magnitude of the compressive
stress decreases with increasing distance from the hot end z = L, reflecting the absence of
the influence of the electric field on the stress. For t2 = t1 = 5 µm, the magnitude of the
stress at the hot end z = L is 50.34 MPa and decreases to 39.3 MPa at the cold end z = 0.
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Figures 5 and 7 show that the extreme stresses occur at the ends of the TE-PE structure.
Figure 8 shows the stresses at the cold end z = 0 and the hot end z = L in both the TE and PE
layers as functions of the PE layer thickness. It is seen that the stresses at the two ends of the
TE layer become almost the same while the stresses at the two ends of the PE layer deviate
when the PE layer thickness becomes vanishingly small. The convergence of the stresses at
the two ends in the TE layer indicates that the stress becomes uniform in the TE layer, which
is expected because mechanically the force in the structure is basically supported by the TE
layer when the PE layer thickness is extremely small. With decreasing PE layer thickness,
the maximum magnitude of the stress in the PE layer increases whereas the maximum stress
in the TE layer decreases. The maximum magnitude of the compressive stress in the PZT-5H
layer is generally below the strength of the material [25]. However, the magnitude of the
compressive stress in the Bi2Te3 layer may become higher than the material strength. For
example, Keshavarz et al. [26] reported the strength values between 62 MPa and 120 MPa
for Bi2Te3 under different processing conditions. Qian et al. [27] reported the strength
values between 24 MPa and 67 MPa for Bi2Te3-based alloys. The model developed in this
work may be used to determine the thicknesses and the temperature differentials under
which mechanical failure may occur.
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Figure 9 shows the effect of the PE layer thickness on the energy conversion efficiency
of the bilayer TE-PE structure, where t2 = 0 means the efficiency of a single TE leg without
the PE support/sensing layer. It is clear that the efficiency decreases with an increase in
the PE layer thickness. This is because a portion of the thermal energy at the hot end is
used to heat the PE layer instead of being used to generate electricity in the TE layer. The
decrease in the energy conversion efficiency is significant as the peak efficiency decreases
from 0.018 for the stand-alone TE layer to 0.0111 for the TE-PE bilayer with the same TE and
PE thickness (t1 = t2 = 0.5 µm). In general, the TE energy efficiency decreases monotonically
with increasing PE layer thickness.
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7. Conclusions

In this paper, we propose to use a piezoelectric layer as both a support membrane and
a sensor for a thermoelectric film for microelectronics applications. We analyze a hybrid
TE-PE bilayer structure with the two layers being perfectly bonded mechanically and in
local thermal equilibrium. The two layers are electrically shielded and insulated with
each other. The temperature, displacement, and strain fields in the bilayer and the stresses
in both the PE and TE layers are obtained. The effect of the PE layer on the TE energy
conversion efficiency is examined.

Our numerical results for a Bi2Te3/PZT-5H bilayer show that with an increase in
the PE layer thickness, the temperature in the hybrid bilayer slightly increases. In the
meantime, the magnitudes of the displacement and strain decrease. With decreasing PE
layer thickness, the magnitudes of the compressive stresses in the both PE and TE layers
increase at the cold end z = 0 but decrease at the hot end z = L. The largest compressive stress
in the PE layer occurs at the cold end. In the TE layer, however, the largest compressive
stress occurs at the hot end. The maximum compressive stress in the PZT-5H layer is
generally below the strength of the material for the geometrical parameters considered in
this paper. However, the maximum compressive stress in the Bi2Te3 layer may reach the
material strength depending on the material processing conditions. The model developed
in this work may be used to determine the thicknesses and the temperature differentials
under which failure may occur. Buckling of thin TE-PE structures is another possible failure
mode under large compressive stresses. Jin [28] showed that buckling of TE films and
laminated TE film/regular support membranes may occur for large TE leg length/thickness
ratios. Buckling of hybrid TE-PE structures and the piezoelectric effects will be addressed
in future investigations.

The numerical results show that the thermoelectric energy conversion efficiency is
negatively influenced by the PE supporting/sensing layer. The decrease in the energy
efficiency can be significant as a nearly 40% reduction in the peak efficiency occurs for a
TE-PE structure with a PE layer of the same thickness as that of the TE layer. In general, the
TE energy efficiency decreases monotonically with increasing PE layer thickness. Hence,
thin PE layers should be used to improve the energy efficiency. Moreover, thin PE layers
also reduce the compressive stress in the TE layer. However, buckling will become an
issue for extremely thin TE-PE structures. In general, design of TE films with support-
ing/sensing membranes must consider both aspects of thermomechanical reliability and
energy conversion efficiency.
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